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Abstract: In reliability-based multidisciplinary design optimization, both aleatory and epistemic
uncertainties may exist in multidisciplinary systems simultaneously. The uncertainty propagation
through coupled subsystems makes multidisciplinary reliability analysis computationally expen-
sive. In order to improve the efficiency of multidisciplinary reliability analysis under aleatory and
epistemic uncertainties, a comprehensive reliability index that has clear geometric meaning under
multisource uncertainties is proposed. Based on the comprehensive reliability index, a sequen-
tial multidisciplinary reliability analysis method is presented. The method provides a decoupling
strategy based on performance measure approach (PMA), probability theory and convex model.
In this strategy, the probabilistic analysis and convex analysis are decoupled from each other and
performed sequentially. The probabilistic reliability analysis is implemented sequentially based on
the concurrent subspace optimization (CSSO) and PMA, and the non-probabilistic reliability analysis
is replaced by convex model extreme value analysis, which improves the efficiency of multidisci-
plinary reliability analysis with aleatory and epistemic uncertainties. A mathematical example and
an engineering application are demonstrated to verify the effectiveness of the proposed method.

Keywords: mixed uncertainties quantification; multidisciplinary analysis; reliability analysis; convex
set theory

1. Introduction

With progress in science and technology, the focus on the effect of uncertainty has
received increasing attention in engineering design. As an indispensable ingredient of
reliability-based multidisciplinary design optimization (RBMDO), the multidisciplinary
reliability analysis (MRA) plays a decisive role in evaluating the reliability of multidis-
ciplinary systems. In RBMDO, the probabilistic model on basis of a large amount of
statistical data is the most common method to quantify aleatory uncertainty and it has
achieved great success [1,2]. With the development of artificial intelligence technology,
some machine learning and advanced statistical framework, such as probability boxes [3],
are introduced into the field of reliability evaluation. Xiang et al. [4] proposed a deep
reinforcement learning-based sampling method for reliability analysis, which uses a deep
neural network as agent to select test points automatically and construct the surrogate
model for reliability assessment. Ghoreishi et al. [5] proposed a Bayesian surrogate learning
for reliability analysis, which increases the minimum number of possible samples from
various disciplines to achieve accurate and reliable uncertainty propagation in coupled
multidisciplinary systems. These methods all need enough statistical information.

However, the lack of statistical data often makes it difficult to quantify the statistical
distribution of the design parameters. It is incapable of obtaining credible results for
a probabilistic model, so non-probabilistic models such as convex models are used to
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quantify single interval uncertainty. Actually, uncertainties are ubiquitous in each design
stage of complex engineered systems, which can be classified into aleatory uncertainty (AU)
and epistemic uncertainty (EU) according to human cognition [6]. Aleatory uncertainty is
also known as random uncertainty, stochastic uncertainty and irreducible uncertainty. It
describes the internal changes of the physical system and has sufficient test data and perfect
information. Conversely, the epistemic uncertainty is affected by negligence, experimental
conditions or other cognitive ability caused by the lack of knowledge and imperfect
information, so it is also known as reducible uncertainty, subjective uncertainty, etc. Many
scholars have studied some reliability analysis methods considering interval or other
epistemic uncertainties. Fuzzy theory [7], possibility theory [8], evidence theory [9] and
convex set theory [10] have been used to quantify epistemic uncertainty and to conduct
reliability analysis.

In many circumstances, both aleatory and epistemic uncertainties coexist in the com-
plex and coupled multidisciplinary systems. According to different analysis principles,
the current reliability analysis methods under mixed uncertainties can be divided into
“transformation type” and “analysis type”. “Transformation type “refers to transforming
different uncertainty variables into the same type of uncertainty variables, and then using
the reliability analysis method under a single type of uncertainty for analysis. Researchers
such as Du et al. [11] transformed random variables into fuzzy variables according to
the principle of probability possibility consistency and the most conservative condition.
Shah et al. [12] used evidence theory and random expansion method to study the uncer-
tainty of implicit state when random variables and interval variables exist at the same time.
While, “analysis type” refers to the analysis of system reliability by different uncertainty
quantification theories without any transformation for the mixed uncertainties. Researchers
such as Huang et al. [13] have established the conditional possibility model of failure based
on probability/possibility theory, and analyzed the reliability based on the principle of
cut set.

For a multidisciplinary system, due to the coupling between disciplines, uncertainty
will spread among disciplines, so it is necessary to combine reliability analysis method with
multidisciplinary optimization strategy [14], but the direct integration of reliability analysis
method and multidisciplinary design optimization (MDO) strategies is inefficient when
solving large-scale MDO problems, because when both aleatory and epistemic uncertainties
are involved, the procedure of direct integration method will become a nested three-layer
loop. Therefore, Meng [15] proposed an efficient uncertainty-based design optimization
strategy with random and interval variables for multidisciplinary engineering systems.
The method evaluates the uncertainty constraints in the worst case, but it cannot evaluate
the impact of interval uncertainties on the design space.

For this purpose, the methods proposed in this paper mainly studies from two follow-
ing aspects: (1) considering the multisource uncertainties, a multidisciplinary reliability
comprehensive evaluation index with clear geometric meaning is proposed. It is pointed
out that the reliability should be an interval rather than a single value under the condition
of aleatory and epistemic uncertainties. The minimum value of the reliability interval
is used as the measurement standard, and the interval difference directly reflects the
influence of epistemic uncertainties on the limit state function. (2) Based on the compre-
hensive evaluation index, a decoupling strategy for multidisciplinary reliability approach
under multisource uncertainties (MU-DBMRA) is proposed, which divide the three-layer
nested loop of MRA process into a sequential monocyclic process, consisting of multi-
disciplinary probabilistic reliability analysis (MPRA), multidisciplinary convex reliability
analysis (MCRA) and multidisciplinary analysis (MDA). Results of example analysis indi-
cate that the proposed method can solve decoupling problems of MRA process in a proper
way, and greatly improve efficiency of MRA.

This paper is constructed as follows: the first section introduces the related works
of uncertainty quantification and PMA principle used in this paper; the second section
introduces principle and algorithm flow of the proposed method under multisource uncer-
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tainties. Section 3 presents one numerical example and one engineering design example
for demonstration. Section 4 concludes and presents possible future work.

2. Related Works
2.1. Mixed Uncertainties Quantification Based on Probability Theory and Convex Set Theory

In order to make the best use of uncertainties, both the probability and convex set
theories are employed to quantify the aleatory and epistemic uncertainties respectively.
The multi-ellipsoid convex model [16] is adopted to quantify the epistemic uncertainty.
The epistemic uncertainty involved in this paper refers to the interval uncertainty.

When there are enough data or information for the design variables, they can be
modeled using the probability theory. The normal random variable x can be transformed
into a standard normal random variables u by:

u =
(x− x)

σ
(1)

where x and σ are the mean value and the standard deviation of x, respectively.
Generally, the aleatory variables x can be transformed to a set of uncorrelated nor-

mal variables via the Rosenblatt transformation [17]. This transformation from x to u is
based on the condition that the cumulative distribution functions (CDF) of the random
variables remain the same before and after the transformation. The transformation can be
expressed by

FXi (xi) = Φ(ui), i = 1, 2, · · · , n (2)

where Φ(•) is the (cumulative distribution functions) CDF of the standard normal distribution.
Then, the transformed standard normal variable can be denoted as

ui = Φ−1[FXi (xi)
]

(3)

For example, the normally distributed random variable xi~N(µi, σi) and the trans-
formed ui can be obtained with Equation (4).

ui = Φ−1[FXi (xi)
]
= Φ−1

[
Φ
(

xi − µi
σi

)]
=

xi − µi
σi

(4)

where Φ−1(•) is the inverse standard normal cumulative distribution function. As a result,
all the random variables can be transformed into independent standard normal ones in
u space.

For the quantification of epistemic uncertainties, scholars have also made a lot of
attempts and innovations. In this paper, a convex model, which has a clear concept, simple
model and straightforward multiple variables, is used to quantify epistemic uncertainties.
When dealing with variables, convex model requires less uncertain information and only
needs to know its disturbance range.

Ellipsoidal convex model, referred to as ELP model, can be expressed as follows:

ΩSELP =
{
α(t) ∈ Rr : [α−α]TW[α−α] ≤ θ2

}
(5)

where α is the uncertainty parameter to be described, W is a weighted matrix, which
reflects the correlation between different variables; θ is the radius of the ellipsoid, which
reflects the disturbance range and degree of uncertainties; α express the nonzero principal
value (or mean value) of α. For the convenience of processing, the epistemic uncertainty
variables quantized by convex model can be standardized as follows.

Firstly, the positive definite matrix W is Eigen decomposed:

QTWQ = Λ (6)
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where QTQ = I; Λ is the characteristic matrix of W.

v =
1
ε

√
ΛQT(α−α) (7)

The original convex model can be transformed into:

Ec =
{

v
∣∣∣vTv ≤ 1

}
(8)

Ec is a set of unit multiellipsoids in standard space. So far, the interval uncertainty
parameter vector with only critical information is transformed into the corresponding
standardized vector in the ellipsoid model, and the calculation of limit state function in
reliability analysis can be carried out in a specific region.

2.2. Performance Measure Approach (PMA) for Reliability Analysis

Performance measure approach (PMA), which is also called inverse reliability analysis
method, generally refers to the problem of solving the value of the limit state function
under the given reliability index [18]. In the reliability based design optimization, the
inverse reliability analysis problem used to evaluate the constraints is usually expressed in
the mathematical form as shown in Equation (9).

min g(u)
s.t. ‖u‖ = β

(9)

where u is the design variable in the standard normal space, and g(u) is the limit state
function in the standard normal space, β represent the specified reliability index. The
practical meaning of Equation (9) is to find the point on the specified hypercircular surface
that makes the limit state function get the minimum value in the standard normal space.
The specified hypercircular takes the coordinate origin of standard normal space as its
center and the specified reliability index β as its radius. The point which makes the limit
state function minimum is also called most probable point (MPP) of PMA. PMA plays an
important role in reliability based design optimization. Through reliability analysis based
PMA, the relationship between deterministic constraints and reliability constraints can be
established, which provides a strong support for the decoupling of reliability analysis and
optimization calculation [6].

The essence of inverse reliability analysis is to solve the optimization problem shown
in Equation (9). In order to explain its true meaning more clearly, we will take the two-
dimensional (containing two variables) problem as an example. For two-dimensional
variable problems, the practical significance of the problem described by Equation (9) can
be shown in Figure 1.
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It can be seen from the figure that the essence of MPP solved by inverse reliability
analysis in standard normal space is the intersection of the specified circle and isoline of
state function which has the smallest value and the curve with the smallest value is tangent
to the specified circle.

At the same time, when dealing with non-normal aleatory variables, PMA involves
fewer nonlinear changes. At the same time, in multidisciplinary system optimization, the
PMA method does not need to calculate the specific reliability value and only needs to
evaluate the value of limit state function, so the PMA method has high robustness and
efficiency for a multidisciplinary system.

3. Materials and Methods
3.1. Reliability Comprehensive Evaluation Index Considering Multisource Uncertainties

When the aleatory uncertainties and epistemic uncertainties are fully considered,
the limit state function of the multidisciplinary reliability design optimization model is
transformed from the original one which only contains aleatory uncertain design variables
and coupling state variables to one which includes both aleatory uncertain variables,
epistemic uncertain variables and coupling state variables. Because of the existence of
epistemic uncertain design variables, the value of limit state function is no longer a single
value (i.e., no longer a single failure surface), but a series of values (i.e., there are a series
of failure surface families) between the minimum and maximum values of the limit state
function. At this time, the reliability value becomes an interval. In fact, this is also
uncertainty, that is, the uncertainties brought by uncertainties.

In order to ensure the high reliability of the design, we propose to use the minimum
value of limit state function as the criterion to measure reliability, and the difference of
limit state function value to describe the influence of epistemic uncertainties on reliability.
The larger the interval difference, the greater the degree of epistemic uncertainties. In fact,
the range of the limit state function also directly indicates that designers need to do more
experiments on these epistemic variables to improve the reliability of design or obtain more
data and knowledge through other channels, reduce the epistemic uncertainty of design
parameters, reduce the impact on the limit state function, and then improve reliability of
the complex engineering system design.

As shown in Figure 2, the whole standard normal space (U space) is divided by Ω
into three parts: safety area (Ωs = {u: min G(u, v, y) > 0|v ∈ E}), critical region (Ωc = {u:
min G(u, v, y) = 0|v ∈ E}), and failure region (Ωf = {u: min G(u, v, y) < 0|v ∈ E}). Where u
is the standard normal random variables, v is the normalized vector of epistemic variables,
and y is the vector of coupling state variable, G(u, v, y) represent the limit state function
after space transformation. G(u, v, y) > 0 indicates that it meets the reliability requirements.
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The junction of safety area Ωs and critical area Ωc represents a unique spatial curve

(surface)
_
G(u) = 0, which is called “the most probable failure surface”.

The comprehensive evaluation index of multidisciplinary reliability under multisource
uncertainty is defined as: in the standard U space, the shortest distance (i.e., the lower limit
of interval) from “ the most probable failure surface “ to the coordinate origin is regarded
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as the reliability evaluation value, and is recorded as βL
C (C is comprehensive, which means

comprehensive reliability index, L is the lower limit of reliability interval), and the farther
the most likely failure surface is from the origin, the smaller the failure probability of limit
state function is. In fact, the solution of comprehensive reliability evaluation index can be
given by Equation (10):

βL
C = min

√
uTu

s.t.
_
G(u, v) = 0

(10)

where,
_
G(u, v) = G(u, v)

s.t. vT
i vi ≤ 1

i = 1, 2, · · · , n
(11)

Equation (10) is used to search for the most probable point (uMPP) of aleatory uncertain
variables, and Equation (11) is used to solve the worst point (vWCP) of epistemic uncertain
variables. By combining (10) and (11), the MPP can be solved by the multiconstraint
optimization problem shown in Equation (12)

Find (u, v)
βL

C = min
√

uTu
s.t. G(u, v) = 0

vT
i vi ≤ 1 (i = 1, 2, · · · , n)

(12)

Obviously, if epistemic uncertainties do not exist, the comprehensive reliability evalu-
ation index defined in Equation (12) will degenerate to the traditional probability reliability
evaluation index. Therefore, the reliability evaluation index proposed in this paper has
more general significance.

In addition, the proposed reliability evaluation system can also find the maximum
value of the reliability of the limit state function under the influence of the epistemic
uncertainties by Equation (13):

βU
C = max

√
uTu

s.t.
_
G(u, v) = 0

(13)

Therefore, the reliability of limit state function under the joint influence of aleatory
and epistemic uncertainties is a region, which is expressed as [βL, βU], its difference is
recorded as ∆β = βU − βL, which directly reflects the influence of the epistemic uncertain
design variables on the limit state function. Therefore, the comprehensive evaluation index
of multidisciplinary reliability is a kind of generalized reliability evaluation index, which
has two meanings: (1) the evaluation index is no longer a single evaluation measure, but a
reliability evaluation interval; (2) the difference between the upper and lower limits of the
evaluation index directly reflects the influence of epistemic uncertainties on the reliability
of limit state function and complex system design.

3.2. Mathematical Model of Reliability with Aleatory and Epistemic Uncertainties

Take Figure 3 as an example. When execute reliability analysis to the constraints of
the ith discipline, the mathematical model of which in standard normal space and standard
ellipsoid space is as shown in Equation (10):

min GNum
i (us, ui, vs, vi, y•i)

s.t. ‖us, ui‖ = βt
vT

iNE
vNE ≤ 1

i = 1, 2, 3; Num = 1, 2, · · · , m; NE = 1, 2, · · · , n

(14)
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Figure 3. Multidisciplinary analysis under aleatory and epistemic uncertainties.

GNum
i (us, ui, vs, vi, yi) is the Numth function of reliability constraint of discipline

i; us is the system shared aleatory design variables in U space; ui is the aleatory design
variables of the ith discipline in U space; vs is the system shared epistemic design variables
in V space; vi is the epistemic design variables of the ith discipline in V space; y•i, is the
state variables input of discipline i from other disciplines, in which i means the number of
disciplines; m represents the number of reliability constraint functions of discipline i, while
Num means the number of reliability constraint functions of the ith discipline. According to
different types of epistemic uncertainties. It can be divided into NE groups, with each group
represented by a single elliptical convex model. The state equation of ith discipline is:

yi = y ji(us, ui,vs, vi,y•i), i, j = 1, 2, 3, i 6= j (15)

This equation can obtain the value of coupling state variables in the following way.
This section also takes a complex system consisting of three coupling disciplines as
an example (as shown in Figure 4) and explain its MDA process in detail.
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Figure 4. Schematic figure of traditional MRA with the aleatory and epistemic uncertainties.

us is the shared aleatory design variables of system input, and u1, u2 and u3 are
aleatory variables of system input of discipline 1, discipline 2, and discipline 3 respectively;
they are local aleatory independent variables. Vs is the shared epistemic design variable of
system input, and v1, v2 and v3 are the epistemic variables of system input of discipline 1,
discipline 2 and discipline 3 respectively; they are local epistemic independent variables.
yij(i 6= j) is the interdisciplinary coupling-state variables, representing the output of dis-
cipline i and the input of discipline j. zi(i = 1, 2, 3) represents the output of discipline 1,
discipline 2, and discipline 3. In particular, the aleatory variables in this paper refer to
variables in line with a certain distribution, while the epistemic variables refer to those
with interval uncertainties.
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Multidisciplinary analysis under aleatory and epistemic uncertainties is a process that
takes full account of system input parameters and calculates the output of system. Because
there are different coupling degrees between different disciplines, each discipline output
will not only be affected by the discipline input itself, but also by the coupling relationship
between disciplines. This means to find each subsystem output, the coupling state variable
yij(i 6= j) should be analyzed and evaluated first. Multidisciplinary analysis under aleatory
and epistemic uncertainties is similar to that under aleatory uncertainties, including the
following steps in detail:

Step 1: List the input-output relationships among each subsystem:
The input-output relationships among discipline 1 is:

z1 = z1(us, u1, vs, v1, y21, y31)
y12 = y12(us, u1, vs, v1, y21, y31)
y13 = y13(us, u1, vs, v1, y21, y31)

(16)

Step 2: Connect coupling-state variables to establish equations of system analysis.
Take the three-disciplinary coupling system as an example. Its equations of coupling-

state system is: 

y12 = y12(us, u1, vs, v1, y21, y31)
y13 = y13(us, u1, vs, v1, y21, y31)
y21 = y21(us, u2, vs, v2, y12, y32)
y23 = y23(us, u2, vs, v2, y12, y32)
y31 = y31(us, u3, vs, v3, y13, y23)
y32 = y32(us, u3, vs, v3, y13, y23)

(17)

Step 3: Select an algorithm and solve it.

3.3. Decoupling Strategy for Multidisciplinary Reliability Approach

As shown in Figure 4, when both aleatory and epistemic uncertainties are involved,
the procedure of MRA will become a nested three-layer loop. The MPRA loop lies in the
outer loop, which searches the MPP through calling convex analysis and MDA repeatedly
in the standard normal space. The second loop is the MCRA, which aims at finding the
minimum of limit state function through calling MDA. The MDA in the inner loop is
always invoked repeatedly by MPRA and MCRA, providing the value of coupled limit
state function. Obviously, the computational effort of the three-layered procedure may be
prohibitive especially for large-scale and coupled multidisciplinary systems.

Therefore, a decoupling strategy for multidisciplinary reliability is proposed to de-
couple the nested MRA into a sequence of cycles of three modules that are multidis-
ciplinary probabilistic reliability analysis (MPRA), multidisciplinary convex reliability
analysis (MCRA) and multidisciplinary analysis (MDA). As a result, a great number of
MDA and reliability analyses can be eliminated.

In the MDA module, the values of the coupling state variables are obtained through
the coordination relationship among the sub disciplines, and the values of the coupling
state variables are used by MCRA and MPRA. So that all the reliability constraints only
contain the design variables without coupling state variables.

In convex reliability analysis, Lagrange multiplier method [19] is used to convert
constrained optimization problems to unconstrained problems. All epistemic uncertain
design variables and Lagrange multiplicator λ are taken derivative based on the differential
principle. KKT conditions is used to replace extremum search algorithm. In this way, the
calculation efficiency of multidisciplinary convex reliability analysis can be improved.

For multidisciplinary probabilistic reliability analysis. Global sensitivity equations
(GSE) [20] based on CSSO strategy are used to provide the prerequisite for parallel subspace
sensitivity analysis and provides gradient information for updating the random design
variables. Modified advanced mean value (MAMV) [21] method is used to search MPP.



Appl. Sci. 2021, 11, 7008 9 of 18

The characteristics of the proposed method are as follows: (1) using PMA to improve
the efficiency of reliability analysis from the model itself; (2) decoupling the three-layer
nested analysis process; (3) adopting CSSO strategy and executing MDA and global
sensitivity analysis to provide reliability analysis with the value and sensitivity information
of limit-state functions; (4) adopting KKT conditions to replace the expensive extremum
analysis.

When there are only aleatory uncertainties, the method proposed in this paper became
a sequential multidisciplinary probabilistic reliability analysis which integrates the CSSO
and PMA, as a matter of convenience, we call it SMPRA. When aleatory uncertainties and
epistemic uncertainties exist simultaneously, the proposed method is a decoupling based
multidisciplinary reliability analysis; we call it MU-DBMRA.

The flowchart of the proposed decoupling strategy is shown in Figure 5. Five steps
are involved in this strategy.
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Step 1: Set initial values us, ui, vs, vi, k = 1.
Step 2: Multidisciplinary probabilistic reliability analysis.
Step 2.1: Fix epistemic uncertain design variables (characterized by their mean values

in first loop), and set loop number k = 1.
Step 2.2: Execute multidisciplinary analysis. Evaluate the value of state variable yk

and limit-state functions g(xk).
Step 2.3: Execute system sensitivity analysis. Use GSE method to obtain the gradient

of limit-state function ∇xg(xk).
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Step 2.4: Convert the aleatory uncertain design variables xk to uk according to the
Equation (1), and evaluate the gradient ∇ug(uk) of the limit-state function in standard
normal space according to the Equation (18):

∇ug(uk) =
dg
dxk

∂xk
∂uk

= ∇xg(xk) · σx (18)

where σx are the variance of x.
Step 2.5: Search uMPP by MAMV method.
Step 2.5.1: Calculate the angle between uk and ∇ug(uk) according to Equation (19). If

γk ≤ ε, execute step 2.7, otherwise step 2.5.2. ε is a small angle for like 0.01◦.

γk = cos−1 uk · ∇ug(uk)

‖uk‖ · ‖∇ug(uk)‖
(19)

Step 2.5.2: If g(uk) > g(uk−1), update u according to Equation (20). Otherwise, update
u according to Equation (21):

uk+1 = βt
∇ug(uk)

‖∇ug(uk)‖
(20)

uk+1 =
βt

sin(γk)

(
sin(γk − δk)

uk
‖uk‖

+ sin δk
∇ug(uk)

‖∇ug(uk)‖

)
(21)

where βt are the given reliability index. δk in Equation (21) can be calculated by solving a
one-dimensional maximum problem, as shown in Equation (22):

max g(uk+1) = g
{

βt

sin(γk)

(
sin(γk − δk)

uk
‖uk‖

+ sin δk
∇ug(uk)

‖∇ug(uk)‖

)}
(22)

Step 2.6: Convergence verification. If |uk + 1 − uk| < ε, execute step 2.7. Otherwise,
convert the variable uk + 1 to the corresponding variable xk + 1 in original space and then
execute step 2.2.

Step 2.7: uMPP = uk, Calculate g(uk), end.
Step 3: Multidisciplinary convex reliability analysis.
Step 3.1: Set aleatory uncertain variables, make u = uMPP.
Step 3.2: Execute multidisciplinary analysis. Calculate the value of state variable yk

and limit-state function g(xk).
Step 3.3: Transform constrained optimization problems to unconstrained ones on the

basis of Lagrange multiplier method.
Step 3.4: For the newly constructed optimization functions, take partial derivative of

the epistemic uncertainties v and λ separately; calculate vmin and vmax,, the corresponding
points of the extremum of limit-state functions, by Equation (23).{

∂gi
∂λ = 0
∂gi
∂vi

= 0
(23)

Step 4: Convergence verification.
Substitute the obtained uk, vk

min and vk
max into limit-state functions. If all multidis-

ciplinary reliability constraints are satisfied and the objective function value converges,
execute step 5, or k = k + 1, execute step 2.

Step 5: End.

4. Evaluation and Discussion

In this section, two numerical design examples are used to demonstrate the validity
and efficiency of the proposed strategy. The implementation of the algorithm uses the
MATLAB programming language.
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4.1. Numerical Example

As shown in Figure 6, the numerical example [22] consists of three subsystems and
five design variables. Where x1, x2, x3 belongs to subsystem 1, subsystem 2 contains three
design variables: x1, x4, x5. y12 and y21 are coupling-state variables; g1 and g2 are reliability
constraints of subsystem 1 and subsystem 2 respectively.
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The functional relationship between the two subsystems is as below:
(1) Subsystem 1:

x1 = {x1, x2, x3, x4, x5}, y1 = {y12}, g1 = {g1}
y12 = x2

1 + 2x2 − x3 + 2
√

y21 + x4 + x5
g1 = 5−

(
x2

1 + 2x2 + 2x3x4 + x2e−y21
)
− 1.1x5

(24)

(2) Subsystem 2:

x2 = {x1, x4, x5}, y2 = {y21}, g2 = {g2}
y21 = x1x4 + x2

4 + x5 + y12
g2 =

√
x1 + x4 + x5(0.4x1) + y2

(25)

In order to verify the effectiveness and computational efficiency of the proposed
method, two cases are selected:

Case 1: Suppose that aleatory design variables x = (x1, x2, x3, x4, x5)~N(µx, σx), and
the mean value µx = (1, 1, 1, 1, 1), σx = (0.1, 0.1, 0.1, 0.1, 0.1).

Case 2: Suppose that x1, x2 and x3 are design variables with aleatory uncertainty, the
mean value µx of x = (x1, x2, x3) equals (1, 1, 1) and the variance σx equals (0.1,0.1,0.1).
Similarly, suppose that x4 and x5 are design variables with epistemic uncertainty. Further-
more, in order to further verify the influence of variation range of design parameters with
epistemic uncertainty on limit-state functions, three test points are set:

Test point 1: The variation range can be described as below: x ∈ E ={
x
∣∣∣(x− x)TW(x− x) ≤ 0.042

}
; the calibration value is x = [x4, x5]

T = [1, 1]T and the

characteristic matrix is Wx =

[
64 0
0 16

]
. Therefore, the conversion relationship of epis-

temic uncertainties in x-space and in v space is x4 = v4
200 + 1, x5 = v5

100 + 1.
Test point 2: Take the variation ε as 0.02 and the characteristic matrix w11 as 64, w12

as 0, w21 as 0 and w22 as 16, then the conversion relationship of epistemic uncertainties in x
space and in v space is: x4 = v4/400 + 1, x5 = v5/200 + 1.

Test point 3: Take the variation ε as 0.04 and the characteristic matrix w11 as 16, w12
as 0, w21 as 0 and w22 as 64, then the conversion relationship of epistemic uncertainties in x
space and in v space is: x4 = v4/100 + 1, x5 = v5/400 + 1.

Following multidisciplinary reliability analysis with SMPRA and MU-DBMRA (three test
points) methods for the limit-state function g1 respectively, the obtained MPPs, their values
and iteration times are shown in Table 1. In order to prove the effectiveness of the algorithm,
we chose the method proposed in reference [7] to compare the results in test point 1. The
solver of PMA in the contrasting method is sequential quadratic programming (SQP).
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Table 1. Reliability analysis results of the numerical example.

Test Point Method xMPP = {x1, x2, x3, x4, x5} Limi-State Function Value Iteration Times

Case 1 SMPRA (1.1726, 1.1726, 1.1726, 1.0017, 1.0017) g1(x) = 0.0323 232

Case2:
Test point 1

MU-DBMRA
(1.1933, 1.1620, 1.1625, 1.0036, 0.9931) g1(x,v)min = 0.0111 258

(1.1937, 1.1623, 1.1617, 0.9964, 1.0069) g1(x,v)max = 0.0431 258

MCs
(1.2014, 1.1872, 1.1359, 1.0763, 1.0018) g1(x,v)min = 0.0092 296,000

(1.2143, 1.1924, 1.1427, 1.0914, 1.0067) g1(x,v)max = 0.0513 296,000

MDF + SQP (1.2212, 1.1812, 1.0906, 1.0000, 1.0000) g1(x,v) = 0.0429 304

IDF + SQP (1.2209, 1.1816, 1.0951, 1.0000, 1.0000) g1(x,v) = 0.0172 276

Case2:
Test point 2

MU-DBMRA
(1.1933, 1.1620, 1.1624, 1.0023, 0.9912) g1(x,v)min = 0.0120 258

(1.1936, 1.1622, 1.1618, 0.9977, 1.0088) g1(x,v)max = 0.0423 258

MCs
(1.1879, 1.1564, 1.1607, 1.0008, 0.9847) g1(x,v)min = 0.0021 296,000

(1.1952, 1.1693, 1.1684, 1.0042, 1.0106) g1(x,v)max = 0.0657 296,000

Case2:
Test point 3

MU-DBMRA
(1.1932, 1.1619, 1.1627, 1.0050, 0.9988) g1(x,v)min = 0.0143 258

(1.1938, 1.1623, 1.1615, 0.9950, 1.0012) g1(x,v)max = 0.0399 258

MCs
(1.1884, 1.1579, 1.1631, 1.0021, 0.9864) g1(x,v)min = 0.0074 296,000

(1.1804, 1.1672, 1.1616, 1.0032, 1.0094) g1(x,v)max = 0.0362 296,000

From Table 1, it can be seen that the limit-state function value obtained by MCs,
MDF + SQP, IDF + SQP and MU-DBMRA methods are all positive, that is, the reliability
constraint g1 satisfies the reliability design requirements. The iteration times of MDF + SQP,
IDF + SQP and MU-DBMRA are 344, 308 and 258 separately. Mu-DBMRA has the high-
est efficiency. While, compared with MRA considering only aleatory uncertainties, the
iteration times are 232 in SMPRA and 258 in MU-DBMRA respectively for test point 1.
Obviously, they have the same magnitude and their calculation efficiency are basically
equal. This should be mainly attributed to the following three reasons: (1) decoupling the
nested multidisciplinary probabilistic reliability and multidisciplinary convex analysis;
(2) adopting Lagrange multiplier method and KKT conditions to replace the expensive
function extremum analysis, indicating that this method can keep great calculation ef-
fectiveness when dealing with multidisciplinary reliability analysis under aleatory and
epistemic uncertainties at the same time.

Theoretically, when design parameters have both aleatory uncertainties and epistemic
uncertainties, the limit-state function value should be an interval. As shown in Table 1,
0.0323 ∈ [0.0111, 0.0431], [0.0120, 0.0423], [0.0143, 0.0399], indicating that the single value
of limit-state function calculated by SMPRA is in the value range of limit-state function
calculated by MU-DBMRA, which, furthermore, verifies the correctness of the proposed
method and theory.

From studies of three different test points, the variation tendency of the result for limit-
state function analyzed by MU-DBMRA method is shown in Figure 7, and the difference is
shown in Figure 8. It is thus evident that as the variation degree of epistemic uncertainties
decreases, the maximum of the limit-state function also declines gradually, while the
minimum increases gradually. In this way, the difference between the maximum and
minimum of the limit-state function tends to diminish gradually. This also suggests that
engineering designers need to collect information and data about epistemic uncertainties
as much as possible, making it less uncertain and enhancing accuracy of multidisciplinary
reliability analysis of the limit-state function. In addition, adopting the minimum of the
limit-state function as the standard to test its reliability shows that the result of reliability
analysis and design optimization by using MU-DBMRA is safe and reliable design result.
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4.2. Speed Reducer

The speed reducer example is a classic problem of MDO [23], containing two subsys-
tems and seven design variables, as shown in Figure 9. Specifically, design variables x1, x2,
x3 and constraints g1, g2, g3, g4, g5 belong to gear subsystem; design variables x4, x5, x6, x7
and constraints g6, g7, g8, g9, g10, g11 belong to bearing subsystem.
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This design example includes seven design variables: x1 = face width of the gear
teeth, x2 = teeth module, x3 = number of pinion teeth, x4 = shaft-length, x5 = shaft length,
x6 = shaft diameter, x7 = shaft diameter. Moreover, this design example is composed of
11 constraints (g1~g11) which are related to the bending condition, the compressive stress
limitation, the transverse deflection of shafts and the substitute stress conditions. The
optimal objective is to minimize the weight of the speed reducer. The constraints of the
speed reducer are shown in the Table 2.

Table 2. The constraints of the speed reducer.

Constraints Specification Expression

g1 Bending stress constraint of gear (x1x2
2x3)/27.0− 1.0 ≥ 0

g2 Contact stress constraint of gear (x1x2
2x2

3)/397.5− 1.0 ≥ 0
g3 Dimensional constraints 1 x1/(5.0x2)− 1.0 ≥ 0
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Table 2. Cont.

Constraints Specification Expression

g4 Dimensional constraints 2 12.0x2/x1 − 1.0 ≥ 0
g5 Dimensional constraints 3 40.0/(x2x3)− 1.0 ≥ 0
g6 Small shaft lateral displacement constraint (x2x3x4

6)/1.925x3
4 − 1.0 ≥ 0

g7 Large shaft lateral displacement constraint (x2x3x4
7)/1.925x3

5 − 1.0 ≥ 0

g8 Minor shaft stress constraint 110x3
6/

√
( 745x4

x2x3
)

2
+ 1.691× 107 − 1.0 ≥ 0

g9 Major shaft stress constraint 85x3
7/

√
( 745x5

x2x3
)

2
+ 1.575× 108 − 1.0 ≥ 0

g10 Dimensional constraints 4 x4/(1.5x6 + 1.9)− 1.0 ≥ 0
g11 Dimensional constraints 5 x5/(1.1x7 + 1.9)− 1.0 ≥ 0

The functional relationship between two subsystems is shown as below:
Gear subsystem:

x1 = {x1, x2, x3}
y21 = {x4 : x7, g6 : g11}
g1 = {g1 : g5}

(26)

Bearing subsystem:
x2 = {x4, x5, x6, x7}
y12 = {x1, x2, x3, g1 : g5}
g2 = {g6 : g11}

(27)

To verify the effectiveness and calculation efficiency of the proposed method, the set
of design variables in the single-stage speed reducer example divided into the following
two cases:

Test point 1: Set all the design variable x~N(µx, σx), σx = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
and µx = (3.577, 0.700,17.000, 7.300,7.909,3.427,5.363).

Test point 2: Set the design variable x = (x1, x4, x5, x6, x7)~N(µx, σx), σx = (0.1, 0.1,
0.1, 0.1, 0.1) and µx = (3.577, 7.300, 7.909, 3.427, 5.363). Specifically, x2 and x3 are interval
design variables; the vector x = [x2, x3]

T = [0.700, 17.000]T ; the characristic matrix is that
Wx = [4,0, 0,1] with the variation range as x ∈ E =

{
x
∣∣∣(x− x)TW(x− x) ≤ 0.022

}
.

For test point 1, the reliability index of all limit state functions is set as βt = 3.0. The
sequential multidisciplinary reliability analysis method based on MAMV (SMPRA-MAMV)
is used to evaluate the reliability. The values of limit state functions g1 to g5, g7, g9 and
g11 (which only contains aleatory uncertain variables) and the MPPs are shown in Table 3.
It can be seen that the values of g3 and g9 are less than zero, which does not meet the
reliability requirements; the values of g1, g2, g4, g5, g7 and g11 limit state functions are
greater than zero, which meets the reliability requirements.

Table 3. Probabilistic reliability analysis results of limit state function with aleatory uncertainties.

Limit State Function Value
MPP

x1 x2 x3 x5 x7

g1 = 0.4915 2.9916 0.6755 22.9989 7.8000 5.2500

g2 = 0.4414 2.9916 0.6755 22.9978 7.8000 5.2500

g3 = −0.2752 2.9801 0.8223 23.0000 7.8000 5.2500

g4 = 1.6925 3.0164 0.6768 23.0000 7.8000 5.2500

g5 = 1.1079 3.0000 0.8250 23.0027 7.8000 5.2500

g7 = 11.6888 3.0000 0.6854 22.9981 7.8170 5.2160

g9 = −0.0617 3.0000 0.7499 23.0000 7.8000 5.1750

g11 = 0.0017 3.0000 0.7500 23.0000 7.7496 5.3055
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For test point 2, the reliability index of all limit state function is set as βt = 3. Obtained
MPPs, limit-state function values and iteration times of g7 and g8 through respective multi-
disciplinary reliability analysis are shown in Tables 4 and 5. We chose the method proposed
in reference [14] to compare the results for g6. The solver of PMA in the contrasting method
is sequential quadratic programming (SQP).

Table 4. The reliability analysis results of g6.

Test Points Method Value of Functons Iteration Times

1 SMPRA g6(x) = 6.341 124

2

MU-DBMRA
g6(x,v)min = 1.1816 163

g6(x,v)max = 1.3631 163

MCs g6(x) = 0.416 18,000

MDF + SQP g6(x) = 1.622 231

IDF + SQP g6(x) = 1.431 192

Table 5. The reliability analysis results of g8.

Test Points Value of Functions Iteration Times

1 g8(x) = 0.003 154

2
g8(x,v)min = −0.055 188

g8(x,v)max = 0.076 188

From Table 4, it can ve discovered that the values of limit-state function under single
aleatory uncertainties and under aleatory and interval uncertainties are all positive, indi-
cating that the constraint condition g6 satisfies the given reliability requirement. Moreover,
the value of limit state function under single aleatory uncertainties belongs to the value
range of limit state function under random and interval uncertainties, which verifies the
correctness of the proposed MU-DBMRA method. In terms of computational efficiency,
the proposed MU-DBMRA method needs the least number of iterations when considering
the aleatory and interval uncertainties, and its efficiency is 41.7% and 17.8% higher than
MDF + SQP and IDF + SQP, respectively, which verifies the correctness and efficiency of
the proposed method.

From Table 5, the values of limit-state function under single aleatory uncertainty are
positive. In that circumstance, that x = {3.577, 7.300, 7.9000999, 3.427, 5.363} is regarded
as a design point for the constraint condition to satisfy the reliability requirment, while
for the limit-stage function under aleatory uncertainties and interval uncertainties, its
minimum is negative. This is because interval uncertainty changes limit-stage function
from a single value to an interval. Only when the interval minimum is positive can the
reliaility requirement be satisfied. In this circumstance, that x = {3.577, 7.300, 7.9000999,
3.427, 5.363} cannot be viewed as a design point where the constraint condition satisfies the
reliability reqirement. Instead, new design point should be chosen in the proces of RBMDO.

4.3. Discussion

From the above analysis of two examples, the proposd methods need few subsystem
analysis times while maintaining accuracy and has a evidently higher calculation efficiency
than that of other reliability analysis methods. In addition, the MU-DBMRA method
achieves a balance between calculation accuracy and effficiency. In short, the proposed
method can handle multidisciplinary reliaility analysis problems under aleatory uncertainty
and epistemic uncertainty at a high calculation efficiency with accuracy.

In terms of complexity, both traditional MRA and MU-DBMRA include three modules:
probabilistic reliability analysis, convex reliability analysis and multidisciplinary analysis.
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The complexity of the algorithm can be analyzed from two aspects, one is the complexity
of each module, and the other is the time complexity of the whole strategy.

The complexity of each module for MU-DBMRA has been analyzed in Section 3.
For probabilistic reliability analysis, the PMA method is used to simplify the model of
probabilistic reliability analysis; for convex reliability analysis, KKT conditions is used to
replace the expensive extremum analysis. These measures reduce the complexity of the
algorithm to some extent.

The time complexity of the whole strategy can be express by the total function eval-
uation times, which is proportional to the number of iteration steps of the algorithm. As
analyzed above, traditional MRA under multisource uncertainties is a three-layer iterative
cycle. The total iteration times is the number of iterations of the outermost loop that is
MPRA loop. The number of function evaluation is shown in Equation (28).

N f = NMPRA · NMDA · NMCRA (28)

where NMPRA is the iteration time of the MPRA loop, NMDA is the iteration time of the
MDA loop, and NMCRA is the average iteration time of MCRA.

The MU-DBMRA method proposed in this paper turns the traditional three-layer
nested loop into a serialization process, and its function evaluation times can be expressed
by Equation (29).

N f = NIteration · (NMPRA + NMCRA + 2NMDA) (29)

where NIteration represents the iteration time of the overall large loop, NMPRA represents
the average iteration time of MPRA, and NMCRA represents the average iterations time
of MCRA.

Comparing Equations (28) and (29), we can see that function evaluation times of
MU-DBMRA is a quadratic polynomial, while the function evaluation times of traditional
MRA is a cubic polynomial. It can be seen from the analysis of the above two cases that
the iteration time of the outermost cycles of different methods belongs to the same order
of magnitude except Monte Carlo. For the problems with a large number of nonlinear
reliability constraints, the complexity of MU-DBMRA is lower than that of traditional MRA.

5. Conclusions

Aiming at the problem of low computational efficiency caused by the three-layer
nesting of the MRA, a decoupling strategy for reliability analysis of multidisciplinary
system with aleatory and epistemic uncertainties is proposed. This paper integrates the
multisource uncertainty quantification based on probability theory and convex set theory.
Based on the decoupling principle of multidisciplinary reliability analysis and the idea
of serialization, this paper proposes a serialization method of multidisciplinary reliability
analysis under aleatory uncertainty and epistemic uncertainty. The three-layer nested loop
process is decoupled, and a single loop recursive analysis process is composed of multi-
disciplinary probabilistic reliability analysis, nonprobabilistic reliability analysis based on
convex model and multidisciplinary analysis. In the nonprobabilistic reliability analysis
based on convex model, the global sensitivity analysis and KKT condition replacement in
the CSSO strategy are integrated to ensure the computation efficiency of the method. The
example shows that the method is effective in dealing with the multidisciplinary reliability
analysis under aleatory uncertainty and epistemic uncertainty, and has good computational
efficiency and accuracy. This method can provide multidisciplinary reliability analysis for
RBMDO under aleatory and interval uncertainty, and expand and perfect the RBMDO
theoretical system. It is worth noting that the method proposed in this paper also needs
to be combined with specific multidisciplinary optimization framework, such as SORA
framework, in order to play its specific role, which is our next research focus.

The capability of dealing with uncertainties and the computational efficiency have
become the main problems of MRA to be resolved since the current MDO engineering
systems are becoming more and more complicated. Therefore, more efforts for future
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research will focus on: (1) the investigation of probability theory with other mathematical
theories (evidence theory, possibility theory, etc.) in quantifying both random and epistemic
uncertainties simultaneously, (2) the considerations of correlation of different convex
models, and (3) the development of more efficient multidisciplinary reliability analysis
methods such as saddlepoint approximation.
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