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Abstract: In this investigation, biodiesel was produced from Moringa oleifera oil through a trans-
esterification process at operating conditions including a reaction temperature of 60 °C, catalyst 
concentration of 1% wt., reaction time of 2 h, stirring speed of 1000 rpm and methanol to oil ratio of 
8.50:1. Biodiesel blends, B10 and B20, were tested in a compression ignition engine, and the perfor-
mance and emission characteristics were analyzed and compared with high-speed diesel. The en-
gine was operated at full load conditions with engine speeds varying from 1000 rpm to 2400 rpm. 
All the performance and exhaust pollutants results were collected and analyzed. It was found that 
MOB10 produced lower BP (7.44%), BSFC (7.51%), and CO2 (7.7%). The MOB10 also reduced smoke 
opacity (24%) and HC (10.27%). Compared to diesel, MOB10 also increased CO (2.5%) and NOx 
(9%) emissions. 
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1. Introduction 
The growth of the human population and a higher quality of living have increased 

global energy consumption. One of the most significant consumers of energy is the trans-
portation field [1,2]. Transportation is heavily dependent on gasoline and diesel engines. 
Nevertheless, compared to gasoline, diesel engines are more cost-effective and energy-
efficient [3,4]. Diesel has also become preferable because of its higher fuel efficiency, en-
ergy density, and lower carbon dioxide (CO2) emissions [5,6]. Thus, diesel engines provide 
higher mileage [7]. However, factors such as the increasing price of world crude oil, the 
decline in fossil fuel, and the increase in greenhouse gas emissions have forced researchers 
and scientists to find renewable and sustainable energy resources [8–10]. 

Furthermore, the health issues resulting from the exhaust of fossil fuel engines are 
causing alarm across the world [11,12]. Therefore, scientists and researchers are now 
searching for more renewable, sustainable and cleaner alternatives to replace fossil fuels 
[13,14]. Scientists and researchers are looking for ways to develop alternative fuels to deal 
with escalating energy demands [15–17]. 

In this regard, biodiesel or fatty acid methyl ester (FAME) is a potential substitute for 
petroleum-derived diesel in vehicles [18,19]. Biodiesel is usually produced by transester-
ification of edible oil or animal fats [20,21]. However, nowadays, biodiesels are also pro-
duced from the transesterification of non-edible oils, waste cooking oil, macroalgae, ani-
mal fats, and microalgae [22]. Thus, the sources used to produce biodiesel are sustainable 
and renewable [23]. Moreover, the biodiesel feedstock can be replenished by cultivating 
crops and rearing livestock. 

In contrast, the sources of fossil fuel are non-renewable [24]. Biodiesel blends have 
been used without making any significant modifications to diesel engines. Biodiesels are 
potential alternatives for diesel because of their chemical and physical properties [25,26]. 
Biodiesel utilization in unmodified diesel engines slightly increases brake-specific fuel 
consumption and NOx emissions. However, biodiesel consumption significantly de-
creases CO, unburned hydrocarbon (HC), and particulate emissions due to more oxygen 
and the lack of aromatic content in biodiesels [27,28]. Various research studies have been 
performed on engines to examine the performance and emission characteristics of 
Calophyllum inophyllum and palm biodiesel blends [29]. 

A number of experimental studies have also been performed on the production of 
MOB and its physicochemical properties. However, there are no comparative studies to 
date regarding engine performance and the emission characteristics of MOB and its blends 
of 10% and 20% with diesel in an SCD. This provided the motivation and purpose of this 
study, which may also potentially assist in the future generation of alternative fuel. There-
fore, the engine performance and emission characteristics resulting from regular fossil 
diesel and all Moringa oleifera methyl ester blended fuels were investigated. 

Liaquat, Masjuki [30] experimentally examined exhaust gas emissions from a com-
pression ignition engine fueled with palm biodiesel. A Bosch gas analyzer was used to 
analyze the engine exhaust emission parameters for 250 h at a 2000 rpm engine speed. A 
significant reduction in CO and CO2 emissions was recorded as the biodiesel concentra-
tion increased in blends. This was due to an excess amount of oxygen, which results in 
complete combustion occurring in the combustion chamber. Ozsezen and Canakci [31] 
examined the performance and emission characteristics of the CI engine palm oil methyl 
ester (biodiesel) blended with pure diesel. As a result, BSFC and brake power (BP) in-
creased by 7.5 and 2.5%, respectively. A significant reduction of 86.89% in CO, 14.29% in 
HC, and 67.65% in smoke opacity were observed for palm biodiesel. However, the palm 
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oil methyl ester enhanced NOx emissions by 22.1%. Sharon, Karuppasamy [32] used dif-
ferent palm biodiesel concentrations in diesel using a KIRLOSKAR TV-1 diesel engine. 
During the test, the engine’s load was changed from 20% to 100% at a constant engine 
speed of 800 rpm. The BSFC for palm biodiesel and pure diesel was found to be 0.315 and 
0.2755 kg/kWh, respectively, at full load conditions. Biodiesel blends, B25, B50 and B75, 
showed a slightly higher BSFC of 2.6%, 8.9% and 9.3%, respectively, than pure diesel. Ong, 
Masjuki [33] used Calophyllum inophyllum biodiesel in their study to examine engine per-
formance and the emission characteristics of a CI engine. According to their experimental 
results, the B10 blend showed a slight improvement in BTE as compared to diesel. How-
ever, EGT and BSFC were lower for this blend. Shehata and Razek [34] reported on the 
performance and emission characteristics of neat SOME at different engine speeds and 
loads. Resultantly, BSFC increased while BP, BTE, and torque were decreased as com-
pared to diesel. For emissions, NOx was reduced, but CO and CO2 were increased. Roy, 
Wang [35] experimented using COME to monitor the performance and emission charac-
teristics of a four-stroke two cylinders CI engine. The results suggested that BSFC of 10% 
COME blended fuel showed no significant increment, but further increasing biodiesel 
concentration in diesel fuel caused a slight increase in the BSFC, up to 2.3% compared to 
pure diesel. For emissions, CO emission was reduced for all percentage ratios of blended 
fuels, while similar trends were observed for NOx emission from the B10 blend and pure 
diesel. However, an increasing percentage of COME in blended fuel increased the NOx 
emission. Agarwal and Dhar [36] explored the performance, combustion and emission 
characteristics of Karanja oil methyl ester blended fuel (10%, 20%, and 50%). With regard 
to the engine performance, BSFC and EGT increased while BTE decreased as compared to 
diesel fuel. A significant reduction in HC and smoke opacity was observed with a slightly 
escalation in NOx emissions as compared to high-speed diesel. Both B10 and B20 blends 
delivered almost the same performance and emission characteristics. 

Moringa oleifera Lamarck is a member of the Moringaceae family, a tropical plant that 
is easy to disseminate and grows to a height of around 5 m–10 m. It is widely grown in 
tropical countries and is mainly distributed in India, Bangladesh, Pakistan, Africa, South 
America, Arabic countries, the Philippines, Thailand, and Malaysia. The seeds of Moringa 
oleifera contain 40% of oil by weight, and the oil produced is a golden yellow color [37]. 
Several researchers have reported that Moringa oleifera oil contains a high oleic acid vol-
ume, that is, approximately 70% of the total fatty acid summary [38]. Compared to other 
feedstocks, Moringa oleifera oil is from a non-edible source, which gives it good potential 
for conversion into biodiesel without affecting food industries [39]. 

Rajaraman et al. [40] have discussed blended Moringa oleifera methyl ester (B20 and 
B100) and analyzed the engine performance and emission characteristics using a direct 
injection CI engine at full load conditions. The performance results show that the brake 
thermal efficiency of Moringa oleifera blended fuel decreased compared to standard die-
sel fuel due to its high viscosity and density, as well as the lower calorific value of the 
blended fuel. The emission results show that Moringa oleifera blended fuel produces 
lower CO, HC NOx, and PM than regular diesel fuel. 

The current energy emergency has negatively affected the worldwide economy. The 
economies of numerous non-industrial nations have become uncompetitive because of the 
lack of usable energy. The present study is an effort to reduce the consumption of conven-
tional fossil fuels. Moringa oil is derived from the seeds of Moringa oleifera, a small tree 
local to the mountains that can be used to prepare biodiesel via the transesterification 
process. 

2. Materials and Methods 
2.1. Biodiesel Preparation 

The Moringa oleifera biodiesels were produced through an alkaline-catalyzed trans-
esterification process. Firstly, the Moringa oleifera crude oil was mixed with 25% vol. of 
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methanol and 1% wt. of KOH. A temperature of 60 °C and a stirring speed of 1000 rpm 
were maintained for 2 h. These conditions, were used to ensure that a homogenous mix-
ture of Moringa oleifera oil, methanol, and potassium hydroxide was obtained, and so 
that the transesterification process would produce a desirable yield rate. Once the trans-
esterification process was finished, the biodiesel was separated via a separating funnel. 
After 12 h, the product was transformed into two layers. Two immiscible layers of liquid 
formed in the separating funnel, the top layer was the methyl ester (biodiesel), and the 
bottom layer consisted of impurities and glycerin. The bottom layer was drained from the 
separating funnel, and following this, 50% vol. of distilled water at a temperature of 60 °C 
was used to spray and wash each methyl ester. Next, the methyl ester was rinsed with hot 
DW until Moringa oleifera methyl ester was cleaned of all impurities. Then, by using a ro-
tary evaporator, methyl ester was dried and then purified via filter paper. After the puri-
fication process, MOME was mixed with diesel at various ratios to produce the biodiesel 
blends. The blends prepared in this study were as follows: MOB10, MOB20, and diesel. A 
total of three samples were prepared for the study, comprising two samples of biodiesel 
blends and one sample of pure diesel. 

2.2. Composition of Biodiesel 
The FAC of the MOME was analyzed using a gas chromatography (GC) system, Ag-

ilent 7890 series, USA. Specifications and operating mode of GC system are summarized 
in Table 1. The FAC of the MOME is presented in Table 2. The amount of esters, methyl 
linoleate, monoglycerides, diglycerides, triglycerides, and free and total glycerin was 
measured according to the EN14103 standard. 

Table 1. Operating parameters of gas chromatography. 

Parameters Specifications 
Injector Split type 

Injection volume 1 μL 
Oven temperature 210 °C, isothermal  

Split flow 100 mL/min 
Carrier gas Helium, 83 kPa 

Column 60 °C for the initial time  
Column 2 flow The constant flow of helium at 1 L/min 
Temperature Rise from 60 °C to 200 °C at an interval of 10 °C 

Detector 250 °C, flame ionization detector with electronic flow control 

Table 2. Composition of moringa oleifera methyl ester. 

Fatty Acids Chemical Structure 
Molecular Mass 

(g/mol) 
Composition of MOME 

(w/w %) 
Laurate  C12:0  214.34  

Myristate C14:0  242.4 0.1 
Palmitate C16:0 270.45 8.1 

Palmitoleate C16:1 268.43 1.6 
Stearate C18:0 298.5 5.4 
Oleate C18:1 296.49 74.3 

Linoleate C18:2 294.47 4.1 
Linolenate C18:3 292.46 0.2 
Arachidate  C20:0 326.56 2.3 
Eicosenoate C20:1 324.24 1.5 

Behenate C22:0 354.61 2.6 
Saturated    18.7 
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Monounsaturated   76.9 
Polyunsaturated   4.4 

2.3. Physiochemical Characteristics of Biodiesel 
It was imperative to measure Moringa oleifera biodiesel (MOME) characteristics and 

their blends (MOB10 and MOB20) to assess the quality and suitability of these fuels for 
diesel engines. Each biodiesel has different physicochemical properties depending on 
feedstock type and biodiesel production process, post-production treatment, and fatty 
acid composition of the biodiesel. Hence, different biodiesel and biodiesel blends shows 
different effects on the CIDE’s performance and exhaust emissions. In this study, the phys-
icochemical properties (i.e., density, viscosity index, flash point, acid number, oxidation 
stability, pour point, cloud point, and CFPP and kinematic viscosity) of MOME and the 
blends were measured using ASTM standards. Results of the measured properties are 
summarized in Table 3. A Stabinger viscometer (Model: SVM 3000, Anton Paar, UK) was 
utilized to measure density (at 15 and 40 °C) and kinematic viscosity (at 40 and 100 °C). A 
bomb calorimeter (Model: C2000 Basic, IKA, UK) was utilized for calorific value measure-
ment. 𝐶𝐶𝐼 = 0.0892 𝑇 + 45.2 + [0.131 + 0.901 𝐵 ][𝑇 ]+ [0.0523 − 0.420 𝐵 ][𝑇 ] + 107 𝐵 + 60𝐵+ [0.00049][𝑇 − 𝑇 ] 
where, 
CCI = calculated cetane index, D = density at 15 °C (g/mL), B = [e(−3.5)(DN)] − 1, DN = D − 0.85, 
T10N = T10 − 215, T50N = T50 − 260, and T90N = T90 − 310. 

Table 3. Physicochemical characteristics of Moringa oleifera biodiesel and their blends. 

Property Unit ASTM Standards Diesel MOB10 MOB20 MOB100 
Density at 15 °C kg/m3 D4052 856.9 860.1 861.7 877.6 
Density at 40 °C kg/m3 D4052 828.4 831.2 834.6 860.7 

Kinematic viscosity at 40 °C mm2/s D445 3.2525 3.5572 3.6772 4.8338 
Viscosity index – – 91 101.5 112.1 185.2 

Oxidation stability h EN ISO 14112 35 33.5 32.7 26.4 
Cetane index – D4737 48.9 48.3 49.6 58.5 

Flashpoint °C D93 68.7 80.1 82.9 151.2 
Cloud point °C D2500 8 7 8 18 
Pour point °C D97 0 3 6 18 

Cold filter plugging point °C D6371 5 6 6 18 
Calorific value MJ/kg D240 45.86 44.18 43.61 39.98 

The cetane index of MOME and the blends was calculated based on the recovered 
temperature values at 10%, 50%, and 90% (T10, T50, and T90) and the fuel density at 15 °C 
(D) according to ASTM D4737 standard test methods, which is given by the equation in 
[41]. 

2.4. Engine Setup 
A naturally aspirated, single-cylinder, four-stroke, direct injection diesel engine with 

an eddy current dynamometer was used in this study. Technical specifications for the 
tested engine are listed in Table 4. The experimental layout of the test engine is displayed 
in Figure 1. Engine tests were carried out in full load conditions in triplicates, and the 
engine speed varied from 1000 to 2400 RPM with an interval of 200 rpm. The exhaust 
emission parameters (smoke opacity, NOx, HC, and CO) were analyzed using an AVL 
exhaust gas analyzer (Model: DiCom 4000, AVL Ditest, Austria). In Table 5, the technical 
specifications of the used gas analyzer (AVL exhaust gas analyzer) are listed. First, the 
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neat diesel fuel was utilized to bring the engine to a stable operating condition. Once this 
condition was reached, the biodiesel blended fuel was used for investigation. The engine 
was run for a few minutes, and then the residual diesel was drained. Data acquisition was 
performed after the drainage of residual diesel. This practice was repeated for each bio-
diesel blend. After one test was completed for the biodiesel blend, the engine was oper-
ated via diesel. This practice helped to drain the residual biodiesel blend used in the pre-
vious test from the fuel line. 

2.4.1. BTE and BSFC 
Brake thermal efficiency (BTE) is defined as the brake power of an internal combus-

tion engine as a function of the heat input obtained from fuel burning. BTE is calculated 
using the formula given below: 𝜂 =  𝐵𝑃 × 3600 × 100𝑚 ×  𝐶 % 

where, BP is brake power, m is mass flow rate and 𝐶  is the calorific value of the tested 
fuel. 

Measurement of the fuel efficiency of any engine that burns the fuel and generates 
rotational or shaft power is BSFC. 

2.4.2. Smoke Opacity, HC, CO and NOx. 
Smoke opacity is defined as the amount of light concealed by the particulate matter 

or soot particles omitted from the combustion of diesel. Smoke opacity reflects the pres-
ence of soot in the exhaust gases. Smoke meters, also known as opacity meters, measure 
the amount of light blocked in the smoke emitted by vehicles. The smoke in engine ex-
haust depends mainly on the combustion process, formation of the air–fuel mixture, 
amount of fuel injected before the ignition process, and oxygen content of fuel [42]. In 
general, incomplete fuel combustion leads to higher smoke opacity. Smoke opacity is in-
fluenced by the engine speed, engine load, fuel viscosity, cetane number, air turbulence, 
and spray pattern in the cylinder [43,44]. HC is produced in the diesel engine when there 
is an over-rich mixture or over-lean mixtures. Physicochemical properties of the fuel, fuel 
injection, and engine operating conditions also play a vital role in forming HC emissions. 
Incomplete combustion leads to CO formation. The lower oxygen content of diesel results 
in higher CO emissions. 

On the other hand, vegetable oil-based biodiesels have a higher oxygen content in 
their chains, which leads to complete combustion, and hence, lower CO emissions. NOx 
emissions are influenced by the fuel’s spray characteristics and oxygen content, and adia-
batic flame temperature. Spray fuel characteristics refer to the size and momentum of fuel 
droplets, degree of mixing between fuel droplets with air, penetration rate and evapora-
tion, and radiant heat transfer rate [45,46]. 
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Figure 1. Schematic diagram of the diesel engine (Reprinted with permission from Elsevier, ref. [47]). 

Table 4. Specifications of diesel engine [47] (Adapted with permission from the Elsevier). 

No. Description Specifications  No. Description Specifications  
1 Engine Model TF 120M 5 Compression ratio 17.7:1 
2 Displacement (cm3) 638 6 Maximum power 8.8 kW/2400 rpm 
3 Bore (mm) 92 7 Cooling system Water cooling 
4 Stroke (mm) 96 8 Fuel system Pump line nozzle  

Table 5. Specifications of emission analyzer. 

Equipment Measurement Method Measurement Range Resolution 

AVL DiGas 4000/AVL DiCom 4000 
CO Non-dispersive infrared 0–10% vol. 0.01 vol% 
HC Non-dispersive infrared 0–20,000 ppm vol. 1 ppm 
NOx Electrochemical detector 0–5000 ppm vol. 1 ppm 

AVL DiSmoke 4000/AVL DiCom 4000 Opacity Photodiode receiver 0–100% vol. 0.1% 

3. Results 
3.1. Engine Performance Characteristics 
3.1.1. Brake Power (BP) 

The performance of CI diesel engines relies on the characteristics of the fuel utilized 
for the testing engine and fuel injection system. The fuel characteristics include kinematic 
viscosity, density, oxygen content, and calorific value [48,49]. Figure 2 shows the brake 
power (BP) of Moringa oleifera biodiesel blends and diesel at different engine speeds. Ac-
cording to the results, BP increases progressively with engine speed until 2200 rpm and 
then decreases. Consequently, diesel fuel has the highest BP (5.43 kW) at 2200 rpm. 
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Figure 2. Variation in BP with engine speed for biodiesel blends and diesel. 

In contrast, the MOB20 blend has the lowest BP (4.68 kW). The average BP is higher 
for diesel than MOB10 and MOB20 by 12.18% and 17.32%, respectively. The average BP is 
lower for MOB20 than MOB10 and diesel by 6.85% and 7.17%, respectively. This may be 
attributed to the larger HHV of biodiesel blends [50]. The MOB10 blend has the highest 
HHV in comparison with other biodiesel blends examined in this study. Besides, the fuel’s 
physicochemical properties affect the spray formation during fuel injection, which in turn, 
affects combustion [51]. Lower viscosity and density of the MOB10 blend may result in 
loss of engine power due to more significant fuel pump leakage than other fuel blends 
[52]. Generally, fuels with higher viscosities can reduce fuel pump leakages [53]. 

3.1.2. Brake Specific Fuel Consumption (BSFC) 
Figure 3 shows the BSFC of Moringa oleifera biodiesel blends and diesel at various 

engine speeds. Diesel fuel shows lower BSFC as compared to biodiesel blends. The 
MOB20 blend has the highest average BSFC, with a value of 0.6115 kg/kWh. The MOB10 
and MOB20 blends have a higher average BSFC than diesel by 7.03% and 12.75%, respec-
tively. In general, biodiesels have a larger HHV due to the fuel-borne oxygen. Hence, a 
higher amount of fuel mass needs to be injected from the fuel injection pump into the 
engine due to biodiesel’s higher density than diesel. More biodiesel needs to be injected 
into the combustion chamber for the same power output as diesel according to volumetric 
efficiency. The higher kinematic viscosity of Moringa oleifera biodiesel blends is the lead-
ing cause of poor air–fuel mixing resulting from slower fuel atomization. Higher density 
and lower calorific values than diesel are factors that lead to the higher BSFC for biodiesel 
blends, especially those containing higher concentrations of biodiesels [54]. 
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Figure 3. Variation in BSFC with varying engine speed for biodiesel blends and diesel. 

3.1.3. Brake Thermal Efficiency (BTE) 
At full load conditions, the BTE increases, but it declines with an increasing compres-

sion ratio; it acts similar to the indicated thermal efficiency. Figure 4 illustrates the engine 
brake thermal efficiencies for MOB10, MOB20, and diesel fuels. According to our obser-
vations, the average brake thermal efficiency for MOB10 was 2% higher than pure diesel. 
However, the average brake thermal efficiency for MOB20 was 3.45% lower as compared 
to pure diesel. The curves were plotted by averaging three readings. Various researchers 
have found similar results whereby the brake thermal efficiency of the biodiesel blends 
was comparable with pure diesel’s thermal efficiency [55,56]. In addition, they have found 
that preheating biodiesel fuel before injection increases the brake thermal efficiency. 
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Figure 4. Variation in BTE with varying engine speed for biodiesel blends and diesel. 

3.2. Emission Characteristics 
3.2.1. Unburned Hydrocarbon Emissions (HC) 

Figure 5 shows HC emissions for MOB and its blends with diesel at different engine 
speeds. Average HC emission is higher for diesel than that for MOB10 and MOB20 by 
6.71% and 8.79%, respectively. Furthermore, the fuel blends containing 20% of biodiesel 
have higher HC emissions at low speeds compared to those containing 10% of biodiesel. 
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Figure 5. Unburned hydrocarbon emissions of Moringa oleifera biodiesel blends and diesel at varying 
engine speeds. 



Appl. Sci. 2021, 11, 7071 11 of 18 
 

Moreover, it can be observed that each tested fuel had higher HC emissions when 
the engine was running at lower speeds. Conversely, the amount of HC emissions de-
creased when the engine’s speed was higher. The lean air–fuel mixture is the primary 
reason for more HC emissions at lower engine speeds as well as poor fuel distribution. 
The lower temperature and presence of excess air are responsible for lean air-fuel mixtures 
[42]. Over-rich and over-lean air–fuel mixtures are typical during heterogeneous combus-
tion in diesel engines, which leads to HC emissions. The oxygen content of biodiesels gen-
erally leads to lower HC emissions than diesel at high engine speeds due to improved fuel 
combustion [57]. 

3.2.2. Carbon Dioxide Emissions (CO2) 
Figure 6 shows the CO2 emissions of MOB blends and diesel at various engine speeds. 

CO2 emissions from the engine’s exhaust reached a maximum value with MOB20 and 
were reduced when the biodiesel concentration in the fuel was decreased. The average 
CO2 emission values for MOB10, MOB20, and diesel were 5.693%, 6.124%, and 6%; the 
curves were plotted by averaging three readings. MOB20 showed higher CO2 emissions 
than diesel and MOB10 due to more oxygen in MOB20 relative to neat diesel and MOB10. 
The higher amount of oxygen in the biodiesel increased the oxidation and combustion 
process. Due to the higher amount of oxygen, the excess amount of CO is converted to 
CO2 [52]. 
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Figure 6. Carbon dioxide emissions of Moringa oleifera biodiesel blends and diesel at various engine 
speeds. 

3.2.3. Carbon Monoxide Emissions (CO) 
According to previous reports, oxygenated fuels reduce up to 30% of CO emissions 

compared to diesel—however, the magnitude of the reduction depends on the engine type 
and age, and ambient conditions [58,59]. Figure 7 displays CO emissions of Moringa oleif-
era biodiesel blends and diesel at various engine speeds. It can be observed that the 
MOB20 blend produces the highest amount of CO emissions at an engine speed of 1400 
rpm. 

On the other hand, the MOB20 blend produces the lowest CO emissions at 2400 rpm 
and the lowest average CO emission in this study. The average CO emission of diesel is 
0.82% higher than that for MOB20. However, the average CO emission is 1.99% lower than 
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that for MOB10. In general, for the same blend ratio, the CO emissions decreased as the 
engine’s speed changed from a lower to a higher value for all fuels. This is due to higher 
oxygen content and the higher cetane number of biodiesel fuel than diesel fuel. Higher 
cylinder pressure and temperature promote complete combustion at high engine speed, 
especially for biodiesel fuel that contains higher oxygen content. This enables the conver-
sion of CO to CO2, reducing the amount of CO emission [60–62]. 
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Figure 7. Carbon monoxide emissions of Moringa oleifera biodiesel blends and diesel at various en-
gine speeds. 

3.2.4. Nitrogen Oxide Emissions (NOx) 
Many studies have shown that biodiesel fuels produce higher engine NOx emissions 

compared to diesel [63–70]. Figure 8 displays NOx emissions of MOB blends and diesel at 
various engine speeds. Several factors influence the production of NOx, and one of them 
is the oxygen content. In general, vegetable oil-based biodiesels have higher oxygen con-
tent (with a difference of 12% relative to diesel) as well as low nitrogen content. This re-
sults in higher NOx emissions when there is an increase in the combustion chamber tem-
perature, which improves the combustion process [66]. The MOB20 blend has the highest 
NOx emissions (416 ppm) at an engine speed of 2400 rpm. Moringa oleifera biodiesel has 
more oxygen content as compared to neat diesel fuel. Besides, NOx emissions increase 
with an increase in the concentration of biodiesel in fuel blends. Average NOx emissions 
are lower for diesel compared to MOB10 and MOB20 by 4.71% and 8.12%, respectively. 
Abedin et al. [71] found that fuel blends containing 10% and 20% of palm biodiesel reduce 
NOx emissions by approximately 3.3%. Rahman et al. [70] discovered that a fuel blend 
containing 10% biodiesel produces higher NOx emissions by 9% relative to diesel. In gen-
eral, biodiesels have a higher adiabatic flame temperature because of their high unsatu-
rated fatty acid content, leading to more NOx emissions [69]. The higher viscosity and 
density of biodiesels are also responsible for higher NOx emissions [33]. 
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Figure 8. Nitrogen oxides emissions of Moringa oleifera biodiesel blends and diesel at various engine 
speeds. 

3.2.5. Smoke Opacity 
Figure 9 displays the smoke opacity for Moringa oleifera biodiesel and its blends with 

diesel tested at different engine speeds. For diesel, the average smoke opacity is higher 
than MOB10 and MOB20 by 33.49% and 22.73%, respectively. The MOB10 blend has the 
lowest average smoke opacity (32.2%) compared to MOB20 and neat diesel. At higher 
engine speeds, the smoke opacity of MOB blends increased significantly. Several studies 
have shown that the smoke opacity was lower due to more oxygen contents in biodiesel. 
A lower ratio of carbon–hydrogen and non-availability of aromatic compounds in the bi-
odiesel reduced the smoke emissions [72]. According to Gumus and Kasifoglu [73], more 
oxygen in biodiesel blends can reduce smoke exposure in exhaust gasses. Zhang et al. [74] 
found that combustion of biodiesel blends occurs earlier than diesel. Smoke emissions are 
reduced due to advanced injection timing, which results from the combustion process’s 
quick start. In contrast, diesel has higher sulfur content than biodiesel blends, which is the 
main reason for high smoke opacity [75]. 
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Figure 9. Smoke opacity of Moringa oleifera biodiesel blends and diesel at various engine speeds. 
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4. Conclusions 
The performance and exhaust emission characteristics of Moringa oleifera biodiesel 

blends were analyzed in this study. The results of the experimental investigation show 
that the MOB10 blend is the best blend ratio based on the following criteria: 
• At optimum speed, the BTE for MOB10 and MOB20 was 2.54% higher and 3.45% 

lower, respectively, than that of pure diesel. 
• MOB10 and MOB20 blends had a higher average BSFC than diesel by 7.03% and 

12.75%, respectively, due to the higher density and lower calorific values of biodiesel 
blends. 

• MOB10 produced slightly lower BP when compared to diesel, by 0.26 kW. The 
MOB20 blend was the worst performer, producing less usable power than diesel by 
0.36 kW. 

• The average HC emission for MOB10 and MOB20 were lower than diesel, with a 
difference of 8 ppm. 

• The average NOx emission for blended fuels was significantly higher than the neat 
diesel, and the MOB20 blend produces more NOx emissions due to increased oxygen 
content in fuel blends. 

• MOB10 produced lower smoke opacity than those of neat diesel and MOB20 due to 
good combustion. 

• Therefore, MOB10 is suitable to use in conventional compression-ignition diesel en-
gines. 
Future Recommendation: The NOx emissions slightly increased in the combustion of 

biodiesel blends compared to conventional diesel. The researchers could pursue this work 
using different fuel additives such as nanoparticles or alcohols to reduce NOx emissions. 
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Nomenclature 

MOB Moringa Oleifera Biodiesel 
CI Compression Ignition  
BP Brake Power 
BTE Brake Thermal Efficiency  
BSFC Brake Specific Fuel Consumption 
MOB10 Moringa Oil Biodiesel 10% + Diesel 90% 
MOB20 Moringa Oil Biodiesel 20% + Diesel 80% 
CO Carbon Monoxide 
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CO2 Carbon Dioxide 
NOx Nitrogen Oxides  
HC Hydrocarbons  
EGT Exhaust Gas Temperature  
FAC Fatty Acid Composition  
MOME Moringa Oleifera Methyl Ester 
COME Canola Oil Methyl Ester 
SOME Soybean Oil Methyl Ester 
SCDE Single Cylinder Diesel Engine  
CFPP Cold Filter Plugging Point 
HHV Higher Heating Value 
DW Deionized Water  
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