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Abstract: Wildfires stand as one of the most relevant natural disasters worldwide, particularly
more so due to the effect of climate change and its impact on various societal and environmental
levels. In this regard, a significant amount of research has been done in order to address this issue,
deploying a wide variety of technologies and following a multi-disciplinary approach. Notably,
computer vision has played a fundamental role in this regard. It can be used to extract and combine
information from several imaging modalities in regard to fire detection, characterization and wildfire
spread forecasting. In recent years, there has been work pertaining to Deep Learning (DL)-based
fire segmentation, showing very promising results. However, it is currently unclear whether the
architecture of a model, its loss function, or the image type employed (visible, infrared, or fused)
has the most impact on the fire segmentation results. In the present work, we evaluate different
combinations of state-of-the-art (SOTA) DL architectures, loss functions, and types of images to
identify the parameters most relevant to improve the segmentation results. We benchmark them
to identify the top-performing ones and compare them to traditional fire segmentation techniques.
Finally, we evaluate if the addition of attention modules on the best performing architecture can
further improve the segmentation results. To the best of our knowledge, this is the first work that
evaluates the impact of the architecture, loss function, and image type in the performance of DL-based
wildfire segmentation models.

Keywords: wildfires; deep learning; segmentation; loss function; architecture

1. Introduction

Wildfires represent a considerable threat, as they can have a significant and negative
impact on the environment, properties, and lives. In 2020, hundreds of fires were registered
across Northern California. They were the largest fires in California’s history, with a total
of 1.03 million acres burned [1]. In the United States alone, an estimated 17,904 structures
burned in wildfires in 2020, most of them in California [2].

Currently, there are three main categories of forest fire remote monitoring and de-
tection techniques: ground-based systems, manned aerial vehicle-based systems, and
satellite-based systems. These techniques present several disadvantages: ground-based
systems display limited operation ranges, while satellite-based systems lack path plan-
ning flexibility, and manned aerial vehicle-based systems are expensive and potentially
dangerous for their operators [3,4]. Additionally, sensor-based fire detection can display
false alarms, in addition to the high costs associated with the installation of multiple sen-
sors across large areas [5]. In contrast, unmanned aerial vehicles (UAVs) with computer
vision-based sensing systems provide a flexible, low-cost alternative [3,4].
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In the field of computer vision-based fire detection, different algorithms to detect
fire in video or image sequences have been proposed [6–10]. However, the results of
these algorithms refer only to the presence of fire on an image, that is, classifying an
image as either fire or non-fire. These techniques are thus not adequate to perform a
precise segmentation of the fire [11], that is, the detection of fire pixels in an image. Fire
segmentation is of great interest as it represents the first step of several processing stages
for both the detection of fire departure and the monitoring and modeling of the fire [5]. The
segmentation of fire areas in an image allows us to obtain relevant information regarding
its position, rate of spread, height, inclination, surface, and volume [12].

Visible images contain textural details with a high spatial resolution that are consistent
with the human visual system. In the visible spectrum, the performance of the segmentation
process can vary depending on the color and the texture of the fire coupled with the
presence of varying quantities of black or white smoke [11]. In contrast, the presence of fire
in infrared images is more distinguishable thanks to large temperature differences with
the background [13]. However, it is also not trivial to detect fire on infrared images, as
they present problems such as thermal reflections and infrared (IR) blocking [14]. Thus, the
fusion of both the textural and thermal information in a single image has the potential to
increase the segmentation efficiency, potentially improving the robustness, accuracy, and
reliability of fire segmentation systems [3].

In recent years, Deep Learning (DL) has displayed state-of-the-art performance in
different tasks such as image classification [15–17], object detection [18–20], and image
segmentation [21–23]. DL is an area of Machine Learning (ML) based on artificial neural
networks, such as convolutional neural networks (CNNs), that represents a statistical
technique for classifying patterns based on sample or training data using multi-layer neural
networks [24]. Most DL algorithms consist of a hierarchical architecture with multiple
layers; each layer constitutes a non-linear information processing unit [25]. Additionally,
in image segmentation, a relevant element in a DL model is the loss function (for the
supervised learning case). The loss function evaluates how well the predicted segmentation
matches its corresponding ground truth. The latter is a necessary step in the training of a
DL model [26].

There exist several approaches for visible-infrared image fusion in the state-of-the-
art, both with traditional image processing techniques [4,27,28] and with DL-based meth-
ods [29–31]. In the particular context of fire imagery, Nemalidinne et al. [4] and Toulouse [32]
addressed visible-infrared image fusion with traditional methods. In recent years, there
has been a growing interest in DL as a technique for image fusion. This is due to its
reduced complexity compared to methods on the multi-scale transform and representation
learning domains [33]. Up to now, the only DL-based approach model was developed by
Ciprián-Sánchez et al. [34].

In the context of wildfire detection, several approaches have been proposed for both
fire image classification (as mentioned previously, to classify a full image as either fire or
non-fire) [8–10,35] and fire semantic segmentation. [5,36–39]. DL-based wildfire semantic
segmentation methods seek to classify each pixel in an image as fire or non-fire. Figure 1
shows an example of wildfire image classification and segmentation.

Most of the existing DL-based wildfire segmentation methods employ visible images;
for the particular context of DL-based wildfire segmentation, it is still unclear if the inclusion
of fused information would enable a significant improvement in the fire segmentation
performance of a model or if factors such as the architecture and loss function play a more
relevant role in the said performance.

In order to investigate these questions, in this work, we train three SOTA DL architec-
tures [5,36,38], coupled with three loss functions (Dice [40], Focal Tversky [41], and Unified
Focal [42]) and four fire image types (visible, near-infrared (NIR), and fused generated from
two methods [29,34]). Then, we evaluate the resulting thirty-six combinations to assess
the impact of each of the mentioned parameters in the wildfire segmentation performance.
We use standard metrics to compare the segmented images to their corresponding ground
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truths to identify the best performing combination. We employ the Matthews Correlation
Coefficient (MCC) [43], the F1 score [44], and the Hafiane quality index (HAF) [45] as in
the work by Toulouse et al. [11] to benchmark the best identified combination against the
traditional methods evaluated by Toulouse et al. as baselines. Finally, we explore the use
of attention modules [46–48] for this particular segmentation task.

(a) Fire image classification. The model clas-
sifies the full image as fire with a certainty
of 90%.

(b) Fire semantic segmentation. The white
pixels belong to the fire class and the black
ones to the non-fire class.

Figure 1. Example of wildfire image classification and segmentation.

The main contributions of this work are two-fold:

• We perform a comprehensive evaluation of thirty-six combinations of three selected
architectures and loss functions, as well as four image types, to assess which of these
elements affects wildfire segmentation performance the most, exploring as well the
use of attention modules for the particular task of fire segmentation.

• We benchmark the best combination against traditional fire segmentation methods to
assess if it provides a significant advantage over them.

The rest of this paper proceeds as follows. First, Section 2 introduces related work
in the area of DL-based semantic segmentation. Afterward, in Section 3, we present
the datasets, architectures, loss functions, image types and metrics employed in this
study. In Section 4, we discuss the results of the generated combinations, as well as the
benchmarking results against traditional methods. Finally, in Section 5, we embark on a
discussion of the obtained results, the conclusions, and potential avenues for future work.

2. Related Work

Semantic image segmentation is a relevant task in the field of computer vision, which
seeks to assign a label to each pixel or region within an image or video. It plays a pivotal
role in computer vision-based applications such as autonomous vehicles [49], medical
imaging [50], and geolocalization for Unmanned Autonomous Vehicles (UAVs) [51,52].
Deep Learning methods have displayed precise and faster segmentation capabilities than
previous approaches such as random forest classifiers, amongst others [53].

In particular, convolutional neural networks (CNNs) were first proposed by Fukushima
and Miyake [54] and are amongst the most successful architectures in the field of DL, par-
ticularly for computer vision tasks. In general, CNNs consist of three types of layers [55]:

1. Convolutional layers: In these layers, a filter (also referred to as kernel) is convolved
with the input to perform feature extraction, constructing a 2D activation map of such
filter. The CNN learns the weights of its filters, which activate when a particular type
of feature is observed [56].

2. Non-linear layers: These layers apply an activation function (e.g., sigmoid, Tanh,
ReLU, amongst others [57]) on the obtained feature maps to allow the network to
successfully learn non-linear functions.
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3. Pooling layers: These layers reduce the spatial resolution of a feature map by replacing
neighborhoods with given statistical information of said neighborhood, such as its
mean, maximum, among other strategies [55]. The latter reduces the number of
parameters and calculations in the model, thus improving the training and inference
times as well as addressing the issue of overfitting [56].

Figure 2 shows the basic structure of a CNN. It is worth noting that the structure of
the last layers of a CNN may differ depending on the particular application, for instance,
image classification, image segmentation, amongst others.

Convolution Pooling
Convolution

Pooling

Output

Figure 2. Sample basic architecture of a CNN. The last layers can differ depending on the particular
application (e.g., classification, segmentation, etc.).

In recent years, many different DL models for semantic segmentation have been
proposed in the state-of-the-art. Lateef and Ruicheck [53] and Minaee et al. [55] provide
comprehensive reviews of over one hundred architectures; in Section 2.1, we introduce
some of the most relevant approaches and outline their characteristics, and in Section 2.2,
we introduce architectures designed for the particular task for wildfire segmentation.

2.1. Deep Learning-Based Semantic Segmentation

The VGG [58] and ResNet [59] architectures are amongst the most widely used for
feature extraction. VGG-based methods [58,60] have displayed good segmentation perfor-
mance and have simple, straightforward structures. However, these models require high
computational power during training, as they use a large number of parameters. The latter
can also affect their inference time and limit their use in real-time applications.

Architectures that take the residual block as its focus address the vanishing gradient
problem effectively. Models such as ResNet [59], FusionNet [61], and Faster-RCNN [62],
amongst others, have shown robust segmentation results. However, it is worth noting that
large-scale usage of skip connections can lead to memory problems [53], with the In-Place
Activated Batch Normalization (INPLACE-ABN) model [63] seeking to reduce the training
memory footprint of ResNet-based architectures. The FRRN architecture [64] proposes a
two-stream structure that incorporates elements of both VGG and ResNet approaches.

The DeepLab architecture [65] follows an approach that focuses on recovering the
spatial resolution through the use of atrous convolutions to generate high-resolution feature
maps [53]. It is worth noting that methods based on Atrous Spatial Pyramid Pooling (ASPP)
modules display a steep computational cost [66]. There have been several expansions on
the DeepLab architecture [67,68]. The most recent one is the DeepLabV3+ [66] model, in
which the authors seek to reduce the computational complexity through the application of
depth-wise separable convolutions to the ASPP and decoder modules.

It is worth noting that the VGG, residual block, and atrous convolution-based ap-
proaches rely on considerably big datasets for training. Depending on the application
context, datasets of sufficient scale may not be available.

In contrast, the U-Net architecture [69] aims to perform image segmentation on smaller
datasets. This architecture consists of convolution and deconvolution layers in an encoder–
decoder fashion, where the high-resolution features from the encoder layers are combined
with the up-sampled outputs of the decoder’s layers. An advantage of this model is its small
number of parameters, which allows for fast training and inference times; however, the
use of skip connections tends to use redundant information in low-level encoder features,
particularly in multi-scale approaches [70]. The Attention U-Net [46] builds upon the U-Net
concept through the proposal of Attention Gates (AGs), which learn to focus on specific
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structures without additional supervision, suppressing feature activations in irrelevant
regions [69]. A more recent approach is the spatial-channel attention gate (scAG) [70]
that implements an attention mechanism that emphasizes meaningful information along
both the channel and spatial dimensions to overcome the mentioned drawbacks of the
U-Net’s skip connections. Finally, it is worth noting that most of the U-Net-based models
are proposed and evaluated for the particular task of biomedical image segmentation.

It is worth noting that all the discussed techniques have displayed robust results for
semantic segmentation. However, they have different characteristics that may be desirable
given a specific application. Table 1 shows a summary of their associated advantages
and disadvantages.

Table 1. Overview of the advantages and disadvantages of the discussed approaches.

Approach Advantages Disadvantages

VGG-based Simple, straightforward
architectures.

Large number of parameters; high
computational power required.

Residual block-based
Address the vanishing gradient
problem: allows for deeper
networks.

Large-scale usage of skip
connections can lead to memory
problems.

DeepLab family Atrous convolutions to generate
high-resolution feature maps.

ASPP-based methods display a
significant computational cost.

U-Net-based models
Designed for good performance
on smaller datasets. Relatively
low number of parameters.

Skip connections tend to use
redundant information in low-level
encoder features.

2.2. Deep Learning-Based Wildfire Segmentation

As discussed in Section 1, we are interested in the task of wildfire segmentation as it
allows us to obtain information like the position, rate of spread, height, inclination, surface,
and volume of the fire, which are relevant characteristics that play a significant role in the
development and improvement of fire behavior models [11]. In this section, we describe
some of the most relevant works pertaining to DL-based wildfire segmentation.

Akhloufi et al. [38] propose the Deep-Fire network, a deep convolutional neural
network (DCNN) based on the U-Net architecture. They employed visible RGB images of
forest fires as inputs. The model outputs a binary mask representing the fire pixels in an
image. The authors then use the Corsican Fire Database [71] for the training and testing
of their model. Akhloufi et al. report good results with the Dice similarity coefficient as
the loss function for the model, with an F1-Score ranging between 64.2% and 99% on the
test set.

Harkat et al. [37] train the Deeplabv3+ architecture on wildfire images from the
Corsican Fire Database. The authors employ the Dice similarity and Tversky loss functions
with cross-entropy. Additionally, they test the model with two different backbones, ResNet-
18 and ResNet-50. Finally, Harkat et al. identify the Dice loss and the ResNet-50 backbones
as the best performing combination, reporting an accuracy of 97.53%.

Frizzi et al. [36] propose a DCNN model that generates fire and smoke segmentation
masks taking visible RGB images as inputs. The authors propose an architecture based
on the VGG16 network [58] for the coding phase. Frizzi et al. use transpose convolutions
for up-sampling in the decoding phase and add skip connections to several layers of the
coding phase. They collected visible images containing fire and smoke from the internet
and manually segmented them to construct the dataset they used for training and testing
the model. Finally, the authors report an average accuracy of 98% for this model.

Choi et al. [5] propose a DCNN similar to FusionNet for fire segmentation. They
implement an encoder–decoder architecture, with skip connections between encoding and
decoding layers in a U-Net-like fashion. The authors implemented ResNet blocks instead
of traditional convolutional blocks for both the encoding and decoding process alongside
simple convolution and deconvolution layers. Choi et al. train and test the model in the
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FiSmo Dataset [72] and the Corsican Fire Database, using the mean square error (MSE) as
the loss function. Finally, the model displays an accuracy of 99% on the FiSmo Dataset and
a 97% accuracy on the Corsican Fire Database.

Finally, the work proposed by Toan et al. [39] is, to the best of our knowledge, the
only DL model that leverages multispectral images to perform wildfire segmentation. The
authors propose a DCNN that incorporates both spectral and spatial information that they
obtain through the GOES-16 satellite. As spectral images have an additional dimension
of spectral bands with partial dependencies between them [39], Toan et al. propose a 3D
version of a convolutional layer, in which each neuron in the following layer is connected
only to a cube of neurons in the previous layer [39]. The model proposed by Toan et al.
employs three of the mentioned 3D convolutional layers. Using this model, the authors
report a precision of 96.05% on their analyzed dataset.

Although Harkat et al. [37] report good results on the Deeplabv3+ architecture, for
the present paper, we focus on the architectures that are designed specifically for the task
of wildfire segmentation. The model proposed by Toan et al. [39] employs multi-channel
multispectral satellite images, and thus its structure is not compatible with the dataset we
use in this work, described in Section 3.1. In consequence, we select the architectures by
Choi et al. [5], Frizzi et al. [36] and Akhloufi et al. [38] as the ones to be employed in this
study. We analyze these architectures in detail in Section 3.3.

3. Materials and Methods
3.1. Data

For the present paper, we employ the visible-infrared image pairs of the Corsican Fire
Database, first presented by Toulouse et al. [71]. This dataset contains 640 pairs of visible
and near-infrared (NIR) fire images, alongside their corresponding ground truths for fire
region segmentation.

Figure 3 displays a sample visible-NIR image pair from the Corsican Fire Database
with its corresponding ground truth. The ground truths of this dataset were manually
generated by experts. We resize all images to a uniform width of 512 and a height of
384 pixels.

(a) Visible. (b) NIR. (c) Ground truth.
Figure 3. Sample images of the Corsican Fire Database.

The fused images employed in this work are generated through two SOTA DL-based
fusion methods. In Section 3.2, we introduce the mentioned fusion techniques and display
sample resulting fused images.

3.2. Image Fusion Methods

We selected two DL-based methods [29,34] to generate the fused images employed in
the present study; we chose these methods because they present several desirable features.
The method proposed by Li et al. [29] uses a pre-trained VGG19 DCNN as a part of its
process to extract multi-layer features of the detail content of the source images. Since
Li et al. employ only specific layers of the said pre-trained network, no further training
on new datasets is needed. The Fire-GAN model proposed by Ciprián-Sánchez et al. [34]
is, to the best of our knowledge, the only DL-based method that addresses the fusion
of visible-NIR images for fire imagery. It is based on a Generative Adversarial Network
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(GAN) that expands on the one proposed by Zhao et al. in [31] to allow for the preservation
of color in the generated fused images, the processing of higher resolution images, and
to control the amount of visible or thermal information included in the fusion process, to
account for the particular thermal characteristics of fire NIR images.

In the following subsections, we present both methods in greater detail, succinctly
addressing their characteristics and their associated advantages and disadvantages.

3.2.1. Infrared and Visible Image Fusion Using a Deep Learning Framework

This method, proposed by Li et al. [29] in 2018, presents a DL-based framework for
the fusion of visible and infrared images. The output of this method is a grayscale image
containing the features present in both the source visible and infrared images.

First, the authors decompose the original images into base and detail parts. Next,
Li et al. fuse the base parts through weight-averaging. Regarding the detail parts, the
authors employ a VGG19 DCNN pre-trained on the ImageNet [73] to extract multi-layer
features. The authors use L1 normalization and a weighted average strategy on the
extracted features to generate candidates for the fused detail content. They use a max
selection strategy to pick the final fused candidate, with the final output image constructed
through the combination of the obtained detail and base contents. This method has the
advantage of using only selected pre-trained layers of a VGG19 network, thus not needing
further training on application-specific datasets. However, since it also employs traditional
computer vision and image processing techniques, it is not an end-to-end model, increasing
its implementation complexity. Additionally, the final fused images lose color information.
This is relevant due to the color being one of the most used features in traditional visible
image-based fire detection methods [3]. Throughout this paper, we will be referring to this
method as the VGG19 method.

Figure 4 shows the framework of the method proposed by Li et al. [29] with a sample
image pair from the Corsican Fire Database.

Visible image

NIR image

Decomposition

Base - visible

Detail - visible

Base - NIR

Detail - NIR

Weighted average
strategy Base - fused

VGG19 framework Detail - fused

Base fused + Detail
fused

Fused image

Figure 4. Framework of the VGG19 proposed by Li et al. [29].

3.2.2. Fire-GAN: A Novel Deep Learning-Based Infrared-Visible Fusion Method for
Wildfire Imagery

This method, proposed by Ciprián-Sánchez et al. [34] in 2021, presents a GAN-based
approach that builds upon the one proposed by Zhao et al. [31] in 2020 for the particular
context of fire imagery. The Fire-GAN model takes as an input a visible image, generating
an artificial infrared one and then fusing these two to produce the final output image. It is
relevant to note that the kind of infrared images, that is, NIR, short-wavelength (SWIR),
mid-wavelength (MWIR), or long-wavelength (LWIR), that the model learns to generate
is dependent on the source infrared images present in the training set. This means that
if the training set contains NIR images, this method generates approximate NIR images,
and so forth. For the case of the present paper, the model learns to generate approximate
NIR images.

First, the visible image is given as an input to a U-Net-like generator G1 to create an
approximate NIR image. Then, the two (approximate NIR and visible) are concatenated and
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fed to a second generator G2, generating an RGB fused image as output. A discriminator
D1 has the task of distinguishing between the source visible image and the generated fused
one. The latter motivates G2 to include more textural details, thus making the fused image
closer to the visible one. At the same time, a second discriminator D2 seeks to distinguish
between the source NIR image, the approximate one, and the final fused image, thus
encouraging G1 to output more accurate NIR images and also allowing G2 to incorporate
more thermal information in the final fused image. Finally, due to the particular thermal
characteristics of the fire NIR images, the authors include a constant γ term in the loss
function of G2 to control and prioritize, as needed, the inclusion of visible information.
Figure 5 shows the structure of the Fire-GAN model with sample images from the Corsican
Fire Database.

Generator 1

NIR image

Generator 2Concatenate

Discriminator 1

0/1

Classification

Discriminator 2

0/1

Classification

Spectral
normalization

Spectral
normalization

Generated IR images

Visible image

Fused image

Figure 5. Structure of the Fire-GAN model proposed by Ciprián-Sánchez et al. [34].

This model is, to the best of our knowledge, the first one to address DL-based visible-
infrared fusion of fire imagery. It has the advantage of being end-to-end, which significantly
reduces its implementation complexity. It is capable of preserving color information in the
fused images, which can potentially aid in the segmentation of the fire.

Additionally, it is worth noting that the fusion process requires perfectly aligned
source images [13]. For the particular context of fire images, the generation of artificial
NIR images presents an advantage, given the difficulties of obtaining perfectly matched
visible-NIR images on operative scenarios. However, since it is a DL model, it needs to train
on high amounts of visible-NIR image pairs, thus making its performance dependent on
the quality of the training dataset. Finally, although the authors include several techniques
to stabilize the training of the network, it is relevant to note that, in general, GANs have
the open problem of training stability [74].

Finally, in Figure 6, we show a sample of all the image types employed in the
present paper.
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(a) Visible. (b) NIR. (c) Ground truth.

(d) Fused—VGG19. (e) Fused—Fire-GAN.

Figure 6. Sample visible, NIR, fused, and ground truth images employed in the present paper.

3.3. Architectures

As mentioned in Section 2.2, for this study, we have selected three SOTA DL architec-
tures [5,36,38]. These architectures are, to the best of our knowledge, the only three that
have been proposed and designed for the particular task of fire segmentation and that are
compatible with the images of the Corsican Fire Database. In the following subsections, we
describe the structure and characteristics of the selected architectures.

3.3.1. Wildland Fires Detection and Segmentation using Deep Learning

Akhloufi et al. propose in [38] the DeepFire model for wildfire segmentation based
on the U-Net architecture [69]. The network outputs a single-channel binary mask that
represents the fire pixels of the image.

In this architecture, the images are reduced four times through max-pooling layers in
the encoder section and then are expanded through transpose convolution layers in the
decoder section to their original size. The last convolution layer of the model employs a
1 × 1 kernel and a sigmoid activation function to produce the final binary mask. Figure 7
shows the in-detail architecture of the DeepFire model.

Input image 16 16

32 32

64 64

128 128

256 256

128

128 128

64

64 64

32

32 32

16

16 16

1

Output mask

Max Pooling layer: 
Kernel size: 2x2.

Stride: 2x2.
Padding: same.

2D Conv layer + ELu
activation: 

Kernel size: 3x3.
Stride: 1x1.

Padding: same.

2D Conv Transpose
layer: 

Kernel size: 2x2.
Stride: 2x2.

Padding: same.

Conacatenation layer

2D Conv layer +
Sigmoid activation: 

Kernel size: 1x1.
Stride: 1x1.

Padding: same.

Figure 7. In-detail structure of the model proposed by Akhloufi et al. [38]. The numbers inside the
squares represent the number of filters in the corresponding layer.
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This model has the advantage of having approximately two million trainable parame-
ters, a relatively low number for DL standards. The latter allows for faster training and
inference times. The authors employ 419 visible RGB wildfire images from the Corsican
Fire Database, using 377 for training and 42 for testing. Finally, Akhloufi et al. report
good results with the Dice similarity coefficient as the loss function for the model, with an
F1-Score ranging between 64.2% and 99% on the test set.

3.3.2. Semantic Fire Segmentation Model Based on Convolutional Neural Network for
Outdoor Image

Choi et al. [5] propose a model based on the FusionNet [61], adding input and output
convolution layers. They add middle skip-connections in a U-Net-like fashion between the
layers of the encoder and the decoder. The authors employ residual blocks such as the one
illustrated in Figure 8, which are in turn nested in blocks such as the one shown in Figure 9.
Thanks to this nested structure, the authors can increase the ensemble effect [75] of the
residual block and thus enable a deeper network architecture. In the decoder segment, the
authors employ transpose convolutions to upscale the image until it recovers its original
size. Finally, in the last layer, the output convolution generates a single-channel output with
pixel values ranging between zero and one. To obtain the binary mask required as output
for the present paper, we binarize the output images by assigning a value of one to every
non-zero pixel. Figure 10 shows the complete architecture proposed by Choi et al. [5].

This model is the largest of the three that we analyze in the present paper, with
approximately seventy-six million trainable parameters. This has the net effect of producing
training and inference times longer than those of the other models. Finally, Choi et al. train
and test the model in the FiSmo Dataset and the Corsican Fire Database, using the MSE as
the loss function. The model displays an accuracy of 99% on the FiSmo Dataset and a 97%
accuracy on the Corsican Fire Database.

2D Conv layer +
ReLU activation:
Kernel size: 3x3

Stride: 1x1
Padding: same

Batch Normalization
layer

Residual block

Figure 8. In-detail structure of the residual blocks in the model by Choi et al. [5].

2D Conv layer +
ReLU activation:
Kernel size: 3x3

Stride: 1x1
Padding: same

Batch Normalization
layer

Residual block
Nested residual

block

Figure 9. In-detail structure of the nested residual blocks in the model by Choi et al. [5].
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2D Conv layer +
ReLU activation:
Kernel size: 3x3

Stride: 1x1
Padding: same

64

Input image

Batch Normalization
layer

Nested residual
block

64

2D Conv layer +
ReLU activation:
Kernel size: 3x3

Stride: 2x2
Padding: same

64

128

128

256

256

512

512

1024

2D Conv Transpose
layer + ReLU activation:

Kernel size: 3x3
Stride: 2x2

Padding: same

512

256

256

128

128

64

64

64

1

Output image

Figure 10. In-detail structure of the full architecture by Choi et al. [5]. The numbers inside some of
the blocks represent the number of filters per layer. In the case of the nested residual blocks, the
number corresponds to the number of filters in all of the convolution layers inside of its components.

3.3.3. Convolutional Neural Network for Smoke and Fire Semantic Segmentation

Frizzi et al. [36] propose a CNN-based architecture for fire and smoke segmentation.
The authors base their model on the VGG16 [58] for the feature extraction (encoding)
phase. They replace the fully connected layers of the VGG16 architecture with a 7x7
convolution layer that connects the encoder and the decoder. To generate a high-resolution
segmentation mask with the three classes (fire, smoke, other), Frizzi et al. employ skip
connections that connect layers of the encoder with those of the decoder in a U-Net-like
fashion, although it is relevant to note that the architecture proposed by Frizzi et al. does
not have the symmetric structure of the U-Net model. In the decoding phase, the authors
employ transpose convolutions to up-sample the image to its original size. They also use
ReLU activation functions after each convolution layer.
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Additionally, Frizzi et al. employ a pre-trained VGG16 architecture for the encoder
pre-trained on the ImageNet. They collect visible images containing fire and smoke from
the internet and manually segment them to construct the dataset they use for training
and testing the model, reporting an average accuracy of 98% for this model with a binary
cross-entropy loss function.

It is relevant to note that the authors do not specify if they use an activation function
after the transpose convolution layers of their proposed model. For the present study, we
change the number of filters of the last layer from three to one to adapt it to the task of
fire-only segmentation. Additionally, we obtained better results using ReLU activation
functions after the transpose convolution layers and when we train the VGG16-based en-
coder without any pre-training. Finally, Figure 11 shows the in-detail architecture proposed
by Frizzi et al. with the mentioned adjustments that we perform for the present paper.

Conv 2D + ReLU
layer:

Kernel size: 3x3
Stride: 1x1

Padding: same

Max Pooling layer:
Kernel size: 2x2

Stride: 2x2
Padding: same 

64Input image 64 128 128

256

256

512

512

512

512

Conv 2D + ReLU
layer:

Kernel size: 7x7
Stride: 1x1

Padding: same

1024

Conv 2D Transpose
+ ReLU layer:

Kernel size: 4x4
Stride: 2x2

Padding: same

Concatenation layer

512

512

256

256

Conv 2D Transpose
+ ReLU layer:

Kernel size: 16x16
Stride: 8x8

Padding: same

1

Output image

Figure 11. In-detail structure of the full architecture by Frizzi et al. [36] with the mentioned consider-
ations. The numbers inside some of the blocks represent the number of filters per layer.

3.4. Attention Modules

In this study, we explore the addition of attention modules to further improve
the segmentation results. We explore the use of the Attention Gate (AG) presented by
Oktay et al. [46], the Spatial Attention (SA) module employed by Guo et al. [47], and the
Modified Efficient Channel Attention (MECA) module proposed by Guo et al. [48]. In the
following subsections, we succinctly describe these attention modules.
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3.4.1. Attention Gate

Oktay et al. [46] propose the Attention Gate for their Attention U-Net model. Said
AGs automatically learn to focus on relevant structures in the images without the need for
additional supervision [46]. They do so by suppressing feature activations in irrelevant
regions without adding a significant number of parameters to the model.

The AG module is positioned before the concatenation step between a layer in the
decoder and a corresponding layer in the encoder. It receives a gating signal g, which is the
feature map of a layer in the decoder, and an input xl , which is the feature map obtained
from a corresponding layer in the encoder and has a coarser resolution. Then, both g and xl

go through a convolutional layer that allows their dimensions to match. Next, the resulting
feature maps are summed element-wise and then go through a ReLU activation function.
Then, the result goes through a 1 × 1 convolution layer and a sigmoid activation function
that scales the resulting vector to a range between zero and one. This output contains the
attention coefficients, where values closer to one indicate relevant features. Then, the attention
coefficients are up-sampled through trilinear interpolation to the original dimensions of the
xl input. Finally, the up-sampled attention coefficients are multiplied element-wise to the xl

input. Lastly, the resulting feature map x̂l is then concatenated to the corresponding layer
in the decoder, just as in a regular U-Net model. Figure 12 shows the structure of the AG
proposed by Oktay et al.

Conv2D

Conv2D

ReLU
activation Conv2D Sigmoid

activation Up-sampling

Figure 12. Structure of the AG proposed by Oktay et al. [46].

Finally, the authors incorporate their proposed AG to a regular U-Net architecture and
test it on biomedical image datasets, showing an increase in the segmentation performance
with different types of images and different sizes of the training set.

3.4.2. Spatial Attention Module

Guo et al. [47] present the Spatial Attention U-Net (SA-UNet) model that incorporates
SA modules. These SA modules, first proposed by Woo et al. [76], are capable of inferring
an attention map along the spatial dimension, then multiplying said attention map by the
input feature map to perform adaptive feature refinement [47].

Guo et al. position the SA module between the encoder and the decoder. The SA
module makes use of the spatial relationship between features to create a spatial attention
map. First, the SA module applies both max-pooling and average-pooling along the channel
axis of the input features. Then, it concatenates them to create a feature descriptor. Next, the
feature descriptor goes through a convolutional layer and a sigmoid activation to generate
a spatial attention map. Finally, this spatial attention map is multiplied element-wise with
the input features. Figure 13 shows the structure of the SA module.

Input features

Max pooling

Average
pooling

Concatenation
Conv2D +
sigmoid

activation

Output feature
map

Figure 13. Structure of the SA module employed by Guo et al. [47].
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Finally, Guo et al. employ the SA-UNet model to perform semantic segmentation of
medical imagery with SOTA performance on relatively small datasets.

3.4.3. Channel Attention Module

Guo et al. [48] propose a novel Modified Efficient Channel Attention that enhances
the discriminative capabilities of a model by taking into account the interdependence
between feature maps. The authors apply this MECA module to the skip connections of
the traditional U-Net architecture to construct their proposed Channel Attention Resiudal
U-Net (CAR-UNet).

The MECA module is structured as follows: First, the input features go through
channel-wise max-pooling and average pooling. Next, the two obtained descriptors are
input to a shared-weight 1D convolutional layer to generate a channel attention map. Then,
the MECA module applies a channel-wise addition operation to combine the output feature
vectors generated by the 1D convolutional layer. Finally, the generated feature map goes
through a sigmoid activation function. Figure 14 shows the structure of the MECA module.

Input features

Max pooling

Average
pooling

Shared-weight
Conv1D

Output
attention map

Channel-wise
sum

Sigmoid
activation

Figure 14. Structure of the MECA module proposed by Guo et al. [48].

Finally, Guo et al. employ the CAR-UNet model to perform semantic segmentation of
medical imagery with SOTA performance.

3.5. Loss Functions

For the present study, we employ three widely used loss functions for image segmen-
tation. The said loss functions are the Dice loss, the Focal Tversky loss, and the Unified
Focal loss. In the following subsections, we succinctly describe these loss functions and
their characteristics.

3.5.1. Dice Loss

The Dice loss is a region-based loss function that aims to maximize the overlap
regions between the ground truth and a segmentation prediction [26]. It is based on the
Dice Similarity Coefficient (DSC), which can be defined in a per-pixel classification as
follows [42]:

DSC =
2TP

2TP + FP + FN
, (1)

where TP refers to the true positives, FP to the false positives, and FN to the false negatives.
Then, we can formulate the loss function as follows [42]:

LDSC = 1− DSC. (2)

There are several, more complex variations of the Dice loss function [77,78], with the
version that we employ providing an equal weighting to each class.

3.5.2. Focal Tversky Loss

The Focal Tversky loss was proposed by Abraham and Khan [41] and is an adaptation
of the Tversky loss [79] that attempts to focus on hard examples by down-weighting



Appl. Sci. 2021, 11, 7046 15 of 28

easy or common ones [40]. It achieves the latter through a γ coefficient and is defined as
follows [42]:

LFT =
C

∑
c=1

(1− TI)
1
γ , (3)

where C represents the total number of classes, TI the Tversky Index [79], and γ a coefficient
that defines the degree to which it focuses on harder examples. Finally, it is relevant to
note that when γ < 1, the Focal Tversky loss increases its focus on harder examples, while
when γ = 1, it simplifies to the Tversky loss.

3.5.3. Unified Focal Loss

The Unified Focal loss, proposed by Yeung et al. [42], generalizes Dice-based and cross-
entropy-based losses to handle class imbalance. First, the authors modify the Asymmetric
Focal loss [80], which removes the focal parameter for the component of the loss that relates
to a rare class r [42], by adding a δ parameter to handle class imbalance. They define this
modified Asymmetric Focal loss as follows:

LmaF = − δ

N
yi:r log(pt, r)− 1− δ

N ∑
c 6=r

(1− pt,c)
γ log(pt, r), (4)

where the added δ term controls the relative contribution of positive and negative exam-
ples [42], N is the total number of samples, y refers to the ground truth class, and pt is
defined as follows:

pt =

{
− log(p), if y = 1
− log(1− p), otherwise,

(5)

where p is the estimated probability for the class y = 1 [81].
Then, Yeung et al. propose a modified version of the Tversky Index [79], replacing its

α and a β coefficients with a single δ term as follows:

mTI = ∑N
i=1 p0ig0i

∑N
i=1 p0ig0i + δ ∑N

i=1 p0ig1i + (1− δ)∑N
i=1 p1ig0i

, (6)

where p0i is the probability that a pixel i belongs to the foreground class and p1i the
probability of a pixel belonging to the background class.

Next, the authors remove the focal parameter for the component of the Focal Tversky
loss function that relates to the background, thus preserving the enhancement of the rare
class r [42], and define the Asymmetric Focal Tverksy loss as follows:

LaFT = ∑
c 6=r

(1−mTI) + ∑
c=r

(1−mTI)1−γ. (7)

With the proposed LmaF and LaFT loss functions, Yeung et al. define the Unified Focal
loss as follows:

LUF = λLmaF + (1− λ)LaFT , (8)

where λ is in the range between zero and one and determines the relative weighting
of the two losses [42]. Finally, the authors note that their proposed Unified Focal loss
generalizes Dice-based and cross-entropy-based losses into a single framework, as the Dice
and cross-entropy losses can be recovered by setting the hyperparameters λ, δ, and γ to
certain values.

3.6. Metrics

To assess the performance of the evaluated architecture, loss function, and image
type combinations, we employ three standard metrics for image segmentation, namely the
Matthews Correlation Coefficient (MCC) [43], the F1 score [44], and the Hafiane quality
index (HAF) [45] as in the paper by Toulouse et al. [11]. This allows us to benchmark the
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best-identified combination against the traditional methods evaluated by Toulouse et al. as
baselines. In the following subsections, we introduce and describe the said metrics.

3.6.1. Matthews Correlation Coefficient

First proposed by Matthews [43], it measures the correlation of the true classes with
their predicted labels [82]. The MCC represents the geometric mean of the regression
coefficient and its dual and is defined as follows [11]:

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TN + FN)(TN + FP)(TP + FN)(TP + FP)
, (9)

where TP refers to the true positives, TN to the true negatives, FP to the false positives,
and FN to the false negatives.

3.6.2. F1 Score

Also known as the Dice coefficient or overlap index [83], the F1 score is the harmonic
mean of the precision Pr and recall Re, which are in turn defined as follows:

Pr =
TP

TP + FP
, (10)

Re =
TP

TP + FN
. (11)

We can also define the F1 score in terms of Pr and Re as follows [11]:

F1 = 2 ∗ Pr ∗ Re
Pr + Re

. (12)

3.6.3. Hafiane Quality Index

Proposed by Hafiane et al. [45] for fire segmentation evaluation, it measures the
overlap between the ground truth and the segmentation results, penalizing as well the
over- and under-segmentation [45].

First, the authors define a matching index M as follows [11]:

M =
1

Card(IS)

NRs

∑
j=1

Card(RGT
i∗ ∩ RS

j )×Card(RS
j )

Card(RGT
i∗ ∪ RS

j )
, (13)

where NRs represents the number of connected regions in the segmentation result IS, RS
j is

one of the mentioned connected regions, and RGT
i∗ represents the region in the ground truth

image IGT that presents the most relevant overlapping surface with the RS
j region [11].

Next, Hafiane et al. define an additional index η to take into account the over- and
under-segmentation as follows [11]:

η =

{
NRGT/NRS, if NRS ≥ NRGT

log(1 + (NRS/NRGT)), otherwise.
(14)

Finally, Hafiane et al. define the Hafiane quality index as follows:

HAF =
M + m× η

1 + m
, (15)

where m is a weighting factor with a value of 0.5 [11].

4. Results

We evaluate all thirty-six resulting combinations of the architectures, loss functions,
and image types introduced in Section 3. For all image types, we split the Corsican Fire
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Database into a training set that, after data augmentation, contains 8192 images and a test
set comprised of 128. We use fixed hyper-parameters for all training runs, with a batch
size of four (due to hardware constraints), a learning rate of 10−4, ADAM optimizer, and
100 training epochs. We conducted the training on an NVIDIA DGX workstation using two
NVIDIA P100 GPUs and the TensorFlow framework. First, we identify in Table 2 the best
five performing combinations per metric.

We can observe that, for all metrics, the Akhloufi + Dice + Visible combination shows the
best results, albeit by a close margin. Additionally, we can observe a high presence of the
Akhloufi architecture and the Focal Tversky loss in the top five for all metrics. It is also relevant
to note that the visible images consistently appear in the top three combinations, with the
NIR images also present, and the FIRe-GAN images, that is, fused images produced by the
FIRe-GAN method, are the only fused ones to appear in the best performing combinations.
In Figure 15, we show sample segmentation results for the best three combinations of
Table 2 for all metrics.

(a) Source visible (vis) image. (b) Ground truth.

(c) Akhloufi + Dice + vis. (d) Choi + F. Tversky + vis. (e) Akhloufi + F. Tversky + vis.

Figure 15. Sample segmentation results for the top three combinations for all metrics. For the
segmentation results of the Choi architecture, we binarized the images by assigning a value of 1 to all
non-zero pixels in a post-processing step.

Additionally, we are interested in the parameters (architecture, loss function, and
image type) that allow for robust and consistent results. We then group the results by these
parameters and visualize their performance across all metrics to observe the variability
in the results. In Figure 16, we show the scores for all metrics grouped by architecture
(Figure 16a–c), image type (Figure 16d–f) and loss function (Figure 16g–i).
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akhloufi choi frizzi
Architecture

0.0

0.2

0.4

0.6

0.8

1.0

HA
F 

sc
or

e

HAF results by architecture

(c) HAF scores grouped by architecture.
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(f) HAF scores grouped by image type.
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(g) MCC scores grouped by loss function.
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(i) HAF scores grouped by loss function.

Figure 16. Results grouped by architecture (first row), image type (second row), and loss function (third row) for all metrics.

We can observe that the Akhloufi architecture and the Focal Tversky loss show by far the
most robust results, displaying high and consistent scores across all metrics. In contrast,
the image type appears to have very little influence on the segmentation performance,
as the results are considerably similar for all image types, with only a slight advantage
for the visible images on the MCC and F1 metrics. In Figure 17, we can see the resulting
segmentation masks for the Akhloufi + Focal Tversky combination for all image types to
visually assess the similarity in the results.
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Next, we obtain and visualize in Figure 18 the Spearman correlation matrix of every
parameter to evaluate its monotonic correlation with the evaluation metrics.

We can observe that the architecture and loss function parameters show strong corre-
lations with the evaluation metrics, with the Akhloufi architecture and Focal Tversky loss
displaying a strong positive correlation with the evaluation metrics. Regarding the image
type parameter, we can observe significantly weak correlations with the evaluation metrics
for all image types, with the visible images displaying a weak positive correlation with
the evaluation metrics. Additionally, we can observe a near-perfect positive correlation
between the three evaluation metrics. The latter indicates that for future works, one of
these metrics is sufficient to evaluate the performance of a model when working with the
Corsican Fire Database.

(a) Visible image. (b) NIR image. (c) Fused VGG19. (d) Fused FIRe-GAN.

(e) Visible segmenta-
tion result.

(f) NIR segmentation
result.

(g) Fused VGG19 seg-
mentation result.

(h) Fused FIRe-GAN
segmentation result.

Figure 17. Sample segmentation results for all image types and the Akhloufi + Focal Tversky combination.

Table 2. Top five performing combinations per metric. The best performing combinations per metric
are highlighted in bold.

Metric Value Architecture Loss Image Type

MCC

0.9252 Akhloufi Dice Visible
0.9248 Choi Focal Tversky Visible
0.9231 Akhloufi Focal Tversky Visible
0.9151 Choi Focal Tversky FIRe-GAN
0.9140 Akhloufi Focal Tversky NIR

F1

0.9323 Akhloufi Dice Visible
0.9274 Akhloufi Focal Tversky Visible
0.9265 Choi Focal Tversky Visible
0.9176 Choi Focal Tversky FIRe-GAN
0.9165 Akhloufi Focal Tversky NIR

HAF

0.9098 Akhloufi Dice Visible
0.9068 Choi Focal Tversky Visible
0.8957 Akhloufi Focal Tversky Visible
0.8904 Akhloufi Dice NIR
0.8892 Akhloufi Focal Tversky NIR
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Figure 18. Spearman correlation matrix for all parameters.

Considering the obtained results, both in terms of performance and robustness, we
choose the Akhloufi + Focal Tversky + visible combination as the best one and use it for
comparison against the best traditional method identified by Toulouse et al. [11]. Table 3
shows the results of this comparison.

Table 3. Comparison between the best combination and the best traditional method per metric. The
best performing method per metric is highlighted in bold.

Metric Method Value

MCC Akhloufi + Focal Tversky + visible 0.92
Phillips et al. [84] 0.81

F1 Akhloufi + Focal Tversky + visible 0.92
Phillips et al. [84] 0.82

HAF Akhloufi + Focal Tversky + visible 0.89
Phillips et al. [84] 0.75

We can observe that the best combination that we identify clearly outperforms the
best traditional method identified by Toulouse et al. [11] across all metrics.
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Next, we take this Akhloufi + Focal Tversky + visible and fine-tune its hyperparameters
on the training set through five-fold cross-validation. Although the learning rate, optimizer,
and batch size proved to be already at optimal values, we were able to halve the training
epochs to 50, maintaining the performance reported in Table 3.

We then incorporate the three different attention modules introduced in Section 3.4
to the Akhloufi architecture as shown in Figures 19–21, and benchmark the Akhloufi +
Focal Tversky + visible combination with and without attention modules and the fine-
tuned hyperparameters to explore if the inclusion of these modules further improves the
segmentation performance. Table 4 presents the results of this comparison.
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Output mask

Max Pooling layer: 
Kernel size: 2x2.
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Padding: same.

2D Conv layer + ELu
activation: 
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Stride: 1x1.

Padding: same.

2D Conv Transpose
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Padding: same.

Conacatenation layer

2D Conv layer +
Sigmoid activation: 

Kernel size: 1x1.
Stride: 1x1.
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Attention module

Figure 19. In-detail structure of the model proposed by Akhloufi et al. [38] with the inclusion of AG modules. The numbers
inside the squares represent the number of filters in the corresponding layer.
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Figure 20. In-detail structure of the model proposed by Akhloufi et al. [38] with the inclusion of SA modules. The numbers
inside the squares represent the number of filters in the corresponding layer.
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Figure 21. In-detail structure of the model proposed by Akhloufi et al. [38] with the inclusion of MECA modules. The
numbers inside the squares represent the number of filters in the corresponding layer.

Table 4. Comparison the best combination with and without attention modules. The best combination
per metric is highlighted in bold.

Metric Method Value

MCC

Akhloufi + Focal Tversky + visible 0.9225
AG Akhloufi + Focal Tversky + visible 0.9241
SP Akhloufi + Focal Tversky + visible 0.9240

MECA Akhloufi + Focal Tversky + visible 0.9244

F1

Akhloufi + Focal Tversky + visible 0.9244
AG Akhloufi + Focal Tversky + visible 0.9260
SP Akhloufi + Focal Tversky + visible 0.9258

MECA Akhloufi + Focal Tversky + visible 0.9263

HAF

Akhloufi + Focal Tversky + visible 0.9004
AG Akhloufi + Focal Tversky + visible 0.9016
SP Akhloufi + Focal Tversky + visible 0.9019

MECA Akhloufi + Focal Tversky + visible 0.9032

Finally, we can observe that the inclusion of attention modules, in particular of the
MECA ones, increases the segmentation performance across all metrics; however, this
improvement is too small to be considered significant.

5. Discussion

In the present work, we evaluate the three SOTA DL architectures designed for wildfire
segmentation, three loss functions, and four image types to assess the impact of each of
these factors in the segmentation performance of a model. We provide a comprehensive
review and evaluate the U-Net-based Akhloufi architecture [38], the FusionNet-based
Choi architecture [5], and the VGG16-based Frizzi architecture [36], the Dice [26], Focal
Tversky [41], Unified Focal [42] losses, and the visible and NIR images of the Corsican Fire
Database [71] alongside two types of fused visible-NIR images produced by the methods
by Li et al. [29] and Ciprián-Sánchez et al. [34] for a total of thirty-six combinations.

We evaluate these combinations through three metrics, namely the Matthews Correla-
tion Coefficient [43], F1 score [83], and the Hafiane quality index [45]. Next, we obtain the
top five best performing combinations across all metrics, with the Akhloufi + Dice + visible
scoring the best performance on all metrics by a close margin. However, after grouping
the results by architecture, loss function, and image type, we observe that the Akhloufi
architecture and the Focal Tversky loss function have by far the most robust performance,
displaying scant variance in their results. The performance of the combinations, when
grouped by image type, displayed an almost identical behavior, pointing to a very little
influence of the image type in the segmentation performance.
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We also obtain the Spearman correlation matrix for each parameter for all combinations
to assess the monotonic relation between the evaluated architectures, loss functions, and
image types concerning the scores of the three metrics. In this analysis, we find that
the architecture and loss function parameters display high correlations with the three
metrics, with the Akhloufi architecture and Focal Tversky loss function showing a high
positive correlation with these metrics. Additionally, we can observe that all image types
show significantly weak correlations with the evaluation metrics, with the visible images
showing a small positive correlation. In this correlation analysis, we can also see a near-
perfect positive correlation between the MCC, F1, and HAF metrics. The latter means that,
for future works, one of these metrics can suffice for the evaluation of the segmentation
performance of a model.

Taking into account the performance evaluation and correlation analysis, we consider
the Akhloufi + Focal Tversky + visible combination as the best performing one and fine-tune
its training hyperparameters, with a learning rate of 10−4, ADAM optimizer, 50 training
epochs, and a batch size of four showing the best results. In this regard, it is relevant to note
that the batch size is, in our case, a hard constraint imposed by the employed hardware.
Furthermore, the Akhloufi architecture has the additional advantage of being the one with
the least amount of parameters amongst the three, allowing for faster training and inference
times. The latter shows promise for its application in real-time scenarios.

Finally, we compare the results of the best-identified combination against the best
traditional fire segmentation method identified by Toulouse et al. [11], with the DL-based
approach displaying the better performance by a considerable margin. We then explore if
the use of attention modules [46] can further improve the fire segmentation performance.
In this regard, we find that the attention modules, in particular the MECA [48] ones, do
improve the segmentation results, albeit by a margin so small that we cannot consider
it relevant.

6. Conclusions

We identify the architecture and loss function as the elements with the most influence
on the fire segmentation performance of a DL model. The inclusion of fused information
does not appear to make a significant difference in the segmentation performance.

Two of the image types (the visible and Fire-GAN fused) that we used possess color
information, and the other two are grayscale images (the NIR and VGG19 fused). Thus,
the inclusion of color information appears to be of little value for the performance of a
DL-based fire segmentation model, in contrast with traditional methods in which the color
information is amongst the most relevant features.

Additionally, the present paper analyses infrared and fused images that contain
information on the NIR wavelength spectrum; however, the DL models themselves for
both fusion and segmentation do not distinguish between particular types of infrared
images (NIR, long-wave infrared (LWIR), amongst others). Thus, we expect them to extend
seamlessly to other types of infrared images as long as an appropriate and consistent
dataset is provided.

It is relevant to note that the results of this study are representative of the images of
the Corsican Fire Database only. This dataset contains images that are not challenging, that
is, with no significant occlusion of the fire shape due to smoke, and with the fire occupying
a relatively large region of the images. The latter means that there is little difference in the
fire region present in the visible, NIR, and fused images, which could account for the lack
of impact of the image type in the segmentation performance.

It is highly likely that the image type, in particular the NIR and fused ones, would
provide a more significant advantage in more challenging scenarios, e.g., with images
with considerable smoke occlusion. Additionally, since the DL models for both fusion and
segmentation were trained only in these non-challenging samples, their generalization
capabilities to challenging, operative-scenario images may be limited.
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A promising avenue for further analysis is the inclusion and analysis of more loss
functions relevant in the field of semantic segmentation, such as the Lovász-Softmax
loss [85], the Region Mutual Information (RMI) [86] loss, and the affinity loss [87]. Addi-
tionally, in recent times, there has been work proposing different training paradigms for
DL-based semantic segmentation, such as the pixel-wise contrastive framework proposed
by Wang et al. [88]. The inclusion of the training paradigm as an additional parameter can
provide further insight into the relevance of the different elements involved in DL-based
wildfire segmentation performance.

Finally, given the ability of the fused images to preserve both thermal and textu-
ral information, we can expect them to provide further advantages for smoke and fire
segmentation. The generation of more challenging datasets containing visible-infrared
image pairs with ground truths for fire and smoke segmentation arises as a promising
path for future work. Additionally, exploring few-shot learning approaches that can en-
able DL-based image fusion and segmentation models to learn and generalize with the
limited visible-infrared fire datasets currently available is another promising avenue for
further research.
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