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Abstract: Layered periodic foundations (LPFs) with identical unit cells have been proposed as a type
of seismic metamaterials due to the unique dynamic characteristic of attenuation zones. However, it
is difficult to design attenuation zones with both comparatively low starting frequencies and large
bandwidths for traditional LPFs with identical unit cells. In this paper, combined layered periodic
foundations (CLPFs) are proposed by combining two traditional LPFs with different unit cells in
tandem. Combined attenuation zones of the CLPFs are identified by investigating the frequency
response functions of the CLPFs. The generation mechanism of the combined attenuation zones
was studied by varying the configuration of CLPFs. The results show that the combined attenuation
zones are the union of attenuation zones of the two traditional LPFs. To verify the efficiency of CLPFs,
the seismic responses of a four-story frame structure with CLPF are simulated. The present work
is very helpful for the design of CLPFs with attenuation zones with a low starting frequency and
large bandwidth.

Keywords: seismic metamaterial; combined layered periodic foundation; combined attenuation
zone; low starting frequency; wide bandwidth

1. Introduction

In recent years, periodic structures and phononic crystals have generated significant
interest among researchers for their physical properties and potential applications in
acoustic and elastic vibration isolation and mitigation [1,2]. Periodic structures possess
a unique dynamic property of frequency attenuation zones (AZs) in which the elastic
waves of certain frequencies cannot propagate. Inspired by the concept of AZs of periodic
structures, PFs (also known as a type of seismic metamaterials) that consist of periodic unit
cells have been proposed as a novel base isolation method to protect structures exposed
to seismic excitations [3,4]. Seismic waves with frequencies in the AZs of PFs will be
significantly reduced after propagating though the PFs [5]. Based on the dimensions of the
periodicity of unit cells, PFs can be divided into LPFs [6,7], two-dimensional PFs [8–11]
and three-dimensional PFs [12–14].

Due to the simplicity of configuration, LPFs have been receiving increasing attention in
the field of seismic isolation. Bao et al. [6] studied the AZs of LPFs composed of alternating
rubber and concrete layers by the transfer matrix method and assessed the effectiveness
of the LPFs in seismic isolation through numerical simulations. By taking the thickness
of unit cells as 0.4 m, the first AZ from 6.6 to 15.0 Hz was obtained in [6] by tuning the
thickness ratio of rubber layers to concrete layers. Xiong et al. [15] extended the differential
quadrature method to analyze the AZs of LPFs, and designed the first AZ from 2.6 to
4.3 Hz with the thickness of unit cells as 1 m. Xiang et al. [16] investigated the seismic
responses of a steel structure with LPF by shake table tests. The results in [16] show that
the LPF can significantly reduce the seismic responses of the upper structure when the
main frequencies of seismic waves are in the AZs of the LPF. Shi et al. [17] proposed using
discrete rubber blocks instead of rubber layers in LPF to obtain AZs with a lower starting
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frequency, where the first AZ from 2.2 to 15.0 Hz was obtained with the thickness of unit
cells being 0.4 m. Liu et al. [18] studied the effect of initial stress caused by the self-weight
of superstructures on the AZs of LPFs, and found that the starting frequencies of the AZs of
LPFs are lower but their widths of them are narrower due to the compressive initial stress.
Cheng et al. [19] considered the effects of material damping on the dispersion properties
of damped LPFs by modeling rubber material as linear viscoelastic hysteretic material.
Witarto et al. [20] and Liu et al. [21] conducted the global sensitivity analyses of the AZs of
LPFs by the Monte Carlo simulation-based and the Gauss–Lobatto integration-based Sobol’
decomposition method, respectively.

The main frequency components of seismic waves span the range of 1–20 Hz [22],
which requires AZs with both low starting frequencies and large bandwidths. The previous
studies on LPFs mainly concentrated on those composed of identical unit cells. However,
in such cases, the starting frequencies and bandwidths of AZs simultaneously decrease as
the thickness of unit cells increases, and vice versa [15–18]. Thus, it is difficult to design
AZs with both low starting frequencies and large bandwidths for traditional LPFs with
identical unit cells. In order to solve the above problems, in the present paper, CLPFs with
two traditional LPFs with different unit cells in tandem are proposed and the generation
mechanism of combined attenuation zones (CAZs) is examined.

The remaining sections are organized as follows: the computational methods of
dispersion curves for SH waves in traditional LPFs with identical unit cells and frequency
response functions of CLPFs are given in Section 2. In Section 3, the effect of the filling
ratio on AZs of traditional LPF with identical unit cells is discussed. In addition, the
calculation method and generation mechanism of the CAZs of CLPFs are investigated.
On the other hand, the seismic responses of a four-story frame structure with CLPF are
simulated. Finally, some conclusions are drawn in Section 4.

2. Computational Methods
2.1. Dispersion Curves of SH Waves in Traditional LPFs with Identical Unit Cells

A traditional LPF consists of an infinite repetition of alternating concrete layer A
with thickness h1 and rubber layer B with thickness h2 is schematically shown in Figure 1.
The material parameters of concrete and rubber are listed in Table 1. The effect of the
self-weight of the superstructure on the traditional LPF is reduced to uniformly distributed
initial stress σ0

zz. A typical unit cell whose thickness is h = h1 + h2 can be easily identified.
Due to the spatial periodicity in the traditional LPF in Figure 1, it is sufficient to consider
the dynamic characteristics of the only one typical unit cell to obtain wave propagation in
the whole traditional LPF.
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Figure 1. Traditional layered periodic foundation with identical unit cells. 

SH waves propagating in the z direction in the traditional and CLPF are considered 
in the present paper, where the displacement is in the x direction. The governing equation 
of SH waves in LPF can be written as [23] 
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where u is the displacement in the x direction; the superscript e denotes the material of 
layer A or B; ( )eG  and ( )eρ  are shear modulus and mass density of the material of layer 
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where ω  is the angular frequency of the SH wave and ( )U z  is the displacement ampli-
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the nodal displacement amplitude vector of interior nodes of the typical unit cell and d1 is 
the nodal displacement amplitude of the bottom boundary, respectively. For a specific 
wave number k, the eigenfrequencies ω  can be determined by Equation (6). Dispersion 
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Table 1. Material parameters.

Materials Mass Density ρ (kg/m3) Young Modulus E (GPa) Poisson Ratio v

Concrete 2300 25 0.330
Rubber 1300 1.37 × 10−4 0.463

SH waves propagating in the z direction in the traditional and CLPF are considered in
the present paper, where the displacement is in the x direction. The governing equation of
SH waves in LPF can be written as [23]

(G(e) + σ0
zz)

∂2u(e)

∂z2 = ρ(e)
..
u (1)

where u is the displacement in the x direction; the superscript e denotes the material of
layer A or B; G(e) and ρ(e) are shear modulus and mass density of the material of layer e,
respectively. The solution of Equation (1) can be expressed as

u(e)(z, t) = U(e)(z)eiωt (2)

where ω is the angular frequency of the SH wave and U(z) is the displacement amplitude
who is only dependent of the location in the z direction.

The connection interface of two adjacent layers is assumed to be perfectly bonded.
Thus, the continuity conditions satisfy

U(A)(h1) = U(B)(0), τ(A)(h1) = τ(B)(0), (3)

where τ denotes the shear stress.
By using the weak form quadrature element method [24–27], the dynamic governing

equations of a typical unit cell can be expressed as[
K + K0 − ω2M

]
d = 0 (4)

where K, K0, M and d are the stiffness matrix, geometric stiffness matrix due to the
initial stress, and the matrix of the typical unit cell and the nodal displacement amplitude
vector, respectively.

According to the Bloch–Floquet theory [5,28], the periodic boundary conditions of the
unit cell can be given as

U(A)(0)eikh = U(B)(h2), τ(A)(0)eikh = τ(B)(h2), (5)

where k is the wave number.
Substituting Equation (5) into Equation (3) yields standard complex eigenvalue equations:[

Kr(k) + K0r(k)− ω2(k)Mr
][ di

d1

]
=

[
0
0

]
(6)

where Kr(k), K0r(k) and Mr are the reduced stiffness matrix, geometric stiffness matrix
and mass matrix after applying the periodic boundary conditions, respectively; di is the
nodal displacement amplitude vector of interior nodes of the typical unit cell and d1 is the
nodal displacement amplitude of the bottom boundary, respectively. For a specific wave
number k, the eigenfrequencies ω can be determined by Equation (6). Dispersion curves
can be obtained by varying the wave number k in the first irreducible Brillouin zone. The
gaps between two adjacent branches of the dispersion curves are the so-called AZs.
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2.2. Frequency Response Functions of CLPFs

A traditional LPF with I–type unit cells and that with II–type unit cells, whose geomet-
ric parameters of unit cells are different, are used to construct CLPF, as shown in Figure 2,
where a1 and a2 represent the thicknesses of the concrete and rubber layers of the I–type
unit cells, respectively; b1 and b2 represent those of the II–type unit cells, respectively. The
CLPF consists of a layer of concrete pad, N1 I–type unit cells and N2 II–type unit cells, as
shown in Figure 3, where the periodic boundary conditions are unapplicable since unit
cells in the CLPF are not identical.
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Figure 2. (a) Ι–type unit cell with thickness a and (b) ΙΙ–type unit cell with thickness b. 
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Figure 2. (a) I–type unit cell with thickness a and (b) II–type unit cell with thickness b.
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Figure 3. Combined layered periodic foundation with N1 I–type and N2 II–type unit cells.

For simplicity, the top boundary of the CLPF is assumed to be stress free. A harmonic
displacement excitation Ψ = δeiωt is applied to the bottom boundary of the CLPF, where δ
is the amplitude of the excitation. By using the weak form quadrature element method,
dynamic governing equations of the CLPF can be written as

[
K + K0 − ω2M

] d2
di
δ

 =

 0
0
F1

 (7)

where K, K0 and M are the stiffness matrix, geometric stiffness matrix and mass matrix
of the CLPF, respectively; di is the nodal displacement amplitude vector of interior nodes
of the CLPF and d2 is the nodal displacement amplitude of top boundary, respectively;
F1 is the nodal load force amplitude of bottom boundary of the CLPF. di, d2 and F1 can
be obtained from Equation (7) for specified excitation angular frequency ω and excitation
amplitude δ.
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To quantify the wave attenuation in the CLPF, the frequency response function (FRF)
of the CLPF can be defined as

FRF = 20 log10

∣∣∣∣∣d2

δ

∣∣∣∣∣ (8)

Negative FRF means that the displacement amplitude of the top boundary of the CLPF
is less than the excitation displacement amplitude. For a traditional LPF with identical
unit cells, results in previous studies showed that frequency ranges corresponding to the
negative FRFs match well with the AZs [16,17]. In Section 3.2, the FRFs of CLPFs will
be calculated to identify CAZs since the CAZs cannot be directly obtained by applying
periodic boundary conditions.

3. Results and Discussion
3.1. Attenuation Zones of Traditional LPFs with Identical Unit Cells

According to the findings of previous studies, the starting frequency and bandwidth
of attenuation zones decrease with the increase in initial stress [18]. Thus, in engineering,
the initial stress needs to be controlled in a reasonable range. In the cases discussed later,
the initial stress due to the self-weight of a superstructure is taken as σ0

zz = 0.4GR, where
GR is the shear modulus of rubber material. Here, the filling ratio of the rubber layer fr is
defined as the ratio of the thickness of the rubble layer to that of the unit cell.

By using the computational methods in Section 2, the AZs and FRFs of traditional LPFs
with I–type and II–type unit cells with fr = 50% can be obtained, as shown in Figure 4,
where the thicknesses of unit cells are taken as a = 0.5 m and b = 1 m. It can be easily found
from Figure 4 that the frequency ranges where the values of FRF are negative match well
with the corresponding AZs. Moreover, by comparing the AZs in Figure 4a,b, it can be
seen that the AZs of the traditional LPF with thicker unit cells are lower and narrower,
which demonstrates that it is difficult to achieve both comparatively low and wide AZs of
traditional LPFs with identical unit cells by tuning the thickness of unit cells.
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Figure 5 shows the AZs of the traditional LPFs with Ι–type and ΙΙ–type unit cells 
changing with the filling ratio of rubber material, which is confined from 10 to 90%. It can 
be found from Figure 5 that the AZs of traditional LPFs with Ι–type and ΙΙ–type unit cells 
are getting narrower and the gaps between adjacent AZs wider as the filling ratio of rub-
ber material increases to 90%. This is because that the dynamic property of traditional LPF 

Figure 4. AZs and FRFs of traditional layered periodic foundations with (a) I–type and (b) II–type unit cells.

Figure 5 shows the AZs of the traditional LPFs with I–type and II–type unit cells
changing with the filling ratio of rubber material, which is confined from 10 to 90%. It can
be found from Figure 5 that the AZs of traditional LPFs with I–type and II–type unit cells
are getting narrower and the gaps between adjacent AZs wider as the filling ratio of rubber
material increases to 90%. This is because that the dynamic property of traditional LPF is
approaching that of homogeneous rubber material when the filling ratio of rubber material
is sufficiently large and approaching 100%. It should be noted that similar cases can also be
found as the filling ratio of rubber material approaches 0.
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Figure 6 shows FRF of the CLPF with N1 = 2 and N2 = 2, where the geometric
parameters of I–type unit cell are a = 0.5 m and fr = 30% while those of II–type unit cell are
b = 1 m and fr = 30%. For comparison purposes, the corresponding AZs of the traditional
LPFs with I–type and II–type unit cells obtained by Equation (6) are plotted as the blue
shaded areas (the first two AZs are 4.67–15.50 Hz and 16.88–30.99 Hz) and grey shaded
areas (the first two AZs are 2.33–7.75 Hz and 8.44–15.50 Hz) in Figure 6, respectively. The
green shaded areas are the so-called CAZs, which are a union of AZs of the traditional LPFs
with I–type and II–type unit cells. It can be seen from Figure 6 that the frequency ranges
of negative FRFs match well with the CAZs except for frequencies 2.63, 4.07 and 7.86 Hz,
which are near the boundaries of AZs of the traditional LPFs with I–type and II–type unit
cells. Figure 7 shows the displacement amplitude of nodes along the z direction of the
CLPF under excitation frequencies f 1 = 4.07 Hz and f 2 = 6.41 Hz. It should be noted that
f 1 = 4.07 Hz is in the first AZ of traditional LPF with II–type unit cells but outside the AZs
of traditional LPF with I–type unit cells. It can be seen from Figure 7 that for f 1 = 4.07 Hz,
deformation of the rubber layers of the CLPF increases propagating in I–type unit cells
and then decreases in II–type unit cells in the CLPF, which leads to a slight amplification
of the displacement amplitude of the top layer compared with that of the bottom layer.
On the other hand, f 2 = 6.41 Hz is in both the first AZs of the traditional LPFs with I–type
and II–type unit cells. Thus, in Figure 7, it can be seen that the displacement amplitude is
significantly attenuated along the z direction for f 2 = 6.41 Hz.

Figure 8 shows the LBF and UBF of the first CAZ (i.e., union of the AZs of the
traditional LPFs with I–type and II–type unit cells) and those of the frequency range of
negative FRFs for 20 CLPFs with various filling ratios, where LBF1, UBF1, LBF2 and UBF2
represent the lower bound frequency and upper bound frequency of the first CAZ and
those of the frequency range of negative FRFs, respectively. It can be seen from Figure 8
that the relative errors between LBF1 and LBF2 are less than 10% and those between UBF1
and UBF2 can be neglected, which verifies that the computation for the first CAZ simply
by the union of the first AZs of the traditional LPFs with I–type and II–type unit cells is
sufficiently accurate in the engineering field.
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Figure 9 shows the FRFs of the CLPF with various numbers of I–type and II–type unit
cells. It can be seen from Figure 9 that the excitation attenuation in the CAZs is larger as
the numbers of I–type and II–type unit cells in the CLPF increases, which is in accordance
with the results in the previous studies of traditional LPFs [18].
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Figure 9. FRFs of the combined layered periodic foundation with various numbers of I–type and
II–type unit cells.

Figure 10 shows the FRFs of the CLPF with two I–type unit cells and various numbers
of II–type unit cells. It can be seen from Figure 10 that only excitations in the AZs of the
traditional LPFs with II–type unit cells are attenuated more drastically as the numbers of
II–type unit cells in the CLPF increases, while those outside AZs of the traditional LPFs
with II–type unit cells are almost not affected. Figure 11 shows the FRFs of the CLPF
with various numbers of I–type unit cells and two II–type unit cells. Similarly to the
phenomenon in Figure 10, it can be seen from Figure 11 that only excitations in the AZs of
the traditional LPFs with I–type unit cells are more drastically attenuated as the numbers
of I–type unit cells in the CLPF increases, while those outside the AZs of the traditional
LPFs with I–type unit cells are almost not affected, which implies that the generation of
CAZs of CLPFs results from both the contribution of the AZs of both the traditional LPFs
with I–type and II–type unit cells.
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signed and its seismic performance is investigated. The geometric parameters of Ι–type 
unit cell are a = 0.5 m and fr = 22%, and those of the ΙΙ–type unit cell are b = 1 m and fr = 
30%. Hence, the thickness of the designed CLPF is 3.39 m. Figure 12 shows the FRF of the 
CLPF with optimized geometric parameters, where the first CAZ can be identified from 
2.33 to 30 Hz. Compared with previous studies on traditional LPFs [6,17], the CAZ of this 
CLPF is featured with both a lower starting frequency and larger bandwidth. 
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3.3. Seismic Performance of CLPFs

In this section, a CLPF with N1 = N2 = 2 and optimized geometric parameters is
designed and its seismic performance is investigated. The geometric parameters of I–type
unit cell are a = 0.5 m and fr = 22%, and those of the II–type unit cell are b = 1 m and
fr = 30%. Hence, the thickness of the designed CLPF is 3.39 m. Figure 12 shows the FRF
of the CLPF with optimized geometric parameters, where the first CAZ can be identified
from 2.33 to 30 Hz. Compared with previous studies on traditional LPFs [6,17], the CAZ of
this CLPF is featured with both a lower starting frequency and larger bandwidth.
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For comparison purposes, a pure concrete foundation with the same thickness as the 
designed CLPF is also considered, as shown in Figure 13a. The finite element model of the 
CLPF with a four-story concrete structure is shown Figure 13b. The plane dimensions of 
the concrete foundation and CLPF is 14 m × 14 m. The size of the upper structure is 6 m × 
6 m × 12 m. The cross-section of the beams and columns are 0.4 m × 0.6 m and 0.5 m × 0.5 
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3.3.1. Time-Domain Response under Harmonic Excitations 
Figure 14 shows the acceleration responses of the node P under harmonic excitation 

with frequency f = 2 Hz, which is outside the first CAZ of the CLPF. It can be found from 
Figure 14 that the acceleration response of node P with the CLPF is slightly larger than 
that with the concrete foundation. Figure 15 shows the acceleration responses of node P 
under harmonic excitation with frequency f = 10 Hz, which is in the first CAZ of the CLPF. 
It can clearly be seen from Figure 15 that the acceleration response of node P with the 
CLPF decreases compared with that with the concrete foundation, which verifies the the-
oretical results of CAZs in Section 3.2. 

Figure 12. FRF of the designed combined layered periodic foundation (the geometric parameters of
I–type unit cell are a = 0.5 m and fr = 22%, and those of II–type unit cell are b = 1 m and fr = 30%).

For comparison purposes, a pure concrete foundation with the same thickness as the
designed CLPF is also considered, as shown in Figure 13a. The finite element model of
the CLPF with a four-story concrete structure is shown Figure 13b. The plane dimensions
of the concrete foundation and CLPF is 14 m × 14 m. The size of the upper structure is
6 m × 6 m × 12 m. The cross-section of the beams and columns are 0.4 m × 0.6 m and
0.5 m × 0.5 m, respectively. The thickness of the floors is 0.1 m.
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Figure 13. (a) Concrete foundation and (b) combined layered periodic foundation with superstructure.

3.3.1. Time-Domain Response under Harmonic Excitations

Figure 14 shows the acceleration responses of the node P under harmonic excitation
with frequency f = 2 Hz, which is outside the first CAZ of the CLPF. It can be found from
Figure 14 that the acceleration response of node P with the CLPF is slightly larger than
that with the concrete foundation. Figure 15 shows the acceleration responses of node P
under harmonic excitation with frequency f = 10 Hz, which is in the first CAZ of the CLPF.
It can clearly be seen from Figure 15 that the acceleration response of node P with the CLPF
decreases compared with that with the concrete foundation, which verifies the theoretical
results of CAZs in Section 3.2.
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Figure 15. Acceleration responses of node P under harmonic excitation with frequency f = 10 Hz. 

3.3.2. Time-Domain Response under Seismic Excitations 
Horizontal components of the Whittier Narrows–02 and Oroville–01 earthquake 

ground motions are used as seismic excitations. These two seismic records are docu-
mented in the PEER Ground Database [29], whose relevant information is listed in Table 
2. 

Table 2. Earthquake acceleration records. 

Earthquake (Record Place) Magnitude (Date) Acceleration Peak (Gal) 
Whittier Narrows–02 (Big Tujunga Angeles Nat F) 5.27 (4 October 1987) 195.671 

Oroville–01 (Oroville Seismograph Station) 5.89 (1 August 1975) 86.434 

Figure 16 shows the acceleration record of the Whittier Narrows–02 seismic wave 
and its Fourier spectra. It can be seen from Figure 16 that the dominant frequencies of the 
Whittier Narrows–02 seismic wave are from 3 to 8 Hz, which are covered by the first CAZ 
of the CLPF (2.33 to 30 Hz). Figure 17 shows the acceleration of node P under the Whittier 
Narrows–02 seismic wave and its Fourier spectra, where the shaded area is the first CAZ 
of the CLPF. It can be found from Figure 17 that the acceleration of node P with the CLPF 
is effectively reduced compared with that with the concrete foundation, which results in 
the reduction in the corresponding acceleration components in the first CAZ. 

Figure 14. Acceleration responses of node P under harmonic excitation with frequency f = 2 Hz.
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3.3.2. Time-Domain Response under Seismic Excitations

Horizontal components of the Whittier Narrows–02 and Oroville–01 earthquake
ground motions are used as seismic excitations. These two seismic records are documented
in the PEER Ground Database [29], whose relevant information is listed in Table 2.

Table 2. Earthquake acceleration records.

Earthquake (Record Place) Magnitude (Date) Acceleration Peak (Gal)

Whittier Narrows–02 (Big Tujunga Angeles Nat F) 5.27 (4 October 1987) 195.671
Oroville–01 (Oroville Seismograph Station) 5.89 (1 August 1975) 86.434

Figure 16 shows the acceleration record of the Whittier Narrows–02 seismic wave
and its Fourier spectra. It can be seen from Figure 16 that the dominant frequencies of the
Whittier Narrows–02 seismic wave are from 3 to 8 Hz, which are covered by the first CAZ
of the CLPF (2.33 to 30 Hz). Figure 17 shows the acceleration of node P under the Whittier
Narrows–02 seismic wave and its Fourier spectra, where the shaded area is the first CAZ
of the CLPF. It can be found from Figure 17 that the acceleration of node P with the CLPF
is effectively reduced compared with that with the concrete foundation, which results in
the reduction in the corresponding acceleration components in the first CAZ.
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Figure 16. (a) Acceleration record of the Whittier Narrows–02 seismic wave and (b) its Fourier spectra. 
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Figure 17. (a) Acceleration of node P under Whittier Narrows–02 seismic wave and (b) its Fourier spectra. 

Figure 18 shows the acceleration record of the Oroville–01 seismic wave and its Fou-
rier spectra. It can be seen from Figure 18 that the dominant frequencies of the Oroville–
01 seismic wave are from 2.5 to 12 Hz, which are also covered by the first CAZ of the 
CLPF. Figure 19 shows the acceleration of node P under the Oroville–01 seismic wave and 
its Fourier spectra. Again, it can be seen from Figure 19a that the acceleration of node P 
with the CLPF is greatly reduced compared with that of the concrete foundation. Moreo-
ver, it can be seen from Figure 19b that the acceleration components outside the first CAZ 
will be enlarged by the CLPF, which is in accordance with the essence of AZs of traditional 
LPFs. 

Figure 20 shows the maximum relative displacement of the superstructure under the 
Whittier Narrows–02 and Oroville–01 seismic waves. It can be seen from Figure 20 that 
seismic responses of the superstructure are effectively mitigated by the CLPF. 

Figure 16. (a) Acceleration record of the Whittier Narrows–02 seismic wave and (b) its Fourier spectra.
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Figure 16. (a) Acceleration record of the Whittier Narrows–02 seismic wave and (b) its Fourier spectra. 
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Figure 17. (a) Acceleration of node P under Whittier Narrows–02 seismic wave and (b) its Fourier spectra. 

Figure 18 shows the acceleration record of the Oroville–01 seismic wave and its Fou-
rier spectra. It can be seen from Figure 18 that the dominant frequencies of the Oroville–
01 seismic wave are from 2.5 to 12 Hz, which are also covered by the first CAZ of the 
CLPF. Figure 19 shows the acceleration of node P under the Oroville–01 seismic wave and 
its Fourier spectra. Again, it can be seen from Figure 19a that the acceleration of node P 
with the CLPF is greatly reduced compared with that of the concrete foundation. Moreo-
ver, it can be seen from Figure 19b that the acceleration components outside the first CAZ 
will be enlarged by the CLPF, which is in accordance with the essence of AZs of traditional 
LPFs. 

Figure 20 shows the maximum relative displacement of the superstructure under the 
Whittier Narrows–02 and Oroville–01 seismic waves. It can be seen from Figure 20 that 
seismic responses of the superstructure are effectively mitigated by the CLPF. 

Figure 17. (a) Acceleration of node P under Whittier Narrows–02 seismic wave and (b) its Fourier spectra.

Figure 18 shows the acceleration record of the Oroville–01 seismic wave and its Fourier
spectra. It can be seen from Figure 18 that the dominant frequencies of the Oroville–01
seismic wave are from 2.5 to 12 Hz, which are also covered by the first CAZ of the CLPF.
Figure 19 shows the acceleration of node P under the Oroville–01 seismic wave and its
Fourier spectra. Again, it can be seen from Figure 19a that the acceleration of node P with
the CLPF is greatly reduced compared with that of the concrete foundation. Moreover, it
can be seen from Figure 19b that the acceleration components outside the first CAZ will be
enlarged by the CLPF, which is in accordance with the essence of AZs of traditional LPFs.
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Figure 19. (a) Acceleration of node P under the Oroville–01 seismic wave and (b) its Fourier spectra. 
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Figure 20. Maximum relative displacement of superstructure under: (a) the Whittier Narrows–02; and (b) the Oroville–01 
seismic waves. 

  

Figure 18. (a) Acceleration record of the Oroville–01 seismic wave and (b) its Fourier spectra.

Figure 20 shows the maximum relative displacement of the superstructure under the
Whittier Narrows–02 and Oroville–01 seismic waves. It can be seen from Figure 20 that
seismic responses of the superstructure are effectively mitigated by the CLPF.
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seismic waves.

4. Conclusions

Combined layered periodic foundations are proposed by combing two traditional lay-
ered periodic foundations with different unit cells in tandem. Combined attenuation zones
of the combined layered periodic foundations are identified by investigating the frequency
response functions. The generation mechanism of the combined attenuation zones was
studied by varying the configuration of combined layered periodic foundations. Seismic
performance of a combined layered periodic foundation is studied to verify the theoretical
findings of combined attenuation zones. The following conclusions can be drawn:

(1) The generation of the combined attenuation zones of combined layered periodic
foundations results from the contribution of the attenuation zones of both the traditional
layered periodic foundations.

(2) The first combined attenuation zone of a combined layered periodic foundation
can be simply obtained by the union of the first attenuation zones of the traditional layered
periodic foundations with acceptable accuracy in the engineering field.

(3) Combined attenuation zones of combined layered periodic foundations are of both
comparatively low starting frequency and large bandwidth, which is an advantage in the
field of seismic isolation that the traditional layered periodic foundations do not have.
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