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Abstract: Artificial intelligence technologies and vision systems are used in various devices, such as
automotive navigation systems, object-tracking systems, and intelligent closed-circuit televisions. In
particular, outdoor vision systems have been applied across numerous fields of analysis. Despite
their widespread use, current systems work well under good weather conditions. They cannot
account for inclement conditions, such as rain, fog, mist, and snow. Images captured under inclement
conditions degrade the performance of vision systems. Vision systems need to detect, recognize, and
remove noise because of rain, snow, and mist to boost the performance of the algorithms employed
in image processing. Several studies have targeted the removal of noise resulting from inclement
conditions. We focused on eliminating the effects of raindrops on images captured with outdoor
vision systems in which the camera was exposed to rain. An attentive generative adversarial network
(ATTGAN) was used to remove raindrops from the images. This network was composed of two
parts: an attentive-recurrent network and a contextual autoencoder. The ATTGAN generated an
attention map to detect rain droplets. A de-rained image was generated by increasing the number of
attentive-recurrent network layers. We increased the number of visual attentive-recurrent network
layers in order to prevent gradient sparsity so that the entire generation was more stable against the
network without preventing the network from converging. The experimental results confirmed that
the extended ATTGAN could effectively remove various types of raindrops from images.

Keywords: raindrops; attentive generative adversarial network; convolutional neural networks

1. Introduction

Vision systems are often used in various devices, such as automotive navigation
systems, object-tracking systems, and intelligent closed-circuit televisions. In particular, ex-
ternal vision systems are widely used in various analytical fields. Despite their widespread
use, current systems only work well under good atmospheric conditions. They cannot
account for inclement conditions, such as rain, fog, mist, and snow. Images captured under
inclement conditions degrade the performance of vision systems. Vision systems have to
automatically detect, recognize, and remove noise due to rain, snow, and mist in order to
enhance the performance of the algorithms utilized in image processing. Several studies
have focused on removing noise resulting from inclement conditions, such as rain, fog,
and snow. Figure 1 shows the ground-truth images and the images generated by adding
raindrop effects to the ground-truth images.

In this paper, we propose a new method for restoring raindrops based on an at-
tentive generative adversarial network. An attentive generative adversarial network
(ATTGAN) [1,2] was used to remove raindrops from images. It was composed of two parts:
an attentive-recurrent network and a contextual autoencoder. The ATTGAN generated
an attention map to detect the rain droplets. We increased the number of visual attentive-
recurrent network layers in order to prevent gradient sparsity so that the entire generation
would be more stable against the network without preventing the network from converg-
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ing. A de-rained image was generated by increasing the number of attentive-recurrent
network layers.
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Figure 1. Examples of raindrop images and ground-truth images.

2. Related Works

A few techniques, including strategies using the time and frequency domains, low-
rank representation and sparsity-based strategies, Gaussian mixture model strategies,
and deep learning techniques, have been utilized to address issues of lucidity in camera
images [3–5]. Many rain-removal techniques have been developed. The representative
strategies are briefly discussed in this section. For a comprehensive review of downpour-
removal strategies, please refer to the overview papers of [3–5].

2.1. Time- and Frequency-Domain-Based Methods

Garg and Nayar examined the impacts of downpour on a vision framework [6]. They
utilized a space–time relationship model and movement data to capture the elements of
rain and to clarify the photometry of these elements individually.

Zhang et al. applied a histogram model to recognize and eliminate raindrops in an
image by utilizing the spatio-temporal properties of rain streaks [7]. They utilized the
K-means algorithm to construct a histogram model.

Barnum et al. introduced a spatio-temporal frequency-based method to recognize rain
and snow [8]. They utilized a physical model and a blurred Gaussian model to estimate
the obstruction effects caused by raindrops. However, their proposed blurred Gaussian
model could generally not deal with rain streaks.

2.2. Low-Rank Representation and Sparsity-Based Methods

Chen et al. utilized the similarity and repeatability of rain streaks [9]. They proposed
the use of a low patch rank before catching rain streak patterns. In addition, they proposed
a movement-segmentation-based technique in order to deal with rain streaks.

Hu et al. proposed an iterative layer-separation technique [10]. They separated noisy
images into background layers and rain streaks. They eliminated the rain streaks from the
background layers.

Zhu et al. proposed an iterative layer-separation technique [11]. They separated the
images into rain streaks and background layers. In addition, they eliminated the textures
of the background layers and rain streaks with layer-explicit priors.

Deng et al. proposed a sparse directional group model to model rain streaks’ sparsity
and directions [12].
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2.3. Gaussian Mixture Model

Li et al. demonstrated the detection of rain streaks and background layers using
Gaussian mixture models (GMMs) [13]. The GMMs of the background layer were acquired
from images with different background scenes. A rain patch chosen from an input image
that had no background areas was utilized to prepare the GMMs of the rain streaks.
Li et al.’s model was able to eliminate rain streaks at small and moderate scales.

2.4. Deep-Learning-Based Methods

The success of convolutional neural networks (CNNs) in several research fields has
inspired researchers to develop CNN-based image-denoising methods [14–22].

Yang et al. constructed a joint rain detection and removal network. It could handle
heavy rain, overlapping rain streaks, and rain accumulation [14]. The network could
detect rain locations by predicting a binary rain mask and using a recurrent framework
to remove rain streaks and progressively clear up the accumulation of rain. This network
achieved good results in heavy rain cases. However, it could falsely remove vertical
textures and generate underexposed illumination. Yang et al. improved and proposed
several CNN-based methods [13–16].

Following Yang et al. [14–16] and Fu et al. [17], several other authors proposed CNN-
based methods [14–18]. These methods employed more advanced network architectures
and the injection of new rain-related priors. They achieved better quantitative and qualita-
tive results.

Fu et al. [17] utilized a two-step technique in which the information of a blustery
picture was decayed into a foundation-based layer and an independent detailed layer. At
this point, indirect CNN-based planning was used to eliminate the downpour streaks from
the detail layer.

Qian et al. [1] built an ATTGAN by infusing visual attention into both the generative
and discriminative organizations. The visual attention did not just guide the discriminative
organization to zero, but in addition to the nearby consistency of the reestablished raindrop
locales, it also caused the generative organization to focus harder on the relevant data
encompassing the raindrop territories.

Lee et al. [18] proposed a deep learning method for rain removal in videos based on a
recurrent neural network (RNN) architecture. Pseudo-ground truth was generated from
real rainy video sequences by temporally filtering through supervised learning instead of
focusing on various shapes of rain streaks like conventional methods. They focused on the
changes in the behaviors of the rain streaks.

Zhang et al. [19] took one step forward by investigating the construction of feed-
forward denoising convolutional neural networks (DnCNNs) in order to embrace the
progress in very deep architectures, learning algorithms, and regularization methods for
image denoising. Residual learning and batch normalization were utilized in order to
speed up the training process, unlike existing discriminative denoising models, which
usually train a specific model for additive white Gaussian noise at a certain noise level.

Chen et al. [20] proposed the HIN Block (Half Instance Normalization Block) to boost
the performance of image-restoration networks. They proposed a multi-stage network
called HINet based on the HIN Block. They applied instance normalization for half of the
intermediate features and kept the content information at the same time.

Wang et al. [21] proposed Uformer, an effective and efficient transformer-based archi-
tecture, in which they built a hierarchical encoder–decoder network by using the trans-
former block for image restoration. In contrast to existing CNN-based structures, Uformer
built upon the main component, the LeWin transformer block, which can not only handle
local context, but can also efficiently capture long-range dependencies.
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3. Raindrop Removal with an ATTGAN
3.1. Formation of a Single Waterdrop Image

A rainy image is defined as [1,2]:

I = (1 − M)
⊙

B + W (1)

where I, B, and M are the rainy image, background image, and binary mask image, respec-
tively; W is the effect of the water droplets;

⊙
represents the multiplication operation. M is

obtained by subtracting image B from image I. I is generated by adding waterdrop noise.
M is the noise region, and B is the other region. The goal is to obtain the background image
B from a given input rainy image I. In the mask image,

M(x) =
{

1 raindrop region
0 background region

(2)

where x is a pixel.

3.2. Generative Network

Generative adversarial networks (GANs) are a class of strategies for modeling data
distributions, and they consist of two networks: the generator G, which translates an
example from an arbitrary uniform distribution into a data distribution, and the discrim-
inator D, which measures the likelihood of whether a given example has a place in the
data distribution or not. In light of the hypothetical min–max standards, the generator
and discriminator are normally mutually trained by exchanging the preparation of D
and G, despite the fact that GANs can produce visually engaging images by preserving
high-frequency details [23,24].

Figure 2 shows the overall architecture of the ATTGAN method. The network is
composed of two parts: the generative network and the discriminative one. Given an
image with raindrops, the generative network generates an image that looks as real as
possible and is free from raindrops. The generative network is composed of two parts: an
attentive-recurrent network and a contextual autoencoder [23,24]. The aim of an attentive-
recurrent network is to find regions of interest in an input image. These regions are the
raindrop regions. The discriminative network determines whether the image produced by
the generative network looks real or not.
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The overall loss function for the adversarial loss is defined as [1,2]:

min
G

max
D

V(D, G) = EW∼pclean [logD(W)]

+EI∼praindrop [log(1 − D(G(I)))]
(3)

where W is the de-rained image generated by the generation network and I is a sample
drawn from our pool of images that have been degraded by raindrops, which are the inputs
of the generative network’s truth image.

3.2.1. Attentive-Recurrent Network

A visual attention network was applied to discover the regions of rain droplets in
the rainy image inputs [1,2]. To create a visual attention network, we applied a recurrent
network. Each layer of the recurrent network was composed of a five-layer-deep residual
neural network (ResNet) [22,23], a convolutional long short-term memory (ConvLSTM)
network [24], and standard convolutional layers. The ResNet was applied to extract the
features from the input image and the mask of the previous block [23]. Each residual block
incorporated a two-layer convolution kernel of size 3 × 3 with a rectified linear unit (ReLU)
nonlinear activation function.

The extracted feature map and the initialized attention map were transferred to the
ConvLSTM for training. The ConvLSTM unit consisted of an input gate it, a forget gate
ft, an output gate ot, and a cell state Ct. The interactions between the states and the gates
along the time dimension are described in detail in [1,2].

The consideration map, which was learned at each time step, was a matrix going from
0 to 1, where the greater its value was, the better the attention map generated would be. In
contrast to the binary mask M, the attention map was a non-binary map, and it addressed
the expanding attention from the non-raindrop areas to the raindrop areas; the quality
changed even inside the raindrop areas. This consideration of the expansion was necessary
because the encompassing locales of the raindrops additionally needed the consideration,
and the straightforwardness of a raindrop zone actually changed (a few parts did not
absolutely block the background and, accordingly, passed on some background data) [1,2].

Pairs of images with and without raindrops that contained the very same background
scene were used to train the generative network. The loss function in each recurrent block
was characterized as the mean squared error (MSE) between the output attention map at
time step t (or At) and the binary mask M. We applied this process in N time steps [1,2].
The prior attention maps had more modest qualities and became larger when moving
toward the Nth time step, demonstrating the increment in certainty.

The loss function in each recurrent block is expressed as [1,2]:

LATT({A}, M) =
N

∑
t=1

θN−tLMSE(M, At) (4)

where M is the binary mask, At is the attention map generated by the recurrent network at
time t, N is the number of interactions of the recurrent block, and θ is the weight and was
set to 0.8.

3.2.2. Generative Autoencoder

The objective of the generative autoencoder was to produce a refined and clean
image that was free from raindrop occlusions and that looked like a genuine picture. The
autoencoder consisted of Conv-ReLu blocks, and skip associations were added to prevent
a blurred output.
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Figure 3 illustrates the autoencoder’s perceptual loss. Perceptual loss measures the
global discrepancy between the image created by the autoencoder and the corresponding
ground-truth image [1,2].

LMS({S}, {T}) =
M

∑
i=1

λiLMSE(Si, Ti) (5)

where Si represents the output extracted from the decoder layers and Ti represents the
ground truth with the same scale as that of Si. λM

i=1 is the weight for the different scales.
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Figure 3. Architecture of the contextual autoencoder. Multiscale loss and perceptual loss are used to help train
the autoencoder.

The global features were extracted using a VGG16 model pretrained on the ImageNet
dataset. The perceptual loss function is expressed as [1,2]:

LP(O, T) = LMSE(VGG(O), VGG(T)) (6)

where VGG(O) and VGG(T) are the features of the output of the autoencoder and the
ground-truth image extracted by the pretrained VGG16 model, respectively; O is the output
image of the autoencoder, i.e., O = G(I), where I is an input image.

The discriminator loss function of the generative network is expressed as [1,2]:

Lcontext = λgLGAN(G(O)) + LATT({A}, M)
+LMS({S}, T) + LP((G(O), T))

(7)

where λg = 10−2 and LGAN((G(O)) = LMSE[log(1 − D(O)].
Figure 3 shows the architecture of the contextual autoencoder.

3.3. Discriminative Network

To use the local and global features, we produced an attention map from an attentive-
recurrent network. The loss function of the discriminator is expressed as:

LD(O, R, AN) = −log(D(R))− log(1 − D(O)) + γLmap(O, R, AN) (8)

where Lmap is defined as:

Lmap(O, R, AN) = LMSE
(

Dmap(O)− AN)
)
+ LMSE

(
Dmap(R)− 0)

)
(9)

where Dmap represents the process of producing a two-dimensional map using the discrim-
inative network.

The discriminant network consisted of nine convolutional layers. Each layer was
associated with the ReLU nonlinear activation function. A 5 × 5 convolution kernel was
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utilized to extract and fuse the texture features. The first six output channels were 8, 16, 32,
64, 128, and 128 [1,2].

4. Experimental Results and Analysis
4.1. Experimental Environment

To train the generative network, we needed pairs of images with and without rain-
drops. We generated the training data by adding the raindrop effect to the original image
and used the public dataset in [25].

We also used a subset of ImageNet. We generated a total of 2500 images and used
10-fold cross-validation for the evaluation. To synthesize the raindrop images, we used
25 filters, and, as shown in Table 1, we divided the waterdrop images into five types
according to the raindrop levels.

Table 1. Waterdrop types.

Type Description

1 medium water mist

2 weak water stream and small water mist

3 strong water drop

4 strong water stream

5 large water drop and strong water fog

The median filter, bilateral filter, cycle GAN (CGAN), and attentive CGAN methods
were implemented and compared in the raindrop-removal application. The proposed
method was implemented by extending the software in [26].

To measure the accuracy of the proposed method, we used the peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM).

The experiment in this study was carried out on a computer with a 64-bit operating
system (Ubuntu v. 18.04), Intel®Core™ i7-6800K CPU at 3.40 GHz, 64 GB of RAM, and
GeForce GTX1080 Ti GPU. The TensorFlow 1.10.0 deep learning framework was used for
network training.

4.2. Experimental Analysis

Figures 4–8 show the results of the removed waterdrops according to the waterdrop
types described in Table 1. Figure 6 shows the results of the waterdrops for type 3. As
shown in the results, the proposed method removed most of the waterdrop noise and
maintained a high background texture.

Figure 9 shows the waterdrop results according to the waterdrop types. As shown in
the results, the PSNR of the proposed method was lower than those of the other methods.
Table 2 shows the PSNRs and SSIMs. As shown in the evolution table, the attentive GAN
performed better than the other methods.

Table 2. SSIM results of the waterdrops of type 5 (large waterdrops and strong water fog).

Name Bilateral Filter Cycle GGAN ATTGAN Proposed Method

SSIM 0.562 0.8752 0.9018 0.9124
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In the original publication, there was a mistake in Figures 4–9 as published. The content
depicted in Figures 4–8 did not match the description of the waterdrop type provided in
Table 1. We have modified the figures to align with the information presented in Table 1.
The order of Figure 5, Figure 6, Figure 7, Figure 8 was changed to Figure 7, Figure 5, Figure 8,
Figure 6, respectively. The sub-captions in Figures 4–9 contains errors. The sub-captions in
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The PSNR values in Figure 9 for “cycle GAN” and “ATTGAN” were errors. The PSNR
values for “cycle GAN” and “ATTGAN” have been corrected. We also modified the result
images of ATTAGAN in Figures 4–8. The corrected Figures 4–9 are shown below.
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The authors wish to add the following statement to the Acknowledgments section of
article:
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of the first author [2].”

The authors apologize for any inconvenience caused and state that the scientific
conclusions are unaffected. This correction was approved by the Academic Editor. The
original publication has also been updated.
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The proposed method had a better effect on the removal of both large and small water
droplets with different shapes by changing the attentive map. On the other hand, the
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modified attributes were not prominent, although the raindrops were well preserved. This
degraded the performance of the system.

5. Conclusions

We proposed a single-image-based raindrop-removal method. The method utilizes
a generative adversarial network, where the generative network produces an attention
map via an attentive-recurrent network and applies this map along with the input image
to generate a raindrop-free image through a contextual autoencoder. Our discriminative
network then assesses the validity of the generated output both globally and locally. For
local validation, we inject the attention map into the network. The novelty lies in the use of
the attention map in both the generative and discriminative network. Our experiments
demonstrated that the proposed method could effectively remove various water drops.
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