
applied
sciences

Review

SDN-OpenFlow Topology Discovery: An Overview of
Performance Issues

Raniyah Wazirali 1 , Rami Ahmad 2,* and Suheib Alhiyari 3

����������
�������

Citation: Wazirali, R.; Ahmad, R.;

Alhiyari, S. SDN-OpenFlow Topology

Discovery: An Overview of

Performance Issues. Appl. Sci. 2021,

11, 6999. https://doi.org/10.3390/

app11156999

Academic Editor: Pedro Amaral

Received: 22 June 2021

Accepted: 27 July 2021

Published: 29 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia;
r.wazirali@seu.edu.sa

2 The School of Information Technology, Sebha University, Sebha 71, Libya
3 Department of Computer System and Technology, University of Malaya, Kuala Lumpur 50603, Malaysia;

suhyeb1985@gmail.com
* Correspondence: r_a_sh2001@yahoo.com

Abstract: Software-defined networking (SDN) is an innovative architecture that separates the control
plane from the data plane to simplify and speed up the management of large networks. This
means the control logic has been moved from the network hardware level to the centralized control
management level. Therefore, the use of the OpenFlow Discovery Protocol (OFDP) is one of the most
common protocols used to discover the network topology in a data plane and then transmit it to the
control plane for management. However, OFDP has various shortcomings in its performance such
as exchanging too many messages between both levels (control and data), which in turn increases
the load on the SDN-Controller. Additionally, since the application layer depends entirely on the
network topologies plotted in the control plane, it is very important to obtain accurate network
topology information from data plane. Therefore, after providing background on topology discovery
protocols to the reader, we will concentrate on performance issues. The present study identifies and
discuss the primary concerns involved in the complex query process, infrastructure, influencing
factors, and challenges for the topology discovery process. Furthermore, this paper will present
several recent studies that have overcome and enhanced these issues. In addition, open discussion
and future work concerning these issues are also discussed.

Keywords: SDN; OpenFlow; OFDP; topology discovery; flow tables; control channel

1. Introduction

Software-defined networking (SDN) architecture is a promising solution to overcomes
the limitations of traditional network architecture in terms of control, scalability, and
management [1,2]. The basic idea of SDN is to separate the control plane from the data
plane [3], where the control logic is extracted from network hardware and is centralized
into an independent control plane. However, the process of separating the control plane
from the data plane is not new, but it has limited to some applications such as NETCONF,
SANE, and Ethane [4,5]. However, recently, this method of managing networks of various
kinds has been introduced. The control plane can physically include a stand-alone SDN-
Controller or multiple SDN-Controllers that collaborate among themselves and then act as
a central SDN-Controller [6]. However, the standard process for separating SDN levels is
illustrated in Figure 1.

Based on the open networking foundation (ONF) reference model for SDN architec-
ture [7], the SDN infrastructure layer (data plane) includes the forwarding devices that
forward packets based on a set of streaming rules configured by the control layer (SDN-
Controller) [8]. The SDN-Controller also acts as a proxy between the infrastructure layer
and the application layer. It translates high-level instructions at the application layer into
low-level rules and then forwards them to the SDN-Switches at the infrastructure layer [9].
In the application layer, the network applications used such as adaptive routing, network

Appl. Sci. 2021, 11, 6999. https://doi.org/10.3390/app11156999 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3609-9351
https://orcid.org/0000-0003-3913-6397
https://doi.org/10.3390/app11156999
https://doi.org/10.3390/app11156999
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11156999
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11156999?type=check_update&version=1

Appl. Sci. 2021, 11, 6999 2 of 30

management, traffic monitoring [10,11], intrusion detection system, and intrusion preven-
tion system [12]. Moreover, the same figure shows that these SDN layers communicate
among themselves using two interfaces; southbound interface (SI) and northbound inter-
face (NI). NI is needed to support and optimize a variety of networking applications, and
it is used at the application layer to query the state of the infrastructure layer through the
control layer. Examples such as the network topology, flow statistics, link bandwidth, and
other information about the state of the network are queried. Furthermore, the application
layer also uses it to control the infrastructure layer to implement high-level policies such as
new configurations, respond to topology changes, or traffic requirements [13–18]. SDN-
Controllers such as OpenDaylight [19], Floodlight [20], NOX [21], Ryu [22], Onix [23], and
Beacon [24] are defined by their specific northbound application programming interfaces
(APIs).

Figure 1. Standard SDN architecture [7].

On the other hand, SI acts as a link between the SDN-Controller and SDN infrastruc-
ture layer to establish settings and manage the SDN-Switches. Also, there is no standard
southbound interface and there are different protocols that are used for this proposal such
as ForCES [25], POF [26], OpFlex, OpenState, and OpenFlow [27]. However, OpenFlow
is the most widely used protocol [28,29]. OpenFlow [28] defines a physical channel as a
dedicated TCP link between SDN-Controllers (control layer) and SDN-Switches that serves
as an interface for exchanging control messages using the OpenFlow protocol and also us-
ing an optional encryption mechanism called Transport Layer Security (TLS) [17,18,30,31].
Additionally, the most important role of the SDN-Controller is to maintain a consistent
network topology for the infrastructure layer. The network topology maintained by the
SDN-Controllers are entirely dependent on OpenFlow Discovery Protocol (OFDP) [32].
Therefore, any falsification or expiration in the data of network topology inside the SDN-
Controller will directly affect the SDN-dependent services and applications [33–35]. As a
result, the topology discovery service in the SDN-Controller is one of the most important.

Breitbart et al., in [36], define the network topology as a description of the physical
communication relationships between network devices in networks (how SDN-Switches
communicate with each other) and how the hosts communicate with them. Therefore,
the topology discovery protocol consists of three main processes: SDN-Switch discovery,
link discovery (between SDN-Switches), and host discovery [34]. The SDN-Controller
uses link discovery to discover links between forwarding devices in the infrastructure
layer. Therefore, the OFDP will be the mediator between SDN-Controller and network
devices in the infrastructure layer to discover these links. OFDP uses the Link Layer

Appl. Sci. 2021, 11, 6999 3 of 30

Discovery Protocol (LLDP) message format for that purpose and the SDN-Controller sends
a large number of LLDP advertisements at relatively large, fixed intervals to each active
SDN-Switch port in the network to discover links between SDN-Switches. The SDN-
Controller uses Packet_Out OpenFlow message to send the LLDP advertisement to each
active SDN-Switch port, and the SDN-Switch on the other side (data layer) will send the
link information by encapsulating the LLDP packet in a Packet_In OpenFlow message.
This process is cyclic every 10 s, which means that every 10 s the SDN-Controller will send
several Packet_Out messages equal to the number of active SDN-Switch ports [34,35,37–39].
The results of the previous processes are a burden on the resources of the SDN-Controller
and are inefficient in detecting network topology changes in a timely manner. This leads to
many studies in the literature that OFDP has critical limitations in terms of performance
which makes it inefficient especially for large SDN networks. Another issue related to
topology discovery between SDN and non-SDN networks [40,41]. Therefore, attention
to improving the performance of ODFP is an important priority that must be discussed
to improve the performance of SDN technology. Different studies have been working
to improve OFDP protocol in [38,42–46], but still, this domain needs more attention and
research.

Moreover, in the literature, many surveys discuss SDN in general [13,47,48], and others
focus on the features that have been added to SDN [49,50]. Another group discussed the
adoption of SDN architecture [51–53]. Furthermore, most of the SDN OpenFlow surveys
have discussed the security and scalability [3,15,29,31,51,54,55], and the authors in [56] had
worked on the OpenFlow in term of performance but did not discuss the details of the
topology discovery process in the SDN. Therefore, this survey focuses on the performance
issues in SDN-OFDP networks. The main contributions of this paper can be summarized
as follows:

• Explain in-depth how OFDP works, the factors that affect its performance, and OFDP
limitations.

• A survey of the recent existing techniques found in the literature in response to
enhance the performance of OFDP. The pros and cons of each technique also are
highlighted.

• OFDP’s open challenges and future research solutions.

The rest of the paper is organized as follows. Section 2 introduces a brief background
about SDN architecture and OpenFlow southbound interface. Section 3 presents the
topology discovery in SDN networks and its de facto OFDP, performance issues in OFDP,
and the current proposals to enhance the performance of OFDP. Section 4 discusses the
pros and cons of the proposals for OFDP and Section 5 concludes the paper.

2. Topology Discovery in SDN Networks

As we discussed in the introduction, the SDN technology is based on separating
the control layer from the data layer (forwarding devices) to facilitate network scalability
and management operations. However, the process of discovering the network topology
relies on cooperation between the SDN-Controller and forwarding devices layers, and the
responsibility lies primarily with the control layer. The control layer topology discovery
task mainly consists of three main operations: SDN-Switch discovery, link discovery (i.e.,
links between SDN-Switches), and host discovery [33,34] as illustrated in Figure 2.

Since we need OpenFlow to act as a data pipeline between the control layer and the
data layer, the loading of the topology discovery process is entirely on the controller layer.
Therefore, the OpenState protocol has been proposed as a modification of OpenFlow that
attempts to divide the load of the topology discovery process between SDN-Controller and
SDN-Switches. As a result, OpenFlow SDN-Switches can be directly programmed, allowing
them to implement redirection rules without relying solely on the remote controller. As a
future improved release of OpenFlow, OpenState has not yet been deployed [57].

Appl. Sci. 2021, 11, 6999 4 of 30

Figure 2. Topology discovery processes [29].

The OpenFlow architecture combines two layers through the use of flow tables in the
forwarding devices layer. Moreover, each flow table entry contains three features (rule,
action, and statistics) [15] and each flow table contains action fields that are linked with
each flow entry. These flow tables data and commands are transmitted between two layers
by using a control channel. In detail, the use of flow table and control channel techniques
will be discussed in Sections 2.3 and 2.4.

However, the topology discovery services are discussed in detail as the follows.

2.1. SDN-Switch Discovery

According to [58] version 1.5.1, each SDN-Switch must consist of a set of tables,
namely, a flow table, a matching table, and a missing table, as well as a control channel to
monitor the changing flow in the different SDN-Switches via SDN-Controller. Therefore,
in the SDN-OpenFlow, routing processes are based on standard flow tables rather than
destination (i.e., IPs or MAC) as in the traditional networks. The flow table is used in
conjunction with the logical data structure where packets are processed based on the list of
priority entries in these flow tables. In each flow entries for up to 15 fields can be stored
in OpenFlow version 1.10 [57], 5 of which are mandatory and the rest are optional. The
matching, action, priority, timeout, and counter are the most common fields. Moreover,
the SDN-Controller pins these flow entries to the flow table in two approaches: reactive
and proactive, and the SDN-Controller determines which one is based on the occurrence
of some events. When network activity starts, the SDN-Controller in a reactive approach
does not initialize the flow table with any rules. The SDN-Controller will insert rules
into the flow table whenever data arrives at switches while the network is running. For
the proactive approach, the SDN-Controller will pin the flow entries into the flow table
beforehand, when the network is started. The choice of rules is essential in optimizing
network performance, particularly in large-scale networks. When packets reach at a switch
while the network is running, the incoming packet flow matches the flow entries in the
flow table. If no match is found, the SDN-Switch will call the SDN-Controller to request
that entries to permit the packet to reach its destination. This includes frequent connections
between the SDN-Controller and the SDN-Switch as well as delays before the packet can
be transmitted to the next hop. The proactive technique was implemented to reduce the
amount of time SDN-Switches and SDN-Controllers had to communicate.

Appl. Sci. 2021, 11, 6999 5 of 30

In addition, each OpenFlow SDN-Switch is configured with the IP address and the
TCP port number of the SDN-Controller. Thus, to join the network, the OpenFlow SDN-
Switch creates a TCP session using a three-way handshake (SYN, SYN/ACK, ACK) to
initiate the communication with the SDN-Controller. Next, the SDN-Controller sends an
OFPT_Features_Request message to the SDN-Switch requesting its current configuration
as Media Access Control address (MAC address) and network interfaces. Then, the SDN-
Switch will reply with an OFPT_Features_Reply message which contains the requested
information. The SDN-Controller stores and uses such information for future network
management tasks including re-processing of topology discovery [39]. Figure 3 presents
the process of establishing SDN-Switch discovery in SDN networks.

Figure 3. Creating the SDN-Switch discovery process.

After the process of establishing OpenFlow SDN-Switch connection, flow tables will
contain the SDN-Switch header information and actions (responsible for giving commands).
As illustrated in Figure 2, when the packets are streamed from the data plane to the SDN-
Switch, each incoming packet will be checked against the flow tables, when the packet’s
matching header meets one in the pipeline flow tables, the rules related with the flow
entry will be triggered. For each successful match between incoming packet and flow table
entries, the counter field will be increased. When the packet flow reaches the input flow
table (ingress) and a match is made against flow entries, if no match occurs, it moves to the
next flow table using GoTo-Table instruction and then again performs a match with flow
entries. This process continues seamlessly until all flow tables are finished, and therefore,
the packet will be treated as miss_flow if it does not get a match in one of the flow tables.
According to the instructions in the miss_flow entry, it either drops the packet or resends
it to the other flow table [56]. The packet flows via an OpenFlow SDN-Switch in both
directions (ingress and egress) are illustrated in Figure 4.

In the case of the network traffic being huge and complex, many unknown stream
packets will arrive at the forwarding node, thus, it will produce a large number of Packet-In
messages. On the other hand, sending a flow request (Packet-In message) to the SDN-
Controller for each unknown packet will confuse the SDN-Controller because the SDN-
Controller has to compute the forwarding rules for each new packet and then install it
to the flow tables in all the data forwarding nodes (SDN-Switches). This high volume of
traffic and computational overhead will cause SDN-Controller overhead and increase the
time it takes for flow rules to be placed, affecting network efficiency and scalability [1,2].

Moreover, [59] claimed that the data center with a 4 K server can handle up to
200,000 flows per second. Another study found that the average flow width was roughly
20 packets per flow, with latency between flows less than 30 milliseconds [60]. These
costs are very high, but the memory available to hold sending entries is limited. However,
the entries for typical OpenFlow SDN-Switch flow tables were stored in Ternary Content
Addressable Memory (TCAM), a type of high-speed memory that allows looking up a

Appl. Sci. 2021, 11, 6999 6 of 30

continuous flow entry in a clock cycle (1). Although the TCAM search is fast, its capacity
is limited to a few thousands of entries [61]. On another hand, Increasing the TCAM size
raises additional issues such as cost, and will require high power consumption. Therefore,
the researchers tried to optimize the flow schedule to take full advantage of it.

Figure 4. Flowchart showing details of packet flow via OpenFlow SDN-Switch [58].

2.2. Host Discovery

In the process of communicating and exchanging packets (in and out) in OpenFlow
protocol, and when an OpenFlow SDN-Switch receives a packet that does not match any
flow rule in its flow table. In this case, one possibility is that a new host is connecting to
the network. The new host starts sending the packets to SDN-Switch, then the OpenFlow
SDN-Switch will encapsulate that package with a Packet_In message and send it to the
SDN-Controller. The SDN-Controller will in turn use this Packet-In message to discover
the hosts on the network, then the SDN-Controller will extract the host’s location (i.e., to
which SDN-Switch port it is connected to), host’s IP address, and its MAC address from
Packet_In messages [32].

Appl. Sci. 2021, 11, 6999 7 of 30

2.3. Link Discovery

The goal of the link discovery process is to discover the existing links between con-
nected OpenFlow SDN-Switches and also to efficiently detect changes to the network
topology. Additions and deletions are among the most common examples of network
topology changes. Link deletion occurs when an existing link is removed (physically) or ac-
cess fails due to other reasons. The link deletion also occurs when an existing SDN-Switch
is removed or failed to access for various other reasons as well. Moreover, the processes of
link additions will be similar to the processes of deletions [38]. In all of these processes, the
occurrence of link changes is directly related to the SDN-Controller. Therefore, given the
importance of this part in our topic, further discussion will be given in Section 2.2.

2.4. Link Discovery Protocol

As we noted in the introduction that there is no standard protocol in SDN networks to
discover the links between SDN-Switches, and most of the existing SDN-Controllers use
Link Layer Discovery Protocol (LLDP) [33,38,39] such as OpenDaylight [19], Floodlight [20],
POX [62], Ryu [22], Beacon [24], Cisco Open SDN-Controller [63], and Open Network
Operating System (ONOS) [34,38,43] to discover these links. LLDP is considered a layer-
2 (Data link) protocol that is used by network devices to their identity, capacities, and
neighbors’ devices on a Local Area Network (LAN) based on IEEE-802. Moreover, each
LLDP discovery message is embedded in a layer-2 frame, which is a type of Ethernet
and the Data Unit called (LLDPUD) [56]. The data obtained by LLDP is placed into
the management information database of the SDN-Switches, which can then be queried
while crawling the network’s nodes to retrieve the network topology using a network
management protocol.

At a later stage, the NOX SDN-Controller [21] implemented the LLDP development
process to improve the discovery of the link between SDN-Switches and created the first
version of the OFPD protocol [64]. OFDP does not depend on a centralized control such as
LLDP (i.e., switches send and receive LLDP advertisements autonomously). It is a request-
response discovery protocol that can send a Packet-In message to the SDN-Controller to
receive the discovery information collected. Nevertheless, OFDP uses the LLDP packet
format with few modifications and operates in a slightly different way than LLDP protocol
for compatibility with the SDN architecture, where the control logic is central to the SDN-
Controller. Therefore, OFDP SDN-Switches do not initiate LLDP advertisements but the
SDN-Controller has full control over the link discovery process. Table 1 presents the main
differences between LLDP and OFDP protocols.

Table 1. Similarities and differences between LLDP and OFDP protocols [64].

Features LLDP OFDP

Type of Ethernet frame LLDP’s EtherType = 0 × 88cc OFDP’s EtherType = 0 × 88cc

Destination address of the frame bridge-filtered multicast MAC
(01:80:C2:00:00:0E)

normal multicast MAC (01:23:00:
00:00:01)

Mode of operation Advertisement only Advertisement only
What will the SDN-Switches do with

advertisements?
SDN-Switches will not forward LLDP

advertisements
SDN-Switches will forward OFDP

advertisements

SDN-Switches’ neighbor table SDN-Switches that support LLDP build a
table for directly connected neighbors

OpenFlow SDN-Switch does not keep
any information about its directly

connected neighbors

How is the topology obtained? By crawling the neighborhood tables of
SDN-Switches

By inferring the information from LLDP
Packet-In messages

The SDN-Controller initiates the discovery process in OFDP by sending an LLDP
discovery announcement encapsulated in a Packet_Out message to the forwarders (parent
SDN-Switches) that are directly associated with OpenFlow using a multicast address. When
the forwarder device receives the announcement message, it floods all of its ports with

Appl. Sci. 2021, 11, 6999 8 of 30

an LLDP discovery announcement, and the only SDN-Switch that supports OpenFlow
updates its OFDP table.

To illustrate how OFDP uses LLDP advertisement messages, the LLDP considers a
layer 2 frame that consists of a header and a payload [39] as shown in Figure 5. In the
header portion of the frame, the Ethertype field is set to 0x88cc, and the destination MAC
address field is set to a multicast address as we discussed in Table 1. The Ethertype field is
used by OpenFlow SDN-Switches to distinguish LLDP frames from others. The payload
portion is called LLDPDU which is shaded grey. The payload consists of a number of fields
with a Type-Length-Value (TLV) structure and ends with the “End of LLDPDU TLV” field.
Some TLV fields in LLDPDU are mandatory while the others are optional. The mandatory
fields contain the information that the SDN-Switch wants to advertise to its neighbor which
is: Chassis-ID (which is a unique switch identifier), Port ID (which is its egress port), and
time to live.

Figure 5. LLDP frame format used in OFDP [39].

Therefore, to illustrate the OFDP function, we explain the cooperation between the
ODFP sections based on each other, as illustrated in Figure 6. The SDN-Controller sends
every specified period (i.e., 10 s) an LLDP packet encapsulated with a Packet-Out message
to each active port in each SDN-Switch [38]. From Figure 6, the SDN-Switch (s1) has three
active ports, which means three LLDP packets and each of these packets has Port-ID TLVs
and a Chassis-ID configured accordingly. In OpenFlow protocol, if the SDN-Controller
wants to send a packet to the OpenFlow SDN-Switch it will encapsulate it in a Packet-
Out message. The Packet_Out message structure contains a field called the instruction
field. This field is responsible for deciding what the SDN-Switch should do in that packet.
Therefore, the LLDP packet is obtained from all ports in SDN-Switch except for the one
connected to the SDN-Controller. This port communicates with SDN-Controller via an
OpenFlow Packet-In message. Moreover, it is used to collect and aggregate all the port
information in each SDN-Switch into a single “Packet-In” message and sends it to the SDN-
Controller according to a proactive rule installed in the flow tables of all SDN-Switches.
In the Figure 6 scenario, the LLDP packet on port-ID 1 is sent from SDN-Switch (s1) and
received by SDN-Switch (s2) through port 1 as well.

Moreover, the Packet_Out message has a field called instruction which is configured to
forward the encapsulated LLDP out of the corresponding port on the SDN-Switch [39,42].
Next, the SDN-Switch (s1) will, in turn, receive Packet-Out messages, de-decompile the
LLDP packet from the Packet-Out message, and forward only the LLDP packet that has
exited from each matching port (based on the port’s MAC address in LLDPDU). When
SDN-Switch (s2) receives an LLDP packet, it will parse the LLDP packet, write its SDN-
Switch Chassis-ID, and add Port-ID (i.e., the port through which the SDN-Switch received
the LLDP packet). Then, SDN-Switch (s2) will encapsulate the LLDP packet in a Packet_In
message and send it to the SDN-Controller. The SDN-Controller will in turn parse the
Packet_In message and discover the new links represented by the mapping between s1
and s2 [65]. However, the same method is repeated to discover the remaining links in the
network [39].

Appl. Sci. 2021, 11, 6999 9 of 30

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 31

This field is responsible for deciding what the SDN-Switch should do in that packet.

Therefore, the LLDP packet is obtained from all ports in SDN-Switch except for the one

connected to the SDN-Controller. This port communicates with SDN-Controller via an

OpenFlow Packet-In message. Moreover, it is used to collect and aggregate all the port

information in each SDN-Switch into a single “Packet-In” message and sends it to the

SDN-Controller according to a proactive rule installed in the flow tables of all SDN-

Switches. In the Figure 6 scenario, the LLDP packet on port-ID 1 is sent from SDN-Switch

(s1) and received by SDN-Switch (s2) through port 1 as well.

Figure 6. OFDP protocol methodology [39].

Moreover, the Packet_Out message has a field called instruction which is configured

to forward the encapsulated LLDP out of the corresponding port on the SDN-Switch

[39,42]. Next, the SDN-Switch (s1) will, in turn, receive Packet-Out messages, de-decom-

pile the LLDP packet from the Packet-Out message, and forward only the LLDP packet

that has exited from each matching port (based on the port’s MAC address in LLDPDU).

When SDN-Switch (s2) receives an LLDP packet, it will parse the LLDP packet, write its

SDN-Switch Chassis-ID, and add Port-ID (i.e., the port through which the SDN-Switch

received the LLDP packet). Then, SDN-Switch (s2) will encapsulate the LLDP packet in a

Packet_In message and send it to the SDN-Controller. The SDN-Controller will in turn

parse the Packet_In message and discover the new links represented by the mapping be-

tween s1 and s2 [66]. However, the same method is repeated to discover the remaining

links in the network [39].

2.5. Control Channel

Each OpenFlow Logical SDN-Switch is connected to an OpenFlow SDN-Controller

through the OpenFlow channel. The SDN-Controller installs and maintains the SDN-

Switch using this link, collects events from the SDN-Switch, and transmits data from the

SDN-Switch to the SDN-Controller. The SDN-Switch’s control channel can handle a single

OpenFlow channel with a single SDN-Controller or several OpenFlow channels with mul-

tiple SDN-Controllers that share SDN-Switch management. In addition, the communica-

tion connection between both the data stream and the OpenFlow channel is managed in-

dependently, but it must be liable to the OpenFlow SDN-Switching protocol rule. Moreo-

ver, the OpenFlow channel is normally performing over TCP and is secured using TLS,

[59].

Furthermore, if an SDN-Switch becomes connected to a group of SDN-Controllers,

the SDN-Controllers status update should be sent to the SDN-Switch with only one SDN-

Figure 6. OFDP protocol methodology [39].

2.5. Control Channel

Each OpenFlow Logical SDN-Switch is connected to an OpenFlow SDN-Controller
through the OpenFlow channel. The SDN-Controller installs and maintains the SDN-
Switch using this link, collects events from the SDN-Switch, and transmits data from
the SDN-Switch to the SDN-Controller. The SDN-Switch’s control channel can handle a
single OpenFlow channel with a single SDN-Controller or several OpenFlow channels
with multiple SDN-Controllers that share SDN-Switch management. In addition, the
communication connection between both the data stream and the OpenFlow channel is
managed independently, but it must be liable to the OpenFlow SDN-Switching protocol
rule. Moreover, the OpenFlow channel is normally performing over TCP and is secured
using TLS, [58].

Furthermore, if an SDN-Switch becomes connected to a group of SDN-Controllers,
the SDN-Controllers status update should be sent to the SDN-Switch with only one SDN-
Controller and the other SDN-Controllers in ‘standby’ mode if the first controller stops.
Additionally, the SDN-Switch should provide an improved Controller-Status indication for
all SDN-Controllers when the OpenFlow channel is reconnected. Moreover, If the SDN-
Switch loses connectivity to all SDN-Controllers for various reasons, including echo request
timeouts, TLS session timeouts, or other disconnects, it should switch to “Fail-Safe Mode”
or “Fail-Standalone Mode”, depending on the SDN-Switch design and configuration.
The only difference in the SDN-Switch’s behavior in Fail-Safe Mode is that packets and
messages addressed to the SDN-Controllers are dropped. In Fail-Safe Mode, flow entries
should terminate according to their timeouts, while in “Failure-Standalone”, the SDN-
Switch uses the OFPP_NORMAL reserved port to process all packets. In other words, the
SDN-Switch acts like an old Ethernet SDN-Switch or router. Additionally, the SDN-Switch
can use flow tables in any way it wants when in “Fail-Standalone” and can delete, add, or
edit any flow entry. By the way, only Hybrid SDN-Switches usually have a Fail-Standalone
mode [58].

Moreover, according to [66,67], a slow control channel significantly reduces data layer
throughput and response time in addition that it will threaten network availability. There-
fore, several recent works have been proposed to help maintain OpenFlow availability.

2.6. Performance of the Link Discovery (OFDP)

One of the most important services of the SDN-Controller is to provide an updated
and comprehensive network topology under its control. All network applications depend
entirely on the network topology received from the SDN-Controller. Thus, any issues with

Appl. Sci. 2021, 11, 6999 10 of 30

the performance of this service in the SDN-Controller will negatively affect the performance
of the entire SDN [6,46,68,69]. These performance issues are more noticeable in the case of
dynamic and large networks.

Regarding the topology discovery service, several experiments were performed on
different SDN-Controllers with only one discovery unit running. The results showed that
when the number of SDN-Switches (i.e., network size) reaches a certain limit, there is a
significant increase in the CPU usage of the SDN-Controller and a significant decrease
in the network performance [39,69,70]. In [71], the authors empirically evaluated the
performance of the OpenDaylight and the ONOS SDN-Controllers in terms of updating the
topology discovery process. The authors used the topology discovery time and throughput
as performance metrics, and their results showed that the ONOS performed better in
terms of network throughput in the event of topology changes while the OpenDaylight
outperformed ONOS in topology discovery time. Therefore, in this subsection, we will
analyze how the network size affects the SDN-Controller performance during the network
topology discovery process.

2.6.1. OFDP in Huge and Dynamic Environments

However, there is not much research analyzing the OFDP performance on the SDN
networks and most of the researchers in OpenFlow performance analysis have concentrated
on SDN-Controller types such in [55,72–74]. Therefore, ODFP performance analysis would
be appropriate to open up this issue to the researchers to search in these domains.

In this work, we will discuss the performance issues of topology discovery in the
OpenFlow protocol and its impact on the SDN-Controller, where OFDP will have a major
role.

In [69], the authors investigated the OFDP performance for transport networks (i.e.,
backbone service provider networks) and found that when carrier rank requirements are
met, the transport networks should recover from link failure within a maximum of 50 ms.
Thus, to achieve a 50 ms recovery time for OpenFlow-based carriers, the topology discovery
service at the SDN-Controller should run approximately every 10 ms. Therefore, the SDN-
Controller must check hundreds of LLDP Packet_Out messages per active SDN-Switch
port every second to detect one direction per link. Moreover, it also must receive and
process two hundred LLDP Packet_In messages every second for each link and end-to-end
tunnel. In addition, transport networks have hundreds of links and thousands of tunnels.
This means that the SDN-Controller has to handle millions of messages per second just
to monitor the health of the network. This undoubtedly imposes a large load on the
SDN-Controller and also a large overhead on the control network, especially for in-band
control channels. In addition, another type of network environment where OFDP shows
performance issues is multi-tenant cloud data centers. In such environments, the network
topology is dynamic, because the tenant can build and modify their network; They can
add and remove SDN-Switches or links at any time. This means that the topology can
dynamically and continuously change [38]. Hence, the SDN-Controller must be efficient
enough to maintain an updated network topology. However, for OpenFlow networks
where OFDP is the link discovery protocol, the SDN-Controller only discovers the topology
at periodic, constant, and relatively long intervals (floodlight controller for example every
15 s). Therefore, the SDN-Controller only realizes the new topology changes in each
discovery round, and if an error occurs, the error correction needs to wait for the next
topology discovery round which is too long [75]. As a result, application-level network
applications such as routing will use the wrong network configuration until at least the
next topology round.

2.6.2. OFDP Performance Metrics

As we discussed earlier, three main entities participate with each other in the OFPD
protocol to get work done: the SDN-Controller, SDN-Switches, and control channels
between the SDN-Controller and SDN-Switches. The SDN-Controller will send, receive,

Appl. Sci. 2021, 11, 6999 11 of 30

and process messages related to the discovery process. Likewise, SDN-Switches will
receive, send, process messages, and all of these messages will use the control channel as
arguments. Ultimately, these processes are an overhead on all participating entities. The
overhead incurred by OFDP consists of the OFDP-connection to the connector (control
channel) from one side and processing overheads on the SDN-Controller and SDN-Switches
on the other side. Until this moment, there are no performance metrics that are adopted by
any of the standard organizations to measure the performance of the topology discovery
service in SDN, but there is some research suggesting and using some of the commonly
recognized performance metrics. Therefore, we will discuss the performance metrics used
in these studies and suggest some others for their importance as follows:

1. The number of packets sent and received by the SDN-Controller

The authors in [39,42,45,76] used the number of packets sent and received by the
SDN-Controller as a performance metric. To discover the links between SDN-Switches, in
each discovery round the SDN-Controller sends several LLDP Packet_Out (POUT) messages
equals to the number of active SDN-Switch ports in the network and will receive a number
of Packet_In (PIN) messages equals to twice of the number of links as shown in Equations (1)
and (2).

POUT =
N

∑
i=1

Pi (1)

PIN = 2L (2)

where N is the number of SDN-Switches and Pi is the number of ports of DS-Switch i, L is
the number of links between the SDN-Switches in the network.

As illustrated from Figure 6, the SDN-Controller will send three LLDP Packet_Out
messages equal to the number of active ports on SDN-Switch (s1) and it will receive one
LLDP Packet_In message to discover the one-way link from s1 and s2. The SDN-Controller
also needs to send another three LLDP Packet_Out messages to s2 to discover the one-way
link from s2 to s1 and it also needs to receive an LLDP Packet_In message. In total, the
SDN-Controller will send six LLDP Packet_Out messages (i.e., number of active ports on s1
and s2) and two LLDP Packet_In (i.e., double of the number of links) messages to discover
the link between s1 and s2.

Moreover, the authors in [39] performed three experiments with different topologies
as shown in Table 2. The letters ‘d’ and ‘f’ donate the depth and fan-out parameters in tree
topologies as well as the letter ‘m’ refers to the number of SDN-Switches in linear topologies.
The experimental results reveal that the number of LLDP Packet_Out messages is equal
to the number of active ports regardless of the topology type as previously mentioned in
Equation (1).

Table 2. Number of Packet_Out messages in different topologies [39].

Topology Number Topology Type Topology
Parameters

Number of
SDN-Switches

Number of
SDN-Switches

Number of
Packet_Out

Topology 1 Tree d = 4, f = 4 85 424 424
Topology 2 Tree d = 7, f = 2 127 380 380
Topology 3 Linear m = 100 100 298 298

There are two types of SDN network topologies; Linear and tree [77]. In a linear
structure, each SDN-Switch is associated with a single host, and in a tree, the SDN-Switches
are arranged like tree branches as well as terminal branches associated with hosts. It
is the only structure without loops, and the tree topology has the highest throughput
with OpenDaylight, which is approximately 13 gigabits per second (Gbps) [77]. However,
the drawbacks of the linear structure are the occurrence of disturbances in the network
if the network element fails or smashes, and the troubleshooting difficulty is high and
time-consuming.

Appl. Sci. 2021, 11, 6999 12 of 30

2. Average CPU Utilization of SDN-Controller

In [38,39,75], the authors use this metric to measure the extent to which OFDP is using
the SDN-Controller to obtain the topology. The SDN-Controller uses its CPU to create, send
LLDP Packet_Out messages, and process LLDP Packet_In messages. The average CPU
utilization increases when the number of packets sent and received by the SDN-Controller
increases.

3. Accumulative CPU Utilization of SDN-Switches

The authors in [42] used this metric to measure the extent to which OFDP is using the
CPU for SDN-Switches. SDN-Switch is an essential part of discovering the topology. The
SDN-Switch receives LLDP Packet_Out messages from the SDN-Controller and sends them
to its active ports. As a result, the number of packets sent or received by the SDN-Switches
will also increase the CPU utilization ratio.

4. Bandwidth Consumed by OFDP

As described in the OFDP methodology, there are two types of connections: between
the SDN-Switches themselves and between SDN-Switches and the SDN-Controller. This
metric is determined by the size of the exchanged OFDP packet to maintain the topology.
In [39,42], the authors used this metric to evaluate OFDP. Thus, this bandwidth can be
especially important for measuring the performance of large networks and in-band control
channels.

5. Learning Time

Some researchers [38,42,76] have used this metric to evaluate OFDP and the perfor-
mance of their topology discovery. Learning time is the time the SDN-Controller needs
to learn about topology changes. The discovery process will be repeated every discovery
interval. The discovery interval is the time interval between two discovery rounds. The
problem is that when a topology change occurs, the SDN-Controller will wait for the next
discovery round to learn about new topology changes. This means that learning time is at
least equal to the discovery interval.

2.7. Challenges of the Link Discovery

As we discussed in Section 2.4, on each fixed time interval (10 s) the SDN-Controller
sends an LLDP packet encapsulated with a Packet-Out message to each active SDN-Switch
port in the network. This discovery mechanism could present serious performance issues
to SDN networks, especially of large networks. Therefore, we will summarize the OFDP
link discovery challenges as follows:

1. Overhead to SDN-Controller and Control Channel

This point of the challenge has been clarified in details in the OFDP performance
subsection, and therefore we will avoid re-explaining it

2. Inefficient Link Failure Detection

In most SDN-Controllers, each round of detections is performed approximately every
10 s and the SDN-Controller will become aware of new topology changes [44]. This is a
very long process for dynamic network environments where the changes to the topology
occur frequently over a short period [38]. This greatly affects the operation of network
applications that depend entirely on the SDN-Controller’s network topology [78]. For
example, if the learning time is long and there is a link failure on router links, the routing
application will still redirect traffic on that path based on a legacy network topology,
which means this will cause many packets to be dropped. Figure 7 shows the relationship
between learning time and topology changes. When a topology change occurs after
the first discovery round, the SDN-Controller will wait for the next round to re-detect
changes to the topological structure, which is too long. On the other hand, there is a
suggestion to reduce the interval of discovery changes, but this will cause the number of
the Packet_Out messages to increase significantly, which in turn will increase the load on

Appl. Sci. 2021, 11, 6999 13 of 30

the SDN-Controller and uses more bandwidth in the process of discovering the topology.
In addition, an increase in the discovery interval means fewer LLDP messages and less
overhead, but also means more time required to learn about new changes.

Figure 7. Learning time between rounds of topology discovery.

Regarding large and dynamic network environments as we discussed in Section 2.6.1
these challenges appear clearly, and based on performance metrics, we expect that OFDP
performance will perform as shown in Table 3. The table shows that the value of some
performance metrics is considerable and cannot be ignored [38,69].

Table 3. OFDP performance in large and dynamic networks.

Performance Metrics Description Outcome

Number of packets sent and received by
the SDN-Controller

• The number of packets sent equals the number of
active SDN-Switch ports

• The number of packets received equals twice the
number of links

Considerable
Reasonable

Number of packets sent and received by
each SDN-Switch

• The number of packets sent equals the number of its
active ports that connected to SDN-Switches

• The number of packets received equals the number of
its active ports

Reasonable

Average CPU utilization of
SDN-Controller

• CPU overhead added by OFDP to SDN-Controller Considerable

Accumulative CPU utilization of
SDN-Switches

• CPU overhead added by OFDP to SDN-Switches Reasonable

Bandwidth consumed by OFDP for
in-band control channels

• How much does OFDP use from control channel
bandwidth?

Considerable

Learning time • How long does it take for OFDP to learn about
topology change?

Considerable

3. Security Issues

Adding security to the topology discovery processes in OFDP also poses a new
challenge in terms of Quality of Services (QoS). Secure OFDP is a great idea to protect the
real-time topology from attacks such as inserting malicious rules at SDN-Switch, denial of
services at SDN-Controller, and man-in-the-middle in control channel [52], but it causes
other issues related to the performance of the device and time-consuming. Therefore, given
the contrast of the two trends between network performance and security in sensitive
issues (network topology discovery), the issue of balancing between them is also important.
Therefore, this makes the door of research open to researchers to balance security and
performance according to the needs of the network.

However, with challenges such as these, the SDN discovery topology protocol needs
to provide the SDN-Controller with a real-time view of the network topology to meet the
application and dynamic routing Quality of Service (QoS) demands.

Appl. Sci. 2021, 11, 6999 14 of 30

3. Recent SDN Topology Discovery Performance Studies

In the literature, the studies that discuss the issue of performance in OFDP or Open-
Flow are considered rather scarce, and most of the studies dealing with and maintaining
OpenFlow security [33–35,79–81]. Therefore, in this paper, we will focus on OpenFlow,
and in particular on OFDP protocol, along with the factors that have a direct impact on its
performance. This section provides summaries of this research in detail as follows:

3.1. Link Discovery Improvement Algorithms

In this subsection, we will discuss the proposed solutions that are related to OFPD link
discovery. These proposals can be categorized into two domains based on their procedural
release (event or periodic). Moreover, a comparison of these proposals is provided in
Table 4 as well.

3.1.1. Periodic

This domain is named periodic because the discovery process is carried out periodi-
cally for every period. The authors in [39,42,43,45] used this type as we will discuss.

In [39], the authors proposed a new approach called OpenFlow Discovery Protocol
version 2 (OFDPv2) to enhance the OFDP performance. OFDPv2 reduces the number
of LLDP Packet_Out messages to only one LLDP Packet_Out message per SDN-Switch
instead of per active port. They proposed two versions of OFDPv2. OFDPv2-A for SDN-
Controller and OFDPv2-B for SDN-Switch. In OFDPv2-A, the SDN-Controller will install
an additional set of flow rules in each SDN-Switch using the OFPT_FLOW_MOD message
to forward the LLDP packets from each port on the SDN-Switch. The OFPT_FLOW_MOD
message is used by the SDN-Controller to process the flow tables of the OpenFlow SDN-
Switches. It can add, update or delete flow entries from the flow tables of OpenFlow
SDN-Switches. However, added rules consume a lot of Ternary Content-Addressable
Memory (TCAM) which is already a scarce resource in SDN-Switches. In OFDPv2 B,
they did not install flow rules on SDN-Switches but they send an action list (i.e., a set of
instructions to forward LLDP packet for each port) with the LLDP Packet_Out message.
However, this makes OFDPv2-B withstand a large bandwidth, especially for in-band
control channels. These processes are illustrated in Figure 8.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 31

eTDP

Distributed topology discovery pro-

cess on layer 2 and uses shortest con-

trol paths

Switches Periodic
(1) Reduce discovery time and

cost

Back to tradi-

tional net-

works

TDP

Rely on network partitioning and us-

ing a timer to send topology discovery

packets

Wireless

nodes
Periodic

(1) Reducing send packets

(2) Reduce topology discovery

energy

Suitable for

tree network

topology only

3.1.1. Periodic

This domain is named periodic because the discovery process is carried out periodi-

cally for every period. The authors in [39,42,43,45] used this type as we will discuss.

In [39], the authors proposed a new approach called OpenFlow Discovery Protocol

version 2 (OFDPv2) to enhance the OFDP performance. OFDPv2 reduces the number of

LLDP Packet_Out messages to only one LLDP Packet_Out message per SDN-Switch in-

stead of per active port. They proposed two versions of OFDPv2. OFDPv2-A for SDN-

Controller and OFDPv2-B for SDN-Switch. In OFDPv2-A, the SDN-Controller will install

an additional set of flow rules in each SDN-Switch using the OFPT_FLOW_MOD message

to forward the LLDP packets from each port on the SDN-Switch. The OFPT_FLOW_MOD

message is used by the SDN-Controller to process the flow tables of the OpenFlow SDN-

Switches. It can add, update or delete flow entries from the flow tables of OpenFlow SDN-

Switches. However, added rules consume a lot of Ternary Content-Addressable Memory

(TCAM) which is already a scarce resource in SDN-Switches. In OFDPv2 B, they did not

install flow rules on SDN-Switches but they send an action list (i.e., a set of instructions to

forward LLDP packet for each port) with the LLDP Packet_Out message. However, this

makes OFDPv2-B withstand a large bandwidth, especially for in-band control channels.

These processes are illustrated in Figure 8.

Figure 8. Methodology of OFDPv2.

Based on Figure 8, the SDN-Controller will send one LLDP Packet-Out for each SDN-

Switch in the network. S1 will receive a Packet_Out message and extract an LLDP packet

from it. Then it will forward the LLDP packet to all active ports in the SDN-Switch and

replaces the source MAC address of the LLDP packet with the MAC address of the egress

port. S2 will receive the LLDP packet and encapsulate the LLDP packet with a Packet_In

message and send it to the SDN-Controller. The SDN-Controller will parse the incoming

Packet_In packet and learn about the new link. Finally, the results show that OFDPv2 uses

Figure 8. Methodology of OFDPv2.

Appl. Sci. 2021, 11, 6999 15 of 30

Table 4. Comparison between different proposed approaches to enhance OFDP.

Proposal Methodology Location of
Logic

Operation
Mode Advantage Disadvantage

OFDPv2
Merge Packet_In messages

from each port to each
SDN-Switch

Controller Periodic

(1) Reducing CPU overhead.
(2) Reducing the bandwidth

overhead on the control
channel.

It works periodically,
and this may

introduce
unnecessary

discovery traffic

sOFTDP

Triggering topology
discovery service by link

failure events monitored by
Bidirectional Forwarding

Detection.

Switches Event
(1) Reduce learning time.

(2) Reduce adaptation time.
(3) Reduce CPU overhead.

It restricts the
controller’s ability to
collect statistical data
on discovery traffic

ForCES
Delegating the logic of

topology discovery to the
SDN-Switches.

Switches Event (1) Reduce the learning time
of link changes.

It is only applicable
for ForCES as a

southbound API.

ESLD

Reducing messages between
the SDN-Controller and

SDN-Switches for topology
by restricting the sending
discovery packets to only

SDN-Switch ports connected
to switches and not to hosts.

Controller Periodic
(1) Reducing CPU overhead.
(2) Reducing the bandwidth

overhead.

Port classification
consumes more

messages

SLDP

A new packet format was
used for topology discovery

messages with a random
source MAC address.

Controller Periodic
(1) Reducing CPU overhead.
(2) Reducing the bandwidth

overhead.

Increases Flow_Mod
messages to enable
authorized packet

forwarding

TEDP-S

Reducing messages between
the SDN-Controller and

SDN-Switches by sending
only one discovery packet to

the root SDN-Switch.

Controller and
Switches Periodic

(1) Reducing CPU overhead.
(2) Reducing the bandwidth

overhead.

Increasing CPU
overhead on the

switches.

TEDP-H

Offloading the process of
discovering the topology

from SDN-Controller to the
root SDN-Switch.

Controller and
Switches Periodic

(1) Reducing CPU overhead.
(2) Reducing the bandwidth

overhead.

Increasing CPU
overhead on the
SDN-Switches.

SDN-RDP
Sharing network state
management between

multiple SDN-Controllers.
Controller Periodic

(1) Reducing the number of
messages.

(2) Reducing the computation
time.

Manual
configurations

GTOP
Improve topology discovery

process in PCE to be as
OpenFlow

PCE and
Switches Periodic (1) Reduce link failures

(2) Reduce updating times Legacy domain

SONT Test-signal mechanism to
detect network links

Controller and
Optical switches Periodic (1) Reduce updating times

Fault tolerance is not
checked despite its

importance in optical
networks

HDDP
A lightweight agent and

network exploration model
based on flooding

Controller and
Switches Periodic (1) Support different type of

networks

CPU Overhead
Increasing packet

messages

eTDP

Distributed topology
discovery process on layer 2

and uses shortest control
paths

Switches Periodic (1) Reduce discovery time
and cost

Back to traditional
networks

TDP
Rely on network partitioning

and using a timer to send
topology discovery packets

Wireless nodes Periodic
(1) Reducing send packets

(2) Reduce topology
discovery energy

Suitable for tree
network topology

only

Based on Figure 8, the SDN-Controller will send one LLDP Packet-Out for each
SDN-Switch in the network. S1 will receive a Packet_Out message and extract an LLDP
packet from it. Then it will forward the LLDP packet to all active ports in the SDN-Switch
and replaces the source MAC address of the LLDP packet with the MAC address of the

Appl. Sci. 2021, 11, 6999 16 of 30

egress port. S2 will receive the LLDP packet and encapsulate the LLDP packet with a
Packet_In message and send it to the SDN-Controller. The SDN-Controller will parse the
incoming Packet_In packet and learn about the new link. Finally, the results show that
OFDPv2 uses 63–80% fewer LLDP Packet_Out messages than the same process in standard
OFDP. Furthermore, in measuring the CPU overhead between OFDP and OFDPv2, the
results show that OFDPv2 reduced the CPU utilization of the SDN-Controller by up to 45%
compared to the standard OFDP.

Additionally, in [42], the authors presented a lightweight, efficient, and secure ap-
proach to discover the links between SDN-Switches in SDN called Secure and Lightweight
Link Discovery Protocol (SLDP). In general, the proposal uses a new packet format for
link discovery by using minimal features of the frame and removing unnecessary features
from the standard LLDP frame. Moreover, for each iteration of the link discovery pro-
cess, the SDN-Controller will generate an SLDP packet and send it with a random source
MAC address to SDN-Switches. Then the SDN-Controller installs a flow entry in each
SDN-Switch flow table to generate the packet with that random source and agree to these
values when a message is returned to the SDN-Controller. In brief, the SDN-Controller will
initially send an SLDP packet to each SDN-Switch port in the network, and the subsequent
discovery iterations will only receive ports that are eligible for SLDP packets. As result,
only legitimate SLDP packets will be sent to the SDN-Controller to build the topology
and this will reduce the number of packets used in the discovery process and prevent
unqualified ports from receiving SLDP packets. In evaluation metrics, the authors used
the Mininet emulator and compared it to the OFDP in various network topologies with
different numbers of SDN-Switches, hosts, and links. Moreover, they used the number of
packets sent by the SDN-Controller, CPU of the SDN-Controller, and validation time. For
all of these metrics, SLDP outperforms the standard OFDP.

Moreover, [43], the authors proposed another approach called Efficient and Secure
Link discovery scheme (ESLD) by also limiting the transmission of LLDP packets to SDN-
Switch ports connected to SDN-Switches. This approach is illustrated in Figure 9.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 31

63–80% fewer LLDP Packet_Out messages than the same process in standard OFDP. Fur-

thermore, in measuring the CPU overhead between OFDP and OFDPv2, the results show

that OFDPv2 reduced the CPU utilization of the SDN-Controller by up to 45% compared

to the standard OFDP.

Additionally, in [42], the authors presented a lightweight, efficient, and secure ap-

proach to discover the links between SDN-Switches in SDN called Secure and Lightweight

Link Discovery Protocol (SLDP). In general, the proposal uses a new packet format for

link discovery by using minimal features of the frame and removing unnecessary features

from the standard LLDP frame. Moreover, for each iteration of the link discovery process,

the SDN-Controller will generate an SLDP packet and send it with a random source MAC

address to SDN-Switches. Then the SDN-Controller installs a flow entry in each SDN-

Switch flow table to generate the packet with that random source and agree to these values

when a message is returned to the SDN-Controller. In brief, the SDN-Controller will ini-

tially send an SLDP packet to each SDN-Switch port in the network, and the subsequent

discovery iterations will only receive ports that are eligible for SLDP packets. As result,

only legitimate SLDP packets will be sent to the SDN-Controller to build the topology and

this will reduce the number of packets used in the discovery process and prevent unqual-

ified ports from receiving SLDP packets. In evaluation metrics, the authors used the

Mininet emulator and compared it to the OFDP in various network topologies with dif-

ferent numbers of SDN-Switches, hosts, and links. Moreover, they used the number of

packets sent by the SDN-Controller, CPU of the SDN-Controller, and validation time. For

all of these metrics, SLDP outperforms the standard OFDP.

Moreover, [43], the authors proposed another approach called Efficient and Secure

Link discovery scheme (ESLD) by also limiting the transmission of LLDP packets to SDN-

Switch ports connected to SDN-Switches. This approach is illustrated in Figure 9.

Figure 9. ESLD methodology.

The basic idea of the ESLD is to classify SDN-Switch ports into two classes, either

‘Switch’ or ‘Host’. ‘Switch’ ports are those ports connected to SDN-Switches and ‘host’

ports connected to users. Moreover, ESLD uses some well-known OpenFlow messages

such as ‘Feature-Replay’, ‘State-Reply’, and ‘Port-Status’ messages to label these ports in

both types (‘Host’ or ‘Switch’). Therefore, the efficiency of ESLD is directly dependent on

the number of SDN-Switch ports in SDN. For evaluation, the authors used a host scale in

different scenarios with different topologies and compared ESLD to the de facto OFDP

and OFDPv2. Moreover, a number of LLDP packets handled by the SDN-Controller, CPU

utilization for SDN-Controller, and SDN-Switches were used as performance metrics.

Figure 9. ESLD methodology.

The basic idea of the ESLD is to classify SDN-Switch ports into two classes, either
‘Switch’ or ‘Host’. ‘Switch’ ports are those ports connected to SDN-Switches and ‘host’
ports connected to users. Moreover, ESLD uses some well-known OpenFlow messages
such as ‘Feature-Replay’, ‘State-Reply’, and ‘Port-Status’ messages to label these ports in
both types (‘Host’ or ‘Switch’). Therefore, the efficiency of ESLD is directly dependent on
the number of SDN-Switch ports in SDN. For evaluation, the authors used a host scale in
different scenarios with different topologies and compared ESLD to the de facto OFDP

Appl. Sci. 2021, 11, 6999 17 of 30

and OFDPv2. Moreover, a number of LLDP packets handled by the SDN-Controller, CPU
utilization for SDN-Controller, and SDN-Switches were used as performance metrics.

In a different study, the authors suggested two new applications of the OFDP to
improve the link discovery process: the Enhanced Topology Discovery Service (ETDP-
SDN) and the ETDP-Hybrid [45]. In ETDP-SDN, the Discovery Service is centralized inside
the SDN-Controller, and the SDN-Controller identifies each iteration of the root SDN-
Switch and then sends an ETDP discovery packet to the root SDN-Switch. SDN-Switch
will in turn flood this packet to all of its ports except for the port where ETDP is received.
Next, the SDN-Controller installs a flow rule to force SDN-Switch to send a Packet_In
to the SDN-Controller and another flow rule to flood the ETDP frame. Next, after the
SDN-Controller receives the Packet_In message, it will send an additional FLOW_Mod
to remove the flood rule, which was previously installed to prevent loops. However, the
ODFP performance is improved by sending a single ETDP packet encapsulated with a
Packet_Out message to the SDN-Switch root from the SDN-Controller. This will reduce
Packet_Out messages per discovery frequency to just one packet. ETDP also provides the
minimum latency path between any two SDN-Switches.

In the second suggested application (ETDP-Hybrid), the discovery service is shared
between the SDN-Controller and SDN-Switches. SDN-Switches in this application do not
depend on the SDN-Controller to start the discovery process, it initiates the discovery
process and installs a flow entry in its flow table to send the topology information to
the SDN-Controller. In discussing the results, the authors evaluated their application
using Mininet in different topologies and different experimental times to compute the
mean and standard deviation. The Packet_out count, Packet_In count, and Flow_Mod
count messages were used as performance metrics. For ETDP-SDN, the results showed
that only one Packet_out message per SDN-Switch. The number of flow_Mod messages
was expected to be twice the number of flow_mod messages in standard OFDP, but that
was not the case because the locking mechanism (to stop flooding frames and prevent
loops) is not fast enough to stop annoying ETDP packets before installing block flow
rules. In ETDP-Hybrid, there were no Packet_Out and Flow_Mod messages sent by the
SDN-Controller.

Similarly, the authors presented the SDN Resource Discovery Protocol (SDN-RDP) in [82]
as a solution to sharing network state management between multiple SDN-Controllers. Each
SDN-Controller discovers a portion of the network topology to maintain distributed node
management and enhance protocol accuracy. The presented approach is asynchronous,
does not require full network information, and does not need a global startup step. Accord-
ing to the simulated results, the proposed method effectively reduces the overload of the
SDN-Controller.

Other topology discovery methods have used centralized techniques, such as the Path
Compute Element (PCE). The authors in [83] suggested a centralized topology discovery
algorithm called Generalized TOPolgy (GTOP) for PCE. GTOP works by enabling PCE to
mechanically create a network topology without employing a global routing protocol such
as the Open Short Path protocol (OSPF). The GTOP uses an out-band control channel to
proactively collect topology costs from the SDN-Switches. Additionally, it uses the same
control channel to update the topology changes in an interactive way. However, concerning
the testbed system, the total time for the suggested protocol was 10 ms to update the
topology changes. The drawback of this work was using an out-band control channel,
which may not be feasible to deploy in large-scale states.

In discovering SDN-Optical Network Topology (SONT), the authors in [41] adopted
a sequence of signal checking to detect the links one by one. This technique fits into the
pre-service category of layer 1 convergence discovery cases and provides a correct links
mapping at SDN-Controller despite limiting scalability and time efficiency, especially
in large networks. Therefore, the same authors [84] used a parallel mode rather than a
sequential mode to overcome their limitations.

Appl. Sci. 2021, 11, 6999 18 of 30

Likewise, the authors in [85] proposed Hybrid Domain Discovery Protocol (HDDP)
to enhance the mechanism of discovery topology between SDN and traditional net-
works. HDDP is managed by SDN-Controller and works as OFDPv2 through the use
of a lightweight agent that implements HDDP and transmits topology information in-
directly to the SDN-Controller. HDDP uses a network exploration model based on a
controlled flooding mechanism (Packert_Out) to discover non-SDN devices. Subsequently,
the authors in [40] developed the HDDP to cover the topology discovery process in different
types of wireless networks.

Furthermore, other proposed work transfers the topology discovery process from
SDN-Controller to layer-2 (SDN-Switch) completely as described in [66]. The authors
proposed a new method called enhanced Topology Discovery Protocol (eTDP) which has
been classified the SDN-Switches into three types (core, leaf, and v-leaf). Leafs called for
SDN-Switches that have only one adjacent switch while SDN-Switches that have more
adjacent Switches called v-leaf. The remaining SDN-Switches are called a core. In addition,
SDN-Switch ports also have different states according to their positions in the control tree
formed by the topology discovery module (Standby, Parent, Child, and Pruned). These
performed functions of ports and SDN-Switches are rotated between managed components
and independent managers. Each performed function has four tasks: monitor, analyze,
plan, and execute. Finally, the SDN-Controller will draw the network topology from the
shortest control paths transmit to it by the SDN-Switch core.

Moreover, other works related to topology discovery processes in low power and
CPU devices have been discussed in [67,86]. The authors of [67] analyzed the effect of
OpenFlow performance over wireless networks in terms of QoS metrics. Meanwhile,
the authors in [86] proposed a new topology discovery method called efficient Topology
Discovery Protocol (TDP) to achieve simultaneous adaptive SDN-Node ID mapping and
topology discovery for Underwater Acoustic Networks (UAN). To save power, the proposal
eliminated outdated information about the metering network and node identification from
the network topology procedure, leaving only the node identifier. Instead, the SDN-
Controller separates the network into layers and employs a local timer in each SDN-Node
to ensure that topology discovery packets are sent on time. Each node could determine
the network topology and create its SDN-Node ID separately by utilizing the received
topology discovery packets.

3.1.2. Event

This domain is named by event, because the changes come along each discovery
takes place on every event, such as updating, adding, and deleting links. The authors
in [38,76,87] used this type as we will discuss.

In different techniques related to improving OpenFlow topology discovery called
Secure and Efficient OpenFlow Topology Discovery Protocol (sOFTDP) [38]. The authors
in [38] have transferred the control logic for topology discovery and its security from SDN-
Controller to SDN-Switch in order to reduce arithmetic operations from SDN-Controller.
SDN-Switches are now responsible for monitoring the status of their ports, and they have
used Bidirectional Forwarding Detection (BFD) protocol [88] as a mechanism for detecting
port vitality. Each SDN-Switch will establish BFD sessions with their neighbors using
three-way handshaking. The SDN-Switches then will use the established BFD session
to exchange control and echo messages to monitor link vitality. When a link failure
occurs, the affected SDN-Switches will detect this failure by BFD and immediately send
a notification called BFD-Status message to the SDN-Controller which also immediately
removes this link from its links table. For a link addition, asynchronous notifications using
the OFPT__Port_Status message will be sent to the SDN-Controller which in turn will
discover this link by following the same procedure that is used in OFDP but only for this
link. Moreover, port-status messages (OFPT_Port_Status) are sent from the SDN-Switch
to the SDN-Controller when a change in port status occurs or when a new port is added,
removed, or modified in the SDN-Switch data path.

Appl. Sci. 2021, 11, 6999 19 of 30

The experiments were performed using learning time and CPU utilization perfor-
mance metrics to evaluate sOFTDP. In link addition, the average learning time for 50 ex-
periments was 5.68 ms while in link removal the learning time was 3.25 ms. Also, they
evaluated sOFTDP against standard OFDP and OFDPv2 in terms of CPU utilization of the
SDN-Controller throughout 200 s with one topological change in second. The results show
that sOFTDP induced the least overhead versus standard OFDP and OFDPv2.

In the same procedural, the approach called ForCES based optimal network topology
discovery [76] was proposed. In ForCES, the authors improved OFDP performance by
offloading the SDN-Controller from sending or receiving LLDP advertisements. The LLDP
protocol will work as it is and without any modifications. The SDN-Switches transmit
LLDP advertisements and build their topology tables without the intervention of the
SDN-Controller. Then the SDN-Controller pulls the topology information from the SDN-
Switches continuously. This technique has been used in [87] in a small-scale testbed. As
a result, this proposal can be beneficial by reducing the learning time, and the affected
SDN-Switches will inform the SDN-Controller of this change immediately when a change
to the topology occurs. However, this solution has been suggested for SDN networks that
use ForCES protocol as a southbound interface but can be used with the logic for OpenFlow
networks. Finally, the average time for the SDN-Controller to learn about topology changes
is 10 ms which is less than 90% of the learning time in standard OFDP (i.e., 100 ms).

3.2. Flow Table Management Algorithms

As we mentioned earlier in the section of switches discovery in SDN technology,
the adoption of switch discovery depends mainly on the data and instructions of those
flow tables. Each OpenFlow in each switch contains at least one flow table and a set of
flow entries within that table. These flow entries contain matching fields, counters, and
instructions to apply to matched packages. Typically, it will have more than one flow
table, so it is important to note that matching starts from the first flow table and may
continue with additional pipeline flow tables. The packet will first start in Table 5 and
check these entries based on priority. It will match the highest priority first (e.g., 200, then
100, then 1). If the stream needs to continue to another table, the go-to instruction tells the
package to go to the table specified in the instruction. Therefore, improving the technique
of dealing with tables will improve the performance of the entire network. The researchers
attempted to improve the mechanism of flow tables in the process of topology discovery.
Whereas SD-OpenFlow uses TCAM memory to store flow tables, it is very expensive and
has a limited size. Thus, the number of flow entries that can be accommodated is limited,
therefore, the researchers tried to optimize the flow schedule to take full advantage of it.
Moreover, a comparison of these proposals is provided in Table 5 as well.

Table 5. Comparison of flow table management to improve OpenFlow performance.

Proposal Methodology Controller Placement
Mode Operation Mode Goals

Rifai et al. [89] Flow entry
compression Reactive Traffic engineering Maximize the utility of

flow tables

Panda et al. [90] Dynamic hard timeout
allocation Reactive LRU

Maintain unpredictable
flow for a limited

period

Isyaku et al. [91]

Dynamic idle and hard
timeout based on traffic

pattern to reduce
overhead

Reactive and Proactive LRU Improved the restricted
flow table

Appl. Sci. 2021, 11, 6999 20 of 30

Table 5. Cont.

Proposal Methodology Controller Placement
Mode Operation Mode Goals

Xu et al. [92]
merging flow table and

cost of the
SDN-Controller

Reactive Traffic engineering
Adjusts the idle

timeout value based on
the flow

Kotani and Okabe [93] packet filtering scheme Proactive Traffic engineering

Reducing multiple
packet-in messages

forwarded to the
SDN-Controller

Favaro and Ribeiro [94] Blackhole mechanism Reactive Flow-table
management

Maintain visibility for
each new flow.

Leng et al. [95] Rule optimization and
binary tree aggregation Reactive Flow-table

management
Reduce the number of

flow entries

Li et al. [96]
Used Q-Learning rule
for selecting effective

timeout values
Proactive Machine Learning

Adjusts the idle
timeout value based on

the flow

Yang and Riley [97]

Classify flows into
active and inactive to

decide the right flow to
remove intelligently

Proactive Machine learning Increase the flow table
capacity

Timeout mechanism is one of the techniques used by the SDN-Controller to calculate
the lifespan of the forwarding entry in the switch flow table. When no packet matches an
item during its timeout period, the entry is ejected from the flow table, making room for
fresh arriving packets [89]. There are now two methods for installing the timeout mecha-
nism in the OpenFlow SDN-Controller: idle and hard timeout. Typically, the OpenFlow
SDN-Controller configures each stream’s flow entry with a preset idle timeout value in
seconds. However, when it comes to packet inter-arrival time, the flow table has enough
room to accommodate all flows, such a timeout number may provide superior perfor-
mance. In [90], the authors consider a dynamic allocation of hard timeout for identified and
unidentified flows. The goal is to maintain unidentified flow for a limited period while also
maintain the identified flows. This is accomplished by studying packet traces to determine
the nature of each packet’s arrival and then modifying the hard timeout accordingly. When
a flow table’s load is exceeded, expires Least Recently Used (LRU) is utilized to remove
an entry with a maximum timeout. Even when the strategy has succeeded in maintaining
identified flows, the challenge of a bad entrance removal scheme remains. LRU is not an
ideal eviction method for SDN since it is a packet-driven method that can only be executed
in theory but may not be suitable with OpenFlow in action. In the same dynamic allocation
technique, the authors in [91] used dynamic inertia value for short live flows and set the
hard timeout value for long live flows with a short time between packets arrival. This has
greatly reduced the Packet_In numbers and as a result, reduced SDN-Controller overhead.
By utilizing OpenFlow’s built-in data collecting, the limitation of LRU is resolved. Flows
with a low packet count are victims, so deleting them improves the amount of the limited
storage. Without modifying the design of SDN, it is effective to conclude that their proposal
reduced network cost and improved the restricted flow table usage to some level. In [92],
the authors offered an adaptive flow table alteration based on the fraction of active flow
entries by merging the flow table and cost of the SDN-Controller. The algorithm constantly
examines traffic, and as a result, the procedure adjusts the idle timeout value based on the
flow. Surprisingly, the algorithm was able to set different timeout settings for distinct flows.
On the other hand, the process of determining the cost of flow table entries in the cost of
the switch and SDN-Controller computing adds additional computational expenses to the
SDN-Controller.

Appl. Sci. 2021, 11, 6999 21 of 30

Another technique that was used to reduce SDN-Controller overhead, the authors
in [93] employed a packet filtering scheme. The mechanism started by inspecting the
header in Packet-In messages and dropping the duplicate one. Moreover, in [94] the
authors devised a blackhole technique to reduce SDN-Controller overhead and preserve
the advantage of visibility for each new flow. The packet forwarding architecture between
SDN-Switch and SDN-Controller has been changed so that only the first packet is routed
to the SDN-Controller and successive table-misses are dealt with locally. In addition, its
architectural design leaves it vulnerable to dropping alerted packets, which could result in a
substantial number of packet losses. However, the amount of events transmitted to the SDN-
Controller is minimized. In addition, another technique based on flow entries aggregation
has been proposed in [95] to reduce the load on TCAM. Theoretically, the strategy reduces
the number of entries to be saved by compressing fine-grained sending entries into less
coarse-grained entries with a somewhat greater matching range. Surprisingly, it is a
software application that is easy to install as an additional plug-in on the OpenFlow SDN-
Controller and does not require additional hardware. However, since the aggregation
methodology fails to preserve the original semantics of the rule in most circumstances, the
SDN-Controller has certain issues when changing the direction of entries or querying the
traffic stats counter.

A different technique based on machine learning has been proposed to identify the
classes of traffic flows [96,97] to predict the duration of the flow entry. In [97], the authors
used machine learning techniques to determine which flow should be eliminated. The
algorithm, which is based on past data of flow entries, forecasts and with the flow entry
with the shortest time being the victim. Depending on the output of the algorithm used,
it is determined whether the flow entries are active or inactive. Moreover, in [96], the
authors also used the Q-Learning rule for selecting effective timeout values for flows to
improve OpenFlow SDN-Switch performance. These techniques, on the other hand, may
provide superior performance in a small–medium-sized network, but a large-scale dynamic
network may necessitate a more complex training set, which in turn necessitates greater
storage to handle more historical data.

3.3. Control Channel Improvement Algorithms

Furthermore, in Section 2, we mentioned the importance and how the OpenFlow
protocol control channel works. Where it is the hot line of communication between the con-
troller and the plane layer devices. There are a number of constraints for both out-of-band
and in-band controls. On the one hand, out-of-band control is costly and inconvenient.
This is due to the fact that each data plane device requires additional physical interfaces
and cabling to link to the controller. Furthermore, data plane devices may be physically
positioned far from the controller, necessitating a significant additional cost to construct
a network protocol for out-of-band control. In this subsection, we will discuss the pro-
posed solutions that are related to control channel failure detection and recovery, where
sustaining communication between the SDN-Controller and SDN-Switches becomes the
main difficulty during network disruptions. Moreover, a comparison of these proposals is
provided in Table 6 as well.

As the control channel is used to establish in-band and out-band connection between
the SDN-Controller layer and data layer in OpenFlow-SDN, the control channel failure
threatens the network availability. According to [98,99] a lossy control channel dramatically
reduces data layer throughput and response time. Therefore, several recent works have
been proposed to help sustain OpenFlow availability. The authors in [100] proposed
control channel recovery for in-band and out-band control links. To enable local recovery
from failure, the author integrated logical ring topology with source-routed forwarding.
The SDN-Switch-to-SDN-Controller communication was made more robust using a ring-
based local recovery technique. A source forwarding method was employed to ensure
the SDN-Controller-to-SDN-Switch communication was robust, as a robust SDN-Switch-
to-SDN-Controller communication channel allows the SDN-Controller to be updated of

Appl. Sci. 2021, 11, 6999 22 of 30

the complete topology. However, while keeping the functionality of data plane devices,
this recovery does not necessitate SDN-Controller involvement. Moreover, [98] protected
the in-band control channel from failure by finding a set of ideal pathways. To recover
from SDN-Switch failure in an SDN, this research used a bypass and non-intervention
backup recovery methodology. When an SDN-Switch fails, the goal is to deal with it as
quickly as possible, especially if it is part of an SDN-Switch group. If a group of dependent
SDN-Switches is affected by the failure, all control traffic from the impacted SDN-Switches
is re-routed to a different recovery path.

Table 6. Comparison of control channel schemes to improve OpenFlow performance.

Proposal Methodology Controller
Placement Mode Operation Mode Logic Location

Asadujjaman et al.
[100]

Combined between topology
type and source-routed

forwarding to support local
failure recovery

In-band Recovery SDN-Switch

Fan and Yang [99]
Centralized trust management

system for in-band control
channel

In-band Protection and
Recovery SDN-Controller

Osman et al. [101]

The hybrid controlling mode
that dynamically changes
between centralized and

distributed

In-band and
Out-band Protection SDN-Controller and

SDN-Switches

Alowa and Fevens [98] Trusted control pathways for
in-band control channel In-band Protection and

Recovery SDN-Switches

Hwang and Tang [102]

weighted function (Complete
Bipartite Graph) technique is
used to select the alternative

control channel path

In-band Recovery and
Protection SDN-Switches

Ko et al. [103]
Dijkstra algorithm is used to
calculate the shortest control

channel pathways
In-band Protection and

Recovery SD-Swatches

Chan et al. [60]
K-best is used to find control

channel paths in between
multiple controllers

In-band Protection SDN-Controller and
SDN-Switches

Ibrar et al. [104]

Logistic regression and
support vector machine

algorithms to predict the link
status

In-band Protection SDN-Controller

Yang and Riley [97]
Classify flows into active and

inactive to decide the right
flow to remove intelligently

Proactive Machine learning Increase the flow table
capacity

Using a full cartelized control channel, the authors in [99] suggested a centralized trust
management system for selecting the most trustworthy data transfer pathways (in-band
control) in the SDN. The authors viewed the network as a multi-agent system, with SDN-
Switches and routers serving as the agents. The authors thought that their centralized unit
had complete control over the route choices made by the agents. Fully centralized systems,
in most circumstances, necessitate highly complex resources for the central unit, while
also introducing a single point of failure. The central unit must be completely operational,
tamper-resistant, and physically secure. It is also necessary to keep a close eye on all of the
system’s agents. The cost of applying such systems rises dramatically when all of the above-
described qualities are combined. In contrast, the authors in [101] proposed a new method
called hybrid-SDN to operate the network regardless of the level of control vulnerability by

Appl. Sci. 2021, 11, 6999 23 of 30

shifting network control from central to distributed. This approach depends on the Control
Packet Loss Ratio (CPLR). The OpenFlow-SDN is converted to a hybrid-SDN (distributed
control channel to SDN-Switches) approach when the CPLR value reaches an undesirable
level.

In terms of restoring the OpenFlow control channel failover mechanism, SDN-Switches
can detect a broken link but must wait for the SDN-Controller to generate alternate path-
ways. Therefore, the authors in [102,103] looked at how to protect and recover from control
channel failures. Authors in [102] employed both recovery and protection methods for
data channel failures. In the recovery process, the SDN-Controller constructs alternative
paths depending on the complete two-segment graphs of the topology of the network,
and the SDN-Controller will use the weighted functions to the alternative paths to re-
built SDN-Switches control channel path. Moreover, in control channel protection, the
SDN-Controller identifies flow entries for the SDN-Switches. However, this proposal has
drawbacks related to both processes (recovery and protection) as the increase of failover
times as the number of SDN-Switches grows and handling with rapid changes in network
topologies. Therefore, these drawbacks were overcome in [103] by using both a flexible
network hypervisor-based structure. The suggested solution involves calculating backup
pathways (Dijkstra algorithm) in a finer timeframe (e.g., 5 s), and only configuring recovery
flow rules if a physical network failure is detected. In addition, another recovery control
channel based on the use of multiple SDN-Controllers in in-band networks has been pro-
posed in [60]. The master SDN-Controller is in charge of network control at the stable level,
while the other SDN-Controllers are on standby to take over the network control in the
event of failure. The authors planned the control paths using the K-best path technique
on a modified graph, and in this way, each SDN-Switch would be serviced by several
SDN-Controllers with discontinuous pathways.

Furthermore, the authors in [104], attempted to reduce the impact of control channel
service failure by predicting link failure before it occurred. The authors used a machine
learning technique for their proposed method that re-computes the locations of access
control policies and reduces their violation in the event of link failure.

4. Discussion and Open Issues

Each of the proposals presented in the previous section has its characteristics of
improving one or more parts of the topology discovery process. All of these approaches
that seek to improve the process of discovering different or similar topologies must be
aligned with the basic criteria of OpenFlow-SDN protocol, as we will discuss below.

4.1. Location of the Topology Discovery Logic

In these OFDP, OFDPv2, SDN-RDP, ESLD, and SLDP protocols, the control logic for
the topology discovery remained in the SDN-Controller. In OFDPv2, the SDN-Controller
starts the discovery process and sends LLDP advertisements to the SDN-Switches. The
SDN-Switches have a secondary role in the discovery process; It just consists of forwarding
the SDN-Controller’s LLDP advertisements to its neighbor, or encapsulating the LLDP
advertisement in a Packet_In message and send it back to the SDN-Controller. Whereas
in TEDP-H and sOFTDP protocols, almost all of the logic is in SDN-Switches. The SDN-
Switch is responsible for monitoring the status of links with its neighbors and for sending
notifications when there is a change in the topology. The SDN-Controller plays a secondary
role and is only responsible for sending an LLDP advertisement when it receives an
OFPT_Port_Status message indicating that the SDN-Switch port state is changing. In eTDP
and ForCES, the logic of topology discovery is entirely in the SDN-Switches. SDN-Switch
is responsible for creating and forwarding LLDP advertisements independently and the
SDN-Controller only captures link information from the SDN-Switches. In HDDP and
TEDP-S, the logic is distributed between the SDN-Switches and the SDN-Controller.

Appl. Sci. 2021, 11, 6999 24 of 30

4.2. How Much Do Methods Differ from OFDP

This standard discusses the number of modifications of each proposal to standard
OFDP. OFDP takes advantage of the OpenFlow channel to exchange messages between
the SDN-Controller and SDN-Switches. HDDP, SDN-RDP, and OFDPv2 make minor
modifications to OFDP, as they still use OpenFlow messaging. In sOFTDP, the topology
discovery depends entirely on the BFD protocol to detect link failures, which is considered
a major change in the methodology of OFDP. In addition, eTDP and sOFTDP rely on a
new notification message (i.e., BFD-Status) that is not defined in OpenFlow specification.
Moreover, the eTDP uses a new technique that depends on SDN-Switch classes. In ForCES,
it is just an implementation of the LLDP protocol for ForCES-based SDNs. The methodology
of the discovery process is very different from that of OFDP and requires modification of
OFDP to a large extent. In ESLD and SLDP, the topology discovery methodology is the
same as in OFDP except for some other steps to limit the transmission of discovery packets
to SDN-Switch ports that connect to other SDN-Switches. In TEDP, the methodology is
very different from OFDP. The SDN-Controller sends a Packet_out message to each active
SDN-Switch port in standard OFDP, but in TEDP, the SDN-Controller sends only one
Packet_out to the root SDN-Switch, which in turn completes the task.

4.3. Operation Methods

By operation method, we mean that if the discovery of the topology is performed in
a periodic mode or is triggered by events. ‘Periodic’ meaning that the SDN-Controller
inquires about the network topology within a specified period, while the ‘triggered’ type
means that the process of changing the network topology takes place only when changes
occur in network topology. However, most of the reviewed works that we reviewed were
using the periodic method and two of them only used the triggered. OFDPv2, ESLD, SLDP,
and TEDP periodically discover the topology as in standard OFDP. Whereas in sOFTDP,
the topology discovery is triggered by topology change events. In ForCES, the LLDP
advertisements are periodically sent between SDN-Switches and if there is a change in the
topology, the affected SDN-Switches will notify the SDN-Controller about this change.

However, each type of operation method has its pros and cons. This opens the door
to the field of application of a hybrid model between the two methods, which can take
advantage of the advantages of each type.

4.4. CPU Usage

While OFDPv2 reduces the number of LLDP Packet_Out messages from the number
of active SDN-Switch ports in the network to only the number of SDN-Switches. Results in
reducing the CPU usage of the SDN-Controller by up to 45%. In eTDP and sOFTDP, the
discovery process runs without the need for frequent advertisements. This significantly
reduces the number of LLDP Packet_Out and Packet_In messages and then reduces CPU us-
age. However, sOFTDP requires SDN SDN-Switches to support a completely independent
protocol (i.e., BFD protocol) beside OpenFlow protocol. In ForCES, the SDN-Controller is
offloaded from sending LLDP advertisements, which reduces CPU usage drastically. In
addition, the learning time for topology changes, particularly link failures are still relatively
high because the SDN-Controller will capture the information about topology change after
notifications from the affected SDN-Switches. Moreover, CPU utilization in SDN-Switches
is increased ESLD, HDDP, and eDTP due to the transformation of the process of topology
discovery to the SDN-Switches. In SLDP, the results showed significantly lower CPU
usage compared to OFDP. In TEDP, Packet_Out messages sent from the SDN-Controller
are distributed to SDN-Switches which in turn reduce the CPU usage. In HDDP, also the
SDN-Controller will be overhead due to the flooding Packet-Out messages. TDP and eTDP
their technique is offloaded from SDN-Controller to SDN-Switches. Moreover, in [105], the
functionalities were offloaded from the data plane to the smart network interface.

Appl. Sci. 2021, 11, 6999 25 of 30

4.5. Learning Time

In OFDPv2, ESLD and SLDP learning time is still equal to OFDP, which is high. In
SDN-RDP, eTDP, and sOFTDP, learning time is less than OFDP and OFDPv2. In ForCES,
the learning time for topology changes, particularly link failures is still relatively high
because the SDN-Controller will capture the information about topology change after
notifications from the affected SDN-Switches. In HDDP and TEDP, the learning time is
the largest because the discovery packet will traverse the whole of the network before
discovering the topology change.

However, the process of topological discovery in SDN networks is one of the essential
principles that must be given priority in terms of performance and security. The three
main components (i.e., Link, Control Channel, and Flow-Table) of the topology discovery
process must ideally work together or close to ideal to achieve optimal performance.
Thus, optimizing the control channel communication in both methods (protection and
recovery) was discussed in the above section but still needs to be covered based on the two
redundant paths (in-band and out-band). Moreover, the recent references to OpenFlow
defined by ONF [58] already define the architecture of an OpenFlow generically, in a
client-server manner, rather than in a data-control plane. Therefore, in our opinion, the
future directions of topology discovery should focus on offloading most of the data layer
functionalities to programmable hardware such as smart network interfaces are a good
solution. Moreover, heterogeneous networks such as wire and various types of wireless
also should be included in the topology discovery process, to become more realistic in real
environments. In addition, the use of machine learning techniques with programmable
devices at the data level to reduce the incidence of errors in topology discovery to rates
close to zero. Furthermore, most of the studies reviewed in topology discovery focused on
periodic operational mode and ignoring the event. Even the event operational mode will
provide a good solution to reduce the process’s cost. Moreover, the combination between
both operation modes will take into account another good solution to improve the topology
discovery process.

5. Conclusions

While the SDN architecture appears to solve problems within the traditional network
architecture, it also comes with some major challenges. In this paper, we highlight one of
these challenges, which is related to the topology discovery service. In standard SDN, the
SDN-Controller is responsible for maintaining an updated network topology through using
OFDP protocol to discover the links between SDN-Switches in the data plane. However,
it has major limitations in its performance, especially in huge and dynamic networks.
Moreover, applications at the application layer depend entirely on that topology. Therefore,
several limitations related to the performance of the link discovery protocol used in SDN
networks (OFDP) are presented in this paper. Furthermore, the elements (flow tables
and control channels) related to the OpenFlow protocol and optimization studies on
these elements are explained, which in turn leads to improving the performance of OFDP.
However, there are not a large number of studies that attempt to address these limitations
in the literature. Therefore, it is a good opportunity for researchers to work on it for
their future studies. Moreover, five fundamentals that measure the similarity between the
proposed technique and the standard (OFDP) used in the topology discovery are discussed,
including topology discovery logic location, operation mode, OFDP compatibility, CPU
usage, and learning time. Based on these fundamentals, each of these proposals has
some limitations in one or more of these fundamentals. Therefore, we still need a new
proposal that takes into account all five fundamentals. One of the research directions in the
development of a new topology discovery approach that distributes the logic between SDN-
Switches and SDN-Controller. This solution will take as little workload as possible on both
and reduce learning time as much as possible. As another research direction for proposals
that discover the topology periodically, the trade-off between SDN-Controller overhead
and learning time to meet the requirements of the environment must be determined. This

Appl. Sci. 2021, 11, 6999 26 of 30

trade-off should be based on the criticality of the environment and topology change rate.
In some environments, such as enterprise networks, the rate of topology change is low
and less significant; thus, it is possible to increase the discovery interval. In contrast, in
data-centers and transport networks, the rate of topology change is high and critical, thus,
it is recommended to decrease the discovery interval as much as possible.

Author Contributions: All authors contributed to this manuscript. Conceptualization, R.A., R.W.
and S.A.; Investigation, R.A., S.A. and R.W.; Data duration, R.A., R.W. and S.A.; Writing—original
draft, R.A., S.A. and R.W.; Visualization, R.A.; Supervision, R.A.; Writing—review and editing, R.A.,
R.W. and S.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Feamster, N.; Rexford, J.; Zegura, E. The road to SDN: An intellectual history of programmable networks. Comput. Commun. Rev.

2014, 44, 87–98. [CrossRef]
2. Kreutz, D.; Ramos, F.M.V.; Verissimo, P. Towards secure and dependable software-defined networks. In Proceedings of the

Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Chicago, IL, USA, 22 August 2014; pp.
55–60. [CrossRef]

3. Dargahi, T.; Caponi, A.; Ambrosin, M.; Bianchi, G.; Conti, M. A Survey on the Security of Stateful SDN Data Planes. IEEE
Commun. Surv. Tutor. 2017, 19, 1701–1725. [CrossRef]

4. Kirkpatrick, K. Software-defined networking. Commun. ACM 2013, 56, 16–19. [CrossRef]
5. Sezer, S.; Scott-Hayward, S.; Chouhan, P.K.; Fraser, B.; Lake, D.; Finnegan, J.; Viljoen, N.; Miller, M.; Rao, N. Are we ready for

SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag. 2013, 51, 36–43. [CrossRef]
6. Levin, D.; Wundsam, A.; Heller, B.; Handigol, N.; Feldmann, A. Logically centralized? In Proceedings of the First Workshop on

Hot Topics in Software Defined Networks—HotSDN ’12, Helsinki, Finland, 13 August 2012; ACM Press: New York, NY, USA,
2012; p. 1. [CrossRef]

7. ONF SDN Architecture ONF. Available online: https://www.opennetworking.org/sdn-definition (accessed on 8 June 2021).
8. Hakiri, A.; Gokhale, A.; Berthou, P.; Schmidt, D.C.; Gayraud, T. Software-Defined Networking: Challenges and research

opportunities for Future Internet. Comput. Netw. 2014, 75, 453–471. [CrossRef]
9. Kim, H.; Feamster, N. Improving network management with software defined networking. IEEE Commun. Mag. 2013, 51, 114–119.

[CrossRef]
10. Shirali-Shahreza, S.; Ganjali, Y. Efficient Implementation of Security Applications in OpenFlow Controller with FleXam. In

Proceedings of the 2013 IEEE 21st Annual Symposium on High-Performance Interconnects, San Jose, CA, USA, 21–23 August
2013; pp. 49–54. [CrossRef]

11. Van Adrichem, N.L.M.; Doerr, C.; Kuipers, F.A. OpenNetMon: Network monitoring in OpenFlow Software-Defined Networks.
In Proceedings of the 2014 IEEE Network Operations and Management Symposium (NOMS), Krakow, Poland, 5–9 May 2014; pp.
1–8. [CrossRef]

12. Lim, S.; Ha, J.; Kim, H.; Kim, Y.; Yang, S. A SDN-oriented DDoS blocking scheme for botnet-based attacks. In Proceedings of the
2014 Sixth International Conference on Ubiquitous and Future Networks (ICUFN), Shanghai, China, 8–11 July 2014; pp. 63–68.
[CrossRef]

13. Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A Survey on Software-Defined Networking. IEEE Commun. Surv. Tutor. 2015, 17,
27–51. [CrossRef]

14. Jarraya, Y.; Madi, T.; Debbabi, M. A Survey and a Layered Taxonomy of Software-Defined Networking. IEEE Commun. Surv.
Tutor. 2014, 16, 1955–1980. [CrossRef]

15. Kreutz, D.; Ramos, F.M.V.; Esteves Verissimo, P.; Esteve Rothenberg, C.; Azodolmolky, S.; Uhlig, S. Software-Defined Networking:
A Comprehensive Survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]

16. Jammal, M.; Singh, T.; Shami, A.; Asal, R.; Li, Y. Software defined networking: State of the art and research challenges. Comput.
Netw. 2014, 72, 74–98. [CrossRef]

17. Braun, W.; Menth, M. Software-Defined Networking Using OpenFlow: Protocols, Applications and Architectural Design Choices.
Futur. Internet 2014, 6, 302–336. [CrossRef]

18. Jain, R.; Paul, S. Network virtualization and software defined networking for cloud computing: A survey. IEEE Commun. Mag.
2013, 51, 24–31. [CrossRef]

http://doi.org/10.1145/2602204.2602219
http://doi.org/10.1145/2491185.2491199
http://doi.org/10.1109/COMST.2017.2689819
http://doi.org/10.1145/2500468.2500473
http://doi.org/10.1109/MCOM.2013.6553676
http://doi.org/10.1145/2342441.2342443
https://www.opennetworking.org/sdn-definition
http://doi.org/10.1016/j.comnet.2014.10.015
http://doi.org/10.1109/MCOM.2013.6461195
http://doi.org/10.1109/HOTI.2013.17
http://doi.org/10.1109/NOMS.2014.6838228
http://doi.org/10.1109/ICUFN.2014.6876752
http://doi.org/10.1109/COMST.2014.2330903
http://doi.org/10.1109/COMST.2014.2320094
http://doi.org/10.1109/JPROC.2014.2371999
http://doi.org/10.1016/j.comnet.2014.07.004
http://doi.org/10.3390/fi6020302
http://doi.org/10.1109/MCOM.2013.6658648

Appl. Sci. 2021, 11, 6999 27 of 30

19. OpenDaylight. Available online: https://www.opendaylight.org/ (accessed on 8 June 2021).
20. Project Floodlight. Available online: https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343517/

Supported+Topologies (accessed on 8 June 2021).
21. Gude, N.; Koponen, T.; Pettit, J.; Pfaff, B.; Casado, M.; McKeown, N.; Shenker, S. NOX. ACM SIGCOMM Comput. Commun. Rev.

2008, 38, 105–110. [CrossRef]
22. Ryu Controller. Available online: https://github.com/OpenState-SDN/ryu (accessed on 8 June 2021).
23. Wang, X.; Gao, N.; Zhang, L.; Liu, Z.; Wang, L. Novel MITM Attacks on Security Protocols in SDN: A Feasibility Study. In

Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, Vancouver, BC, Canada, 4–6 October 2010;
USENIX Association: Vancouver, BC, Canada, 2016; pp. 455–465. [CrossRef]

24. Erickson, D. The beacon openflow controller. In HotSDN ‘13. Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, Hong Kong, China, 16 August 2013; ACM Press: New York, NY, USA, 2013; p. 13. [CrossRef]

25. Dong, L.; Gopal, R.; Halpern, J. Forwarding and Control. Element Separation (ForCES) Protocol Specification. RFC 2010, 53, 1–24.
[CrossRef]

26. Song, H. Protocol-oblivious forwarding: Unleash the power of SDN through a future-proof forwarding plane. In HotSDN ‘13.
Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Hong Kong, China, 16 August 2013;
ACM Press: New York, NY, USA; pp. 127–132. [CrossRef]

27. Bianchi, G.; Bonola, M.; Capone, A.; Cascone, C. OpenState. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 44–51. [CrossRef]
28. ONF. OpenFlow Switch Specification version 1.3.0; ONF: Menlo Park, CA, USA, 2012.
29. Nisar, K.; Jimson, E.R.; Hijazi, M.H.A.; Welch, I.; Hassan, R.; Aman, A.H.M.; Sodhro, A.H.; Pirbhulal, S.; Khan, S. A survey on

the architecture, application, and security of software defined networking: Challenges and open issues. Internet Things 2020, 12,
100289. [CrossRef]

30. Nunes, B.A.A.; Mendonca, M.; Nguyen, X.-N.; Obraczka, K.; Turletti, T. A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks. IEEE Commun. Surv. Tutor. 2014, 16, 1617–1634. [CrossRef]

31. Correa Chica, J.C.; Imbachi, J.C.; Botero Vega, J.F. Security in SDN: A comprehensive survey. J. Netw. Comput. Appl. 2020, 159,
102595. [CrossRef]

32. Wang, X.; Gao, N.; Zhang, L.; Liu, Z.; Wang, L. Novel MITM Attacks on Security Protocols in SDN: A Feasibility Study. In
Information and Communications Security, Proceedings of the 18th International Conference, ICICS 2016, Singapore, 29 November–2
December 2016; Lam, K.-Y., Chi, C.-H., Qing, S., Eds.; Springer International Publishing: Cham, Germany, 2016; pp. 455–465. ISBN
978-3-319-50011-9. [CrossRef]

33. Khan, S.; Gani, A.; Abdul Wahab, A.W.; Guizani, M.; Khan, M.K. Topology Discovery in Software Defined Networks: Threats,
Taxonomy, and State-of-the-Art. IEEE Commun. Surv. Tutor. 2017, 19, 303–324. [CrossRef]

34. Hong, S.; Xu, L.; Wang, H.; Gu, G. Poisoning Network Visibility in Software-Defined Networks: New Attacks and Countermea-
sures. In Proceedings of the 2015 Network and Distributed System Security Symposium, San Diego, CA, USA, 8–11 February
2015; Internet Society: Reston, VA, USA, 2015. [CrossRef]

35. Dhawan, M.; Poddar, R.; Mahajan, K.; Mann, V. SPHINX: Detecting Security Attacks in Software-Defined Networks. In
Proceedings of the 2015 Network and Distributed System Security Symposium, San Diego, CA, USA, 8–11 February 2015; Internet
Society: Reston, VA, USA, 2015. [CrossRef]

36. Breitbart, Y.; Garofalakis, M.; Martin, C.; Rastogi, R.; Seshadri, S.; Silberschatz, A. Topology discovery in heterogeneous IP
networks. In Proceedings of the IEEE INFOCOM 2000 Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), TelAviv, Israel, 26–30 March 2000;
Volume 1, pp. 265–274. [CrossRef]

37. Pakzad, F.; Portmann, M.; Tan, W.L.; Indulska, J. Efficient topology discovery in software defined networks. In Proceedings of the
2014 8th International Conference on Signal Processing and Communication Systems (ICSPCS), Queensland, Australia, 15–17
December 2014; pp. 1–8. [CrossRef]

38. Azzouni, A.; Boutaba, R.; Trang, N.T.M.; Pujolle, G. sOFTDP: Secure and efficient OpenFlow topology discovery protocol. In
Proceedings of the NOMS 2018–2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April
2018; pp. 1–7. [CrossRef]

39. Pakzad, F.; Portmann, M.; Tan, W.L.; Indulska, J. Efficient topology discovery in OpenFlow-based Software Defined Networks.
Comput. Commun. 2016, 77, 52–61. [CrossRef]

40. Martinez-Yelmo, I.; Alvarez-Horcajo, J.; Carral, J.A.; Lopez-Pajares, D. eHDDP: Enhanced Hybrid Domain Discovery Protocol for
network topologies with both wired/wireless and SDN/non-SDN devices. Comput. Netw. 2021, 191. [CrossRef]

41. Montero, R.; Agraz, F.; Pages, A.; Perello, J.; Spadaro, S. Dynamic topology discovery in SDN-enabled Transparent Optical
Networks. In Proceedings of the 2017 International Conference on Optical Network Design and Modeling, Budapest, Hungary,
15–18 May 2017; pp. 1–6. [CrossRef]

42. Nehra, A.; Tripathi, M.; Gaur, M.S.; Battula, R.B.; Lal, C. SLDP: A secure and lightweight link discovery protocol for software
defined networking. Comput. Netw. 2019, 150, 102–116. [CrossRef]

43. Zhao, X.; Yao, L.; Wu, G. ESLD: An efficient and secure link discovery scheme for software-defined networking. Int. J. Commun.
Syst. 2018, 31, e3552. [CrossRef]

https://www.opendaylight.org/
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343517/Supported+Topologies
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343517/Supported+Topologies
http://doi.org/10.1145/1384609.1384625
https://github.com/OpenState-SDN/ryu
http://doi.org/10.1007/978-3-319-50011-9_35
http://doi.org/10.1145/2491185.2491189
http://doi.org/10.17487/rfc5810
http://doi.org/10.1145/2491185.2491190
http://doi.org/10.1145/2602204.2602211
http://doi.org/10.1016/j.iot.2020.100289
http://doi.org/10.1109/SURV.2014.012214.00180
http://doi.org/10.1016/j.jnca.2020.102595
http://doi.org/10.1007/978-3-319-50011-9_35
http://doi.org/10.1109/COMST.2016.2597193
http://doi.org/10.14722/ndss.2015.23283
http://doi.org/10.14722/ndss.2015.23064
http://doi.org/10.1109/INFCOM.2000.832196
http://doi.org/10.1109/ICSPCS.2014.7021050
http://doi.org/10.1109/NOMS.2018.8406229
http://doi.org/10.1016/j.comcom.2015.09.013
http://doi.org/10.1016/j.comnet.2021.107983
http://doi.org/10.23919/ondm.2017.7958525
http://doi.org/10.1016/j.comnet.2018.12.014
http://doi.org/10.1002/dac.3552

Appl. Sci. 2021, 11, 6999 28 of 30

44. Li, Y.; Cai, Z.-P.; Xu, H. LLMP: Exploiting LLDP for Latency Measurement in Software-Defined Data Center Networks. J. Comput.
Sci. Technol. 2018, 33, 277–285. [CrossRef]

45. Rojas, E.; Alvarez-Horcajo, J.; Martinez-Yelmo, I.; Carral, J.A.; Arco, J.M. TEDP: An Enhanced Topology Discovery Service for
Software-Defined Networking. IEEE Commun. Lett. 2018, 22, 1540–1543. [CrossRef]

46. Chen, C.C.; Chen, Y.R.; Tsai, S.C.; Yang, M.C. Forwarding path discovery with software defined networking. In Proceedings of
the 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS), Seoul, Korea, 27–29 September 2017;
pp. 299–302. [CrossRef]

47. Dacier, M.C.; Konig, H.; Cwalinski, R.; Kargl, F.; Dietrich, S. Security Challenges and Opportunities of Software-Defined
Networking. IEEE Secur. Priv. 2017, 15, 96–100. [CrossRef]

48. Rawat, D.B.; Reddy, S.R. Software Defined Networking Architecture, Security and Energy Efficiency: A Survey. IEEE Commun.
Surv. Tutor. 2017, 19, 325–346. [CrossRef]

49. Scott-Hayward, S.; Natarajan, S.; Sezer, S. A Survey of Security in Software Defined Networks. IEEE Commun. Surv. Tutor. 2016,
18, 623–654. [CrossRef]

50. Shin, S.; Xu, L.; Hong, S.; Gu, G. Enhancing Network Security through Software Defined Networking (SDN). In Proceedings of
the 2016 25th International Conference on Computer Communication and Networks (ICCCN), Waikoloa, HT, USA, 1–4 August
2016; pp. 1–9. [CrossRef]

51. Akhunzada, A.; Gani, A.; Anuar, N.B.; Abdelaziz, A.; Khan, M.K.; Hayat, A.; Khan, S.U. Secure and dependable software defined
networks. J. Netw. Comput. Appl. 2016, 61, 199–221. [CrossRef]

52. Li, W.; Meng, W.; Kwok, L.F. A survey on OpenFlow-based Software Defined Networks: Security challenges and countermeasures.
J. Netw. Comput. Appl. 2016, 68, 126–139. [CrossRef]

53. Nehra, A.; Tripathi, M.; Gaur, M.S. “Global view” in SDN. In Proceedings of the the 10th International Conference on Security of
Information and Networks—SIN ’17, Jaipur, India, 13–15 October; ACM Press: New York, NY, USA, 2017; pp. 303–306. [CrossRef]

54. Espinel Sarmiento, D.; Lebre, A.; Nussbaum, L.; Chari, A. Decentralized SDN Control Plane for a Distributed Cloud-Edge
Infrastructure: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 256–281. [CrossRef]

55. Hayes, M.; Ng, B.; Pekar, A.; Seah, W.K.G. Scalable Architecture for SDN Traffic Classification. IEEE Syst. J. 2018, 12, 3203–3214.
[CrossRef]

56. Alsaeedi, M.; Mohamad, M.M.; Al-Roubaiey, A.A. Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey. IEEE
Access 2019, 7, 107346–107379. [CrossRef]

57. Isyaku, B.; Mohd Zahid, M.S.; Bte Kamat, M.; Abu Bakar, K.; Ghaleb, F.A. Software Defined Networking Flow Table Management
of OpenFlow Switches Performance and Security Challenges: A Survey. Futur. Internet 2020, 12, 147. [CrossRef]

58. ONF. OpenFlow Switch. Specification 1.5.1; ONF: Menlo Park, CA, USA, 2015.
59. Narisetty, R.; Dane, L.; Malishevskiy, A.; Gurkan, D.; Bailey, S.; Narayan, S.; Mysore, S. OpenFlow configuration protocol:

Implementation for the of management plane. In Proceedings of the 2013 Second GENI Research and Educational Experiment
Workshop, Salt Lake City, UT, USA, 20–22 March 2013; pp. 66–67. [CrossRef]

60. Chan, K.Y.; Chen, C.H.; Chen, Y.H.; Tsai, Y.J.; Lee, S.S.W.; Wu, C.S. Fast Failure Recovery for In-Band Controlled Multi-Controller
OpenFlow Networks. In Proceedings of the 2018 International Conference on Information and Communication Technology
Convergence (ICTC), Jeju, Korea, 17–19 October 2018; pp. 396–401. [CrossRef]

61. Tr-510, O.N.F. The Benefits of Multiple Flow Tables and TTPs. Available online: https://www.opennetworking.org/wp-content/
uploads/2014/10/TR_Multiple_Flow_Tables_%0Aand_TTPs.pdf (accessed on 2 April 2021).

62. Fancy, C.; Pushpalatha, M. Performance evaluation of SDN controllers POX and floodlight in mininet emulation environment. In
Proceedings of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 7–8 December 2017;
pp. 695–699. [CrossRef]

63. Cisco Cisco Open SDN Controller. Available online: https://www.cisco.com/c/en/us/products/wireless/wireless-lan-
controller/index.html (accessed on 8 June 2021).

64. Geni GENI Wiki. Available online: http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol (accessed on 6 June 2021).
65. Mayoral, A.; Vilalta, R.; Muñoz, R.; Casellas, R.; Martínez, R. SDN orchestration architectures and their integration with Cloud

Computing applications. Opt. Switch. Netw. 2017, 26, 2–13. [CrossRef]
66. Ochoa-Aday, L.; Cervello-Pastor, C.; Fernandez-Fernandez, A. ETDP: Enhanced topology discovery protocol for software-defined

networks. IEEE Access 2019, 7, 23471–23487. [CrossRef]
67. Araniti, G.; Cosmas, J.; Iera, A.; Molinaro, A.; Morabito, R.; Orsino, A. OpenFlow over wireless networks: Performance analysis.

IEEE Int. Symp. Broadband Multimed. Syst. Broadcast. BMSB 2014. [CrossRef]
68. Aslan, M.; Matrawy, A. On the Impact of Network State Collection on the Performance of SDN Applications. IEEE Commun. Lett.

2016, 20, 5–8. [CrossRef]
69. Kempf, J.; Bellagamba, E.; Kern, A.; Jocha, D.; Takacs, A.; Skoldstrom, P. Scalable fault management for OpenFlow. In Proceedings

of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 6606–6610.
[CrossRef]

70. Abdelhadi, A.; Boutaba, R.; Pujolle, G. Limitations of OpenFlow Topology Discovery Protocol. In Proceedings of the 16th Annual
Mediterranean Ad Hoc Networking Workshop (Med-hoc-Net 2017), Budva, Montenegro, 28–30 June 2017.

http://doi.org/10.1007/s11390-018-1819-2
http://doi.org/10.1109/LCOMM.2018.2845372
http://doi.org/10.1109/APNOMS.2017.8094133
http://doi.org/10.1109/MSP.2017.46
http://doi.org/10.1109/COMST.2016.2618874
http://doi.org/10.1109/COMST.2015.2453114
http://doi.org/10.1016/j.jnca.2016.04.011
http://doi.org/10.1016/j.jnca.2015.11.012
http://doi.org/10.1016/j.jnca.2016.04.011
http://doi.org/10.1145/3136825.3136862
http://doi.org/10.1109/COMST.2021.3050297
http://doi.org/10.1109/JSYST.2017.2690259
http://doi.org/10.1109/ACCESS.2019.2932422
http://doi.org/10.3390/fi12090147
http://doi.org/10.1109/GREE.2013.21
http://doi.org/10.1109/ICTC.2018.8539715
https://www.opennetworking.org/wp-content/uploads/2014/10/TR_Multiple_Flow_Tables_%0Aand_TTPs.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/TR_Multiple_Flow_Tables_%0Aand_TTPs.pdf
http://doi.org/10.1109/ISS1.2017.8389262
https://www.cisco.com/c/en/us/products/wireless/wireless-lan-controller/index.html
https://www.cisco.com/c/en/us/products/wireless/wireless-lan-controller/index.html
http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol
http://doi.org/10.1016/j.osn.2015.09.007
http://doi.org/10.1109/ACCESS.2019.2899653
http://doi.org/10.1109/BMSB.2014.6873559
http://doi.org/10.1109/LCOMM.2015.2496955
http://doi.org/10.1109/ICC.2012.6364688

Appl. Sci. 2021, 11, 6999 29 of 30

71. Tbah, M.; Azzouni, A.; Nguyen, M.T.; Pujolle, G. Topology Discovery Performance Evaluation of OpenDaylight and ONOS
Controllers. In Proceedings of the 2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN),
Paris, France, 19–21 February 2019; pp. 285–291. [CrossRef]

72. Shirmarz, A.; Ghaffari, A. Performance issues and solutions in SDN-based data center: A survey. J. Supercomput. 2020, 76,
7545–7593. [CrossRef]

73. Bholebawa, I.Z.; Dalal, U.D. Performance analysis of SDN/openflow controllers: POX versus floodlight. Wirel. Pers. Commun.
2018, 98, 1679–1699. [CrossRef]

74. Mittal, S. Performance Evaluation of Openflow SDN Controllers. Adv. Intell. Syst. Comput. 2018, 736, 913–923. [CrossRef]
75. Vaghani, R.; Lung, C.-H. A Comparison of Data Forwarding Schemes for Network Resiliency in Software Defined Networking.

Procedia Comput. Sci. 2014, 34, 680–685. [CrossRef]
76. Tarnaras, G.; Haleplidis, E.; Denazis, S. SDN and ForCES based optimal network topology discovery. In Proceedings of the 2015

1st IEEE Conference on Network Softwarization (NetSoft), London, UK, 13–17 April 2015; pp. 1–6. [CrossRef]
77. Rajaratnam, A.; Kadikar, R.; Prince, S.; Valarmathi, M. Software defined networks: Comparative analysis of topologies with

ONOS. In Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking,
Chennai, India, 22–24 March 2017; pp. 1377–1381. [CrossRef]

78. Bah, M.T.; Del-Piccolo, V.; Bourguiba, M.; Haddadou, K. A centralized controller to improve fault tolerance in TRILL-based
fabric networks. In Proceedings of the 2016 3rd Smart Cloud Networks & Systems (SCNS), Dubai, United Arab Emirates, 19–21
December 2016; pp. 1–6. [CrossRef]

79. Alharbi, T.; Portmann, M.; Pakzad, F. The (In)Security of Topology Discovery in Software Defined Networks. In Proceedings
of the 2015 IEEE 40th Conference on Local Computer Networks, Clearwater Beach, FL, USA, 26–29 October 2015; pp. 502–505.
[CrossRef]

80. Nguyen, T.-H.; Myungsik, Y. Analysis of link discovery service attacks in SDN controller. In Proceedings of the 2017 International
Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13 January 2017; pp. 259–261. [CrossRef]

81. Smyth, D.; McSweeney, S.; O’Shea, D.; Cionca, V. Detecting Link Fabrication Attacks in Software-Defined Networks. In
Proceedings of the 2017 26th International Conference on Computer Communication and Networks (ICCCN), Vancouver, BC,
Canada, 31 July–3 August 2017; pp. 1–8. [CrossRef]

82. Jiménez, Y.; Cervelló-Pastor, C.; García, A. Dynamic resource discovery protocol for software defined networks. IEEE Commun.
Lett. 2015, 19, 743–746. [CrossRef]

83. Choi, J.S.; Kang, S.; Lee, Y. Design and evaluation of a PCEP-based topology discovery protocol for stateful PCE. Opt. Switch.
Netw. 2017, 26, 39–47. [CrossRef]

84. Montero, R.; Agraz, F.; Pagès, A.; Perelló, J.; Spadaro, S. SDN-based parallel link discovery in optical transport networks. Trans.
Emerg. Telecommun. Technol. 2019, 30, 1–13. [CrossRef]

85. Alvarez-Horcajo, J.; Rojas, E.; Martinez-Yelmo, I.; Savi, M.; Lopez-Pajares, D. HDDP: Hybrid Domain Discovery Protocol for
Heterogeneous Devices in SDN. IEEE Commun. Lett. 2020, 24, 1655–1659. [CrossRef]

86. Zhao, R.; Liu, Y.; Dobre, O.A.; Wang, H.; Shen, X. An efficient topology discovery protocol with node id assignment based on
layered model for underwater acoustic networks. Sensors 2020, 20, 6601. [CrossRef]

87. Tarnaras, G.; Athanasiou, F.; Denazis, S. Efficient topology discovery algorithm for software-defined networks. IET Netw. 2017, 6,
157–161. [CrossRef]

88. Katz, D.; Ward, D. RFC 5880, Bidirectional Forwarding Detection (June 2010).
89. Rifai, M.; Huin, N.; Caillouet, C.; Giroire, F.; Moulierac, J.; Lopez Pacheco, D.; Urvoy-Keller, G. Minnie: An SDN world with few

compressed forwarding rules. Comput. Netw. 2017, 121, 185–207. [CrossRef]
90. Panda, A.; Samal, S.S.; Turuk, A.K.; Panda, A.; Venkatesh, V.C. Dynamic Hard Timeout based Flow Table Management in Openflow

enabled SDN. In Proceedings of the 2019 International Conference on Vision Towards Emerging Trends in Communication and
Networking, Vellore, India, 30–31 March 2019. [CrossRef]

91. Isyaku, B.; Kamat, M.B.; Abu Bakar, K.B.; Mohd Zahid, M.S.; Ghaleb, F.A. IHTA: Dynamic Idle-Hard Timeout Allocation
Algorithm based OpenFlow Switch. In Proceedings of the 2020 IEEE 10th Symposium on Computer Applications & Industrial
Electronics, Penang, Malaysia, 18–19 April 2020; pp. 170–175. [CrossRef]

92. Xu, X.; Hu, L.; Lin, H.; Fan, Z. An adaptive flow table adjustment algorithm for SDN. In Proceedings of the 2019 IEEE 21st
International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart
City, Zhangjiajie, China, 10–12 August 2019; pp. 1779–1784. [CrossRef]

93. Kotani, D.; Okabe, Y. A Packet-In message filtering mechanism for protection of control plane in OpenFlow switches. IEICE Trans.
Inf. Syst. 2016, E99D, 695–707. [CrossRef]

94. Favaro, A.; Ribeiro, E.P. Reducing SDN/openflow control plane overhead with blackhole mechanism. In Proceedings of the 2015
Global Information Infrastructure and Networking Symposium (GIIS), Tunis, Tunisia, 28–30 October 2020; pp. 1–4. [CrossRef]

95. Leng, B.; Huang, L.; Qiao, C.; Xu, H.; Wang, X. FTRS: A mechanism for reducing flow table entries in software defined networks.
Comput. Netw. 2017, 122, 1–15. [CrossRef]

96. Li, Q.; Huang, N.; Wang, D.; Li, X.; Jiang, Y.; Song, Z. HQTimer: A Hybrid Q-Learning-Based Timeout Mechanism in Software-
Defined Networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 156–166. [CrossRef]

http://doi.org/10.1109/ICIN.2019.8685915
http://doi.org/10.1007/s11227-020-03180-7
http://doi.org/10.1007/s11277-017-4939-z
http://doi.org/10.1007/978-3-319-76348-4_87
http://doi.org/10.1016/j.procs.2014.07.097
http://doi.org/10.1109/NETSOFT.2015.7116181
http://doi.org/10.1109/WiSPNET.2017.8299989
http://doi.org/10.1109/SCNS.2016.7870564
http://doi.org/10.1109/LCN.2015.7366363
http://doi.org/10.1109/ICOIN.2017.7899515
http://doi.org/10.1109/ICCCN.2017.8038435
http://doi.org/10.1109/LCOMM.2015.2403322
http://doi.org/10.1016/j.osn.2015.09.006
http://doi.org/10.1002/ett.3512
http://doi.org/10.1109/LCOMM.2020.2991347
http://doi.org/10.3390/s20226601
http://doi.org/10.1049/iet-net.2017.0066
http://doi.org/10.1016/j.comnet.2017.04.026
http://doi.org/10.1109/ViTECoN.2019.8899359
http://doi.org/10.1109/ISCAIE47305.2020.9108803
http://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00244
http://doi.org/10.1587/transinf.2015EDP7256
http://doi.org/10.1109/GIIS.2015.7347173
http://doi.org/10.1016/j.comnet.2017.04.022
http://doi.org/10.1109/TNSM.2018.2890754

Appl. Sci. 2021, 11, 6999 30 of 30

97. Yang, H.; Riley, G.F. Machine learning based flow entry eviction for OpenFlow switches. In Proceedings of the 2018 27th
International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China, 30 July–2 August 2018.
[CrossRef]

98. Alowa, A.; Fevens, T. A dynamic recovery module for in-band control channel failure in software defined networking. In
Proceedings of the 2020 6th IEEE Conference on Network Softwarization, Ghent, Belgium, 29 June–3 July 2020; pp. 209–217.
[CrossRef]

99. Fan, W.; Yang, F. Centralized Trust-Based In-Band Control for SDN Control Channel. IEEE Access 2020, 8, 4289–4300. [CrossRef]
100. Asadujjaman, A.S.M.; Rojas, E.; Alam, M.S.; Majumdar, S. Fast Control Channel Recovery for Resilient In-band OpenFlow

Networks. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops, Montreal, QC, Canada,
25–29 June 2018; pp. 232–236. [CrossRef]

101. Osman, M.; Nunez-Martinez, J.; Mangues-Bafalluy, J. Hybrid SDN: Evaluation of the impact of an unreliable control channel.
In Proceedings of the 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN),
Berlin, Germany, 6–8 November 2017; Volume 2017, pp. 242–246. [CrossRef]

102. Hwang, R.-H.; Tang, Y.-C. Fast Failover Mechanism for SDN-Enabled Data Centers. In Proceedings of the 2016 International
Computer Symposium (ICS), Chiayi, Taiwan, 15–17 December 2016; pp. 171–176. [CrossRef]

103. Ko, K.; Son, D.; Hyun, J.; Li, J.; Han, Y.; Hong, J.W.-K. Dynamic failover for SDN-based virtual networks. In Proceedings of the
2017 IEEE Conference on Network Softwarization (NetSoft), Bologna, Italy, 3–7 July 2017; pp. 1–5. [CrossRef]

104. Ibrar, M.; Wang, L.; Muntean, G.; Akbar, A.; Shah, N.; Malik, K.R. PrePass-Flow: A Machine Learning based technique to
minimize ACL policy violation due to links failure in hybrid SDN. Comput. Netw. 2021, 184, 107706. [CrossRef]

105. Gao, P.; Xu, Y.; Chao, H.J. OVS-CAB: Efficient rule-caching for Open vSwitch hardware offloading. Comput. Netw. 2021, 188,
107844. [CrossRef]

http://doi.org/10.1109/ICCCN.2018.8487362
http://doi.org/10.1109/NetSoft48620.2020.9165380
http://doi.org/10.1109/ACCESS.2019.2963475
http://doi.org/10.1109/NETSOFT.2018.8460079
http://doi.org/10.1109/NFV-SDN.2017.8169866
http://doi.org/10.1109/ICS.2016.0042
http://doi.org/10.1109/NETSOFT.2017.8004200
http://doi.org/10.1016/j.comnet.2020.107706
http://doi.org/10.1016/j.comnet.2021.107844

	Introduction
	Topology Discovery in SDN Networks
	SDN-Switch Discovery
	Host Discovery
	Link Discovery
	Link Discovery Protocol
	Control Channel
	Performance of the Link Discovery (OFDP)
	OFDP in Huge and Dynamic Environments
	OFDP Performance Metrics

	Challenges of the Link Discovery

	Recent SDN Topology Discovery Performance Studies
	Link Discovery Improvement Algorithms
	Periodic
	Event

	Flow Table Management Algorithms
	Control Channel Improvement Algorithms

	Discussion and Open Issues
	Location of the Topology Discovery Logic
	How Much Do Methods Differ from OFDP
	Operation Methods
	CPU Usage
	Learning Time

	Conclusions
	References

