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Abstract: Using random projection, a method to speed up both kernel k-means and centroid ini-
tialization with k-means++ is proposed. We approximate the kernel matrix and distances in a
lower-dimensional space R? before the kernel k-means clustering motivated by upper error bounds.
With random projections, previous work on bounds for dot products and an improved bound for
kernel methods are considered for kernel k-means. The complexities for both kernel k-means with
Lloyd'’s algorithm and centroid initialization with k-means++ are known to be O(nkD) and ®(nkD),
respectively, with n being the number of data points, the dimensionality of input feature vectors D
and the number of clusters k. The proposed method reduces the computational complexity for the
kernel computation of kernel k-means from O(1n2D) to O(n?d) and the subsequent computation for
k-means with Lloyd'’s algorithm and centroid initialization from O(nkD) to O(nkd). Our experiments
demonstrate that the speed-up of the clustering method with reduced dimensionality d = 200 is 2 to
26 times with very little performance degradation (less than one percent) in general.

Keywords: kernel k-means; k-means++; random projection; dimensionality reduction; high dimen-
sional data

1. Introduction

The clustering problem is one of the oldest and most important problems in machine
learning. k-means clustering has attracted increasing attention recently. It can be used
in many fields, such as market segmentation, social network analysis, and astronomical
data analysis. k-means clustering is an NP-hard problem. In this problem, we are given n
data points,

.,Xn} (1)

in the D-dimensional space. The goal is to separate the points X into k clusters C,

X = {x1,x2,..

C={C,Cy...,C} 2)

where C; denotes the i-th cluster, so as to minimize the potential function, which is the
total sum of squared distances between each point to its closest center. That is,

k

argmin) )~ |x — ¢;]|? (©)]
C  i=1xeC

where ¢; denotes the center point of the i-th cluster.

Data in high dimensionality has become an increasingly frequent problem in machine
learning. Memory and the computational cost would be reduced if dimensionality can
be reduced. To deal with this issue, plenty of techniques have been proposed, such as
locally linear embedding, principle component analysis (PCA), ISOMAP, and multidimen-
sional scaling. However, high computational training overheads and complex procedures
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are involved with a lot of the proposed methods, especially with very high-dimensional
data. Because of this, there has been a surge of interest in new, simple and more compu-
tationally efficient techniques using random projection for very high-dimensional data,
for example, [3-5].

In addition, kernel k-means is a popular method due to the fact that k-means clustering
utilizes the Euclidean distance metric to calculate the similarity between data points,
implying that only linearly separable clusters in the original input space can be found.
Obviously, the measure is not suitable for just any dataset.

With kernel methods, data in the original input space is explicitly mapped into a dif-
ferent feature space through the user-specified kernel function. Features in data points are
mapped to higher dimensional feature spaces. Putting data points in higher dimensional
spaces after they have been mapped is a reasonable approach without the assumption
that data points are linearly separable, which is also applicable for traditional k-means
clustering. This advantage has made kernel k-means popular in recent years [6,7]. Kernel
k-means, which is an extension of k-means, computes kernels instead of the Euclidean dis-
tance for point-wise distances. Kernel k-means projects data points into high-dimensional
kernel space and performs k-means clustering in the mapped feature space to allow non-
linearly separable clusters. In kernel k-means, it is required to compute an n x n kernel
matrix with feature vectors in the original space, and the computation cost is a function of
n and the D.

To improve the performance with centroid initialization, the k-means++ seeding algo-
rithm [8] is used to obtain k initial centers, which give the expected O(log k) approximation
ratio, as shown by Arthur and Vassilvitskii. In [8], the k-means++ algorithm is introduced,
which is a seeding algorithm for k-means to replace the uniform distribution of Lloyd’s
initialization with a probability distribution given by the points’ squared distances from

i 2
with Dist(x) denoting the shortest distance to the closest center already chosen. k-means++
provides a performance guarantee of only a constant factor from the optimum and is
proven to be O(log k)-competitive. The performance of the k-means++ algorithm is guar-
anteed, but the computational effort of the clustering still depends on the number of points
n, dimensionality D and the number of clusters to be discovered k with the complexity
of O(Dnk).

The remainder of the paper describes our contributions by applying kernel k-means
with random projection and efficient initialization in the section “Our Method”. In the
Experiment Section, a number of experimental results have been shown. The optimal
dimensionality, an ablation study, and a number of accuracy measures for our method are
discussed before the Conclusion Section.

the closest chosen centers as the weights, i.e., the weight for data point x is

Contributions

In this work, there are two main contributions in the kernel k-means clustering
method. The first contribution of this paper is the proposal of a sped-up version of k-
means++. By using this centroid initialization prior kernel k-means, the initial centers are
selected carefully by probability in a projected lower-dimensional subspace. The second
contribution of this paper is a method speeding up the computation of the Gaussian kernel
by projecting the data matrix into a lower-dimensional subspace. After the dimensionality
of data is reduced, it effectively speeds up the computation of kernel k-means.

2. Related Work

In [9], random projection is adopted with iteratively increasing dimensionality for
k-means clustering, which successfully obtains increasingly detailed resolutions and avoids
local minima. Different methods for dimensionality reduction with feature selection and
feature extraction for k-means clustering have been investigated by Boutsidis and Zouzias
et al. in [10-12]. In [13], it is shown that dimensionality could be reduced by the use of
PCA for data clustering with the objective function of k-means. An enhanced k-means
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method using a new method for centroid initialization with PCA is proposed by Napoleon
and Pavalakodi in [14].

To improve clustering performance with kernels, in [15], an explicitly theoretical con-
nection between kernel k-means and spectral clustering methods is presented by S. Dhillon
et al. That connection leads to a weighted kernel k-means that monotonically decreases
the normalized cut. In [16], a new clustering scheme is proposed by Zhang et al., which
changes the clustering order from the sequence of samples to the sequence of kernels and
employs a disk-based strategy to control the size of data. The new clustering scheme
has been demonstrated to save ninety percent of the running time. A novel algorithm
called approximate kernel k-means is proposed by Chitta et al. in [17], which tries to
scale up the kernel-based clustering algorithm by using randomization to reduce both the
computational complexity and the memory requirement.

However, with very large-scale datasets, memory requirements have always been
a concern for kernel k-means. Incomplete Cholesky factorization is used to accelerate
clustering and reduce the memory cost [18]. Its core idea is to utilize the product of a low-
rank matrix and its transposition to approximate the complete kernel matrix. It is shown
that with the decrease of the eigenvalues of the kernel matrix, the incomplete Cholesky
factorization is exponentially convergent. Compared to k-means, kernel k-means can seize
nonlinear structures with the cost of scaling poorly when the size of the matrix increases
due to the fact that kernel methods always operate on the kernel matrix of the data. By
employing approximately finite-dimensional feature maps based on spectral analysis,
Amir Aradnia et al. [19] propose an approach to combine the advantages of both the linear
and nonlinear methods. They suggest applying approximately finite-dimensional feature
maps in kernel k-means to reduce the huge stored kernel matrix in the memory. Their
explicit kernel Minkowski weighted k-means has been shown to be adaptive and capable
of clustering in the new space. By adopting the Minkowski metric and feature weighting,
the clustering performance improved and exhibited stronger robustness to noise features.
Exploiting information from multiple views can result in better performance compared
to clustering on a single view. For multiple-view clustering, a cluster-weighted kernel
k-means method has been proposed [20]. It demonstrates high efficiency by assigning
reasonable weights to related clusters among different views. The weight accounts for the
significance of each cluster from each view to the final solution. In the meantime, it can
also be learned automatically based on the intra-cluster similarity of the cluster different
from all its corresponding clusters in different views.

In previous work, for improved centroid initialization, k-means++ mentioned in
the introduction by Arthur and Vassilvitskii [8] is O(log k)-competitive with the optimal
clustering. However, the question whether k-means++ yields an O(1)-approximation with

probability —1L - or not is still open. In the work of Jaiswal and Garg [21], it is shown

poly(k)

that the sampling algorithm gives an O(1) approximation with probability Q(3) for any
k-means problem instance where the data satisfies certain separation conditions. On the
other hand, instances in [22] found that k-means++ achieves an approximation ratio of
(% — €)log k. In [23] by Bhattacharya, Jaiswal, and Ailon, a simple two-dimensional dataset
is presented, on which the seeding algorithm achieves an O(log k) approximation ratio with
probability exponentially small in k. In [24], the presented seeding algorithm works well
even when more than one center is chosen in a single iteration with k-means++ parallelized,
which drastically reduces the number of passes needed to obtain a good initialization for
k-means. In [25], it has been shown that by mapping data points into randomized lower-
dimensional subspace, the point-wise distances are preserved as well as conventional
dimensionality reduction methods, such as principal component analysis (PCA).

Unlike the approaches in [18,20], our goal is to improve the computational efficiency
for the kernel k-means and its initialization with k-means++ using random projection for
dimensionality reduction such that all distances are computed in a much lower-dimensional
space. We propose an efficient clustering method by (1) making k-means++ more efficient
with random projection and (2) subsequently clustering data using kernel k-means in the
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projected lower-dimensional space. The intuition of the proposed method is to reduce the
computational complexity by performing dimensionality reduction prior to both centroid
initialization and kernel k-means. One of the advantages of the proposed method is that
it is simple to code and analyze. The induced error is theoretically bound by the Johnson

Lindenstrauss lemma (the JL lemma) (i.e., € = 4/ 20 l;g ). Compared to the traditional

dimensionality reduction approaches, such as feature selection, the features extraction we
proposed would consider all the available features. This reduces the risk that relevant
features might be mistakenly overlooked. Furthermore, in the efficient initialization we
proposed, the user can strike a balance between accuracy and required learning time by
the selection between kmFRP /kmIRP /kmBRP.

3. Our Method
3.1. Kernel k-Means with Random Projection

With kernel k-means, similarities are determined by replacing inner products with
kernel functions. The complexity of kernel computation is O(n?D), which is a function of
the dimensionality. The intuition of our method is to perform dimensionality reduction
to reduce D with random projection prior to centroid initialization and kernel k-means
clustering. The proposed method allows the computation of the kernel matrix and distances
for initialization to be performed in a much lower-dimensional space in order to speed up
the clustering process.

As the complexity of the kernel method with conventional kernel matrix computa-
tion X - XT is O(n?D), the computation of the kernel matrix can be expensive when the
dimensionality D is very large with genomic data, for example. We propose an approx-
imation to the kernel matrix by using random projection, which maps the data points
to a lower-dimensional space ¢(X) - qb(X)T, with the time complexity of O(n?), which is
independent of D. With the same rationale as the method we propose for k-means++,
combining random projection with kernel k-means allows the clustering process to be done
in a lower-dimensional space without significant performance degradation.

With random projection and D-dimensional data vectors x with n data points, we
have X € R"*P in which vectors are projected into much lower-dimensional subspace R*
withd < D, i.e,,

XProi = X-R 4)

where D denotes the original dimensionality, 4 denotes the reduced dimensionality, and
RP*? is a random matrix with its entries as normal random variables N(0,1) - %. The

complexity of this algorithm is of order O(Ddn). If the data matrix X is very sparse with
s non-zero entries per dimension, the complexity is of order O(sdn), where s denotes the
non-zero entries per dimension. x € RP is projected into space R, i.e., random projection
is the mapping f: RP = R4 forall u, v pairs in RD:

(1=e)fu—v|? < [[f(w) = WP < (1 +€)[Ju—v|? ®)

where € is the error bound that is determined as a function of the number of data points
and dimensionality of the projected matrix, i.e., n and d as

c— /20l§gn ©)

For kernel methods, in Lemma 1 of [1], there is a probability of at least 1 — ¢ that

IXTX = XTR-R"X]|2 < &5 @)

where the distance between the dot product in the original feature space and the dot
product in the projected space is bounded by €5. In our method with kernel k-means using
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random projection, the kernel matrix is approximated in a lower-dimensional space with
the above error bound considered, shown in Algorithm 1.

Algorithm 1: Kernel k-means with random projection.

1 R € RP*? random matrix

2 k(.,.)denotes the kernel function.

3 XP9 = X . R

4 Choose initial centers ¢, ¢, . . ., ¢; uniformly at random from XProj,
5 do

6 foriel,...,ndo
7 forjel,...,kdo
. - roj _ proj roj proj proj _proj
8 dist;; = k(x!", X! ])—b—k(c]’? ],c]l.] Ty — 2k(x! ],c;’ D)
9 end
10 Assign xfm] to C;, when min(dist; ; € dist; 1 )
11 end
12 foriecl,...,kdo
13 ‘ cfm] = mean(Cfm])
14 end

15 while any of ¢1, o, . . ., ¢k is changed;

Since we propose to use random projection for both the center points initialization
and clustering, the same projected matrix in a lower-dimensional space is used as input
to both the k-means++ and kernel k-means. However, for kernel methods with random
projection, the dot product is approximated like the approximated Euclidean distance using
the JL lemma for the preservation of the point-wise Euclidean distance. In [2], an improved
upper-bound on the error of the dot product with random projection is provided. Thus,
to justify the upper bounded error of random projection for kernel k-means++ using both
k-means++ and kernel k-means, the JL lemma and also the improved bound for kernel
methods from [2] are considered.

In addition, in [26], it has been shown that initial values from k-means++ with the Eu-
clidean distance could also improve the kernel k-means clustering performance measured
by within-cluster-sum-of-squares (WCSS) and the time for convergence during training.
In [27], it is also shown that the selection of k-means centroids in the instance space pro-
vides a good estimate of the kernel k-means centroids with the Gaussian kernel. It is
computationally cheaper than the initialization performed in the kernel feature space.

3.2. Efficient Initialization

The k-means++ initialization algorithm is a popular initialization method for k-means
with lower performance bounded by the statistical guarantee in [8]. We used random pro-
jection to approximate distances in the k-means++ algorithm to reduce the time complexity
of O(nkD). We let Dist(x) denote the shortest distance from a data point x to the closest
center already chosen. Since the preservation of point-wise distances in random projection
is guaranteed by the JL lemma [28], the dimensionality of the input data can be reduced for
Dist(x) to remain close to its original value. The computation of the initialization can be
reduced significantly, especially when the original dimensionality is very high.

An expensive step in the k-means++ algorithm is to compute the weights Dist(x)?,
which takes a new center ¢; and chooses x € X with probability

Dist(x)?

Toex Dist(x)? ®
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Like kernel methods, after random projection, we do not need to have access to x
directly as Dist(x)? is only required to be computed for choosing the initial center. We
approximate Dist(x)? as the original dimensionality of x, which can be very high and
obtaining Dist(x)? can be expensive.

Unlike the work done by Boutsidis and Zouzias et al. [10-12], our idea is to find a good
approximation to Dist(x)2, which can be shown to be sufficiently close to the original value
of Dist(x)? and at the same time, computationally simple. By approximating Dist(x)?
in the k-means++ algorithm, we obtain an approximate algorithm to k-means++ with a
complexity of O(nk). The approximation to Dist(x)? can be obtained through random
projections without perturbing the distances too much. We empirically show that these
algorithms perform well on real-world datasets.

It has been shown that k-means++ is O(log k)-competitive with the optimal clustering.
The algorithm has been shown to improve both the speed and the accuracy of Lloyd’s
algorithm for k-means. We take advantage of the performance guarantee of k-means++
provided by Theorem 3.1, which states that “if C is constructed with k-means++, then the
corresponding potential function satisfies, E[¢]8(Ink + 2)popr.” [8].

Our proposed method for initialization is shown in Algorithm 3, which is called
subroutine Algorithm 2. Algorithm 2 generates one of three types of random matrices for k-
means++ with random projection, i.e., fixed random matrices, different random matrices for
each iteration, and buffered random matrices (kmFRP, kmIRP, and kmBRP). Algorithm 3
obtains the random matrix generated in Algorithm 2, which computes the projected vectors
with random projection and finds initial centers using data points projected into a lower-
dimensional space in matrix X*"/.

Algorithm 2: Proposed function to generate random matrix.

Input: type is the type of the random matrix, which can be kmFRP, kmIRP or
kmBRP
b is required for the buffer size if type is kmBRP

Output: R € RP*? random matrix

1 Create buffer B for the first time this subroutine is called such that
B := {Ry,Ry,..., Ry} with the loop:

2 foriel,...,bdo

5 | R, = N(0,1)- L2

d
1 end
5 if type is kmIRP then
s | R=N(©1) L

N
else if type is kmBRP then
8 i = (random integer mod b) +1
9 R + Ri

10 return R

N

N}(O,l) generates D x d normal distributed random numbers between 0 to 1.

3.2.1. k-Means++ with Fixed Random Projection (kmFRP)

kmFRP is the simplest variant of the initialization method. We approximate X by
using X"/ such that Dist(x)? can be found with a time complexity of O(d) instead of O(D).
XProj- ¢ R"4 with projected vectors are computed before the seeding stage of k-means++
with random projections.

3.2.2. k-means++ with Iterative Random Projection (kmIRP)

With kmIRP, we also approximate X by using XP"%/. However, a new random projec-
tion is used at each iteration to produce XP"/ with the aim of reducing the performance
degradation measured in WCSS introduced by the approximation using random projec-
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tion. This is like a stochastic gradient descent. With a different X?"/ at each iteration, the
approximation to Dist(x)? is different such that at the end of all iterations, X"’/ better
approximates the original high-dimensional vectors x with averaging. However, the dis-
advantage is that the computation for random projection is done at each iteration, so it is
computationally more expensive.

3.2.3. k-Means++ with Buffered Random Projection (kmBRP)

Buffering a fixed number of random matrices is also considered for the initial center
selection. The aim is to combine the advantages of the previous two variants with a limited
number of random projections for efficiency. Although multiple random projections could
help to reduce the bias in approximation, a new random matrix at each iteration may not
be necessary. At the initialization stage, we have a buffer B with b random matrices that,
B := {Ry,Ry,...,Ry}. At each iteration, a random index i is generated for R; € B.

k-means++ with fixed random projection (kmFRP) is the simplest and the most
computationally efficient variant of our method, but it may lead to a larger degradation
of performance, as discussed previously. k-means++ with iterative random projection
(kmIRP) theoretically provides the least biased clustering at different iterations with more
computation for random projections. k-means++ with buffered random projection (kmBRP)
is something in the middle between kmFRP and kmIRP that strikes a balance for good
optimization performance while maintaining reasonable computational efficiency. With
the free parameter b, which is the buffer size, the user can control the trade-off between
optimization performance and computational efficiency.

Algorithm 3: Proposed k-means++ approximation with different types of ran-
dom projection.

Input: type is the type of the random matrix, which can be kmFRP, kmIRP
or kmBRP

Input: b is required for the buffer size if type is kmBRP

Output: k initial centers selected

1 Choose initial center ¢; uniformly at random from X

R,=N(0,1) L

N

vd
3 forie2,...,kdo
4 XProi — X -R
5 | Choose ¢; = x € XP™ with probabilit Dist(x)*
i P Y T proj Distx?

(=)}

if type is either kmIRP or kmBRP then
| R = call Algorithm 2 with type, b
end

® 3

3.3. Complexity

Random projection is known to have a time complexity of O(sdn) instead of O(Ddn)
with sparse matrices, where s denotes non-zero entries per dimension. Sparse data are com-
mon in various applications, including text classification and bioinformatics data (e.g., gene
expression data). k-means++ has the complexity of O(Dnk). With random projections,
the complexity of k-means++ becomes of order O(dnk) as we can avoid computing for
all D dimensions. In practice, with our JL lemma application in the centers’ initialization
in k-means++, dimensionality can be reduced to a few hundred, e.g., 200. The lemma
requires no assumption on the original data [28]. Therefore, d in O(dnk) can be replaced by
a constant. With the constant, O(dnk) becomes O(nk).
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4. Experiments
4.1. Datasets

We used six datasets to evaluate the improvement of our method. The first two are
computer vision datasets, namely MNIST [29] and ImageNet [30]. Another two datasets
are from bioinformatics datasets, called SMK-187 [31] and GLI-85 [32] (the SMK-187 and
GLI-85 datasets could be downloaded from https://jundongl.github.io/scikit-feature/
OLD/datasets_old.html accessed date 27 July 2021). The last two datasets are for text
mining, called 20 newsgroups [33] and Reuters-21578 [34].

MNIST is a ten-class database for handwritten digit recognition. There are 60,000 samples
and 10,000 samples in the training set and the testing set, respectively. In the testing set,
there are 1000 samples per class label. Every sample consists of 28 by 28 pixels (i.e., 784
features) with which the value is inside the interval [0,255], and represents the greyscale of
that pixel. We evaluate clustering performance by comparing how well different methods
optimize clustering with the WCSS measure. In our experiments, we only sample a subset
of 5000 data points from the training set. Thus, the dataset to be examined consists of
5000 data points with dimensionality 784 (i.e., n = 5000, D = 784).

The ImageNet [30] database consists of over 14.2 million images that are organized
according to the WordNet hierarchy. Each node in this hierarchy represents a concept
(known as the “synset”), and all the images are indexed by over 21-thousand synsets.
In our analysis, we chose 14,112 images from ten cat-like synsets (namely, an Egyptian
cat, a foumart, a lynx, a Madagascar cat, a mountain lion, a Persian cat, a Siamese cat, a
skunk, a tabby cat, and a tiger cat). They are all from the leaf nodes in the hierarchy. We
called this dataset the ImageNet-Cat dataset. Figure 1 shows an example from each synset
used to form this dataset. We used the bag-of-visual-words features of these images from
image-net.org. It consists of 1000 visual-words features per photo. In our experiments, we
only sampled 2000 images from the ImageNet-Cat dataset for evaluation withn = 2000
and D = 1000.

Figure 1. Ten different types of cats from ImageNet.

SMK-187 is a dataset with gene expression data from smokers with lung cancer and
also samples from smokers without lung cancer. There are 19,993 features in each sample
in SMK-187. This is a two-class dataset with n = 187 and D = 19,993.

GLI-85 is a dataset with transcriptional profiling of gliomas. The dataset is collected
from 74 patients where transcriptional profiling has been applied to 85 gliomas. The
74 patients studied were analyzed if their initial tumor was diagnosed as a Grade III or IV
glioma of any histologic type on initial surgical treatment. There are 22,283 features in each
sample in GLI-85 with n = 85 and D = 22,283.

The 20-Newsgroups dataset contains a collection of newsgroup articles from 20 differ-
ent newsgroups. It consists of approximately 1000 documents from each of these news-
groups. In our experiment, we only clustered data from 5 of these newsgroups, including
alt.atheism, os.ms-windows, sport.baseball, sci.space and religion.misc. With the corpus,
we applied a number of data pre-processing steps that include converting characters to
lower cases, removing punctuations, removing white spaces, and removing stop words
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in English. Stop words are 174 predefined English common words that are believed to
contain very little information for text mining (such as “we”, “your”, “the”, “any”, and
“only”). Terms in the corpus are columns, while documents are the rows. Columns with a
sparsity of 98% or above were removed, and only 2000 data points were sampled before
each iteration of the evaluation. This resulted in a subsampled set with 2000 data points
and 929 dimensions, i.e., n = 2000, D = 929.

Reuters-21578 contains a collection of 21,578 news articles as Reuters newswires in
1987. Documents were assembled and indexed with categories by staff at Reuters Ltd. and
Carnegie Group, Inc. The Reuters-21578 dataset that we used is the well-formed dataset
assembled in the text mining package (i.e., tm) in R [35]. In our experiment, we only selected
news from the acq and earn topic categories with 2362 and 3945 news articles, respectively.
We removed the terms with sparsity 99.5% or above before clustering. Thus, there are
6307 data points with 974 dimensions (n = 6307, D = 974) in the document-term matrix.

4.2. Environments

Our experiments (the source code of the project would be provided upon publishing
of the paper through: https://github.com/janchanyk/kmeans-plusplus-RP, accessed
date 27 July 2021) were run on a 64-bit platform with an Intel 3.1 GHz Quad-Core CPU,
equipped with 32 GB of memory. All the experiments were run on the same platform.

4.3. Performance Metrics

We evaluated the results by observing the performance and the execution time of
each of the experiments. The way we evaluated the performance was just to use the
standardly potential function of the k-means problem, i.e., the within-cluster sum of
squares (WCSS). However, we used it to measure the distance of each data point to its
closest initial center after the initialization. We also used this metric to evaluate the overall
clustering performance. Our objective is to test how well the proposed algorithms minimize
the potential when compared to the baseline. The potential, WCSS, could be defined as

Yo N Ix—cl? )

ick xeC;

where C; is the i-th cluster, and c; is the initial center point of the i-th cluster.

Since we used dimensionality reduction before our proposed initialization algorithm
and clustering, the clustering performance in that lower-dimensional space should not be
compared to that of the original input space. Therefore, we obtained the cluster label of
each point and computed WCSS of these points to the center of mass of each cluster, back
in the original input space.

Another evaluation metric is the execution time. For the experiments of our proposed
algorithm on k-means++, we only counted for the time used in the initial center selection.
Our objective is to see the time used by the algorithms for the center points initialization,
instead of the time consumed by k-means. In the experiments on clustering, we also
used this time metric to see the time reduced in our proposed method. The execution
time of clustering includes the processing time of both random projection and kernel
k-means clustering.

4.4. Experiments on the Efficient Centroid Initialization

On the two bioinformatics datasets, namely GLI-85 and SMK-187, we first established
the baseline by running k-means++ in the original input space. Subsequently, we ran
the efficient centroid initialization method (i.e., kmFRP). We iterated each of the above
experiments ten times to measure its average performance (in WCSS). We compared the
WCSS from our proposed method against the baseline.


https://github.com/janchanyk/kmeans-plusplus-RP
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4.5. Experiments on the Kernel k-Means Clustering

On each dataset, we first established the baseline by running kernel k-means and
kernel k-means++ in the original input space. Subsequently, the data were projected into a
lower-dimensional feature space, and kernel k-means and kernel k-means++ are evaluated
in that projected space. The Gaussian kernel was adopted when the data were fitted to the
kernel k-means clustering. For the experiments in the projected space, we increased the
number of dimensions from 2 to 500 to see its impact on the clustering performance. We
iterated each experiment ten times to measure its average performance and execution time.

4.6. Findings
4.6.1. Performance of Our Method for Centroid Initialization

We first evaluated the initialization performance when the k-means++ was run in the
projected subspace with our method. We compared the average performance in WCSS of
our proposed k-means++ approximation method, with the average performance of the
original version of the k-means++.

Both Figures 2 and 3 show that the initialization performance in WCSS by our method
is close to the baseline. The WCSS by our k-means++ approximation is always within the
error bar (i.e., one standard deviation) of the WCSS distribution by the original k-means++.
When the k is increasing, the error bar of the WCSS distribution by the original k-means++
is narrowing down, and the performance in WCSS by our k-means++ approximation
method is still close to the baseline and falls within the error bar.

Reduced Dimenionality
3e+131 | -~ 2%
\ 20%
(%)) Baseline w/error bar
® \
) \
2 \
3 2e+13
0 \
£
S
= S~
le+13
\
235 810 15 20 25 30 40 50
k

Figure 2. WCSS of initial centers with the GLI-85 Dataset.
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- |
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Figure 3. WCSS of initial centers with the SMK-187 Dataset.
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We then evaluated the difference in initialization performance from our method
against the baseline. We evaluated the degradation of the average performance of our
proposed k-means++ approximation algorithms by comparing them with the original
version of k-means++. The degradation of the average performance € in our experiment is
defined as,

[WCSS, — WCSS,i]
WCSSyrig

(10)

where WCSS;,, is the distance from our method after random projection and WCSS,,;, is
the distance from the original version of k-means++.

The values € and the execution time are compared for different methods in Tables 1 and 2,
respectively, to show the seeding performance on GLI-85, SMK-187 and the Reuters-
21578 dataset.

Table 1. Comparison with €.

Dataset d k=8 k=10 k=20 k=50

200 2.08% 1.81% 0.60% 0.42%
Reuters-21578 300 1.85% 0.86% 1.37% 0.47%
(D =2003) 401 0.12% 0.40% 0.53% 0.02%

2208 0.5% 0.73% 1.06% 0.19%
GLI-85 3342 1.53% 2.59% 0.93% 0.81%
(D = 22283) 4457 2.03% 1.10% 0.20% 3.94%

1999 1.73% 0.40% 0.16% 1.40%
SMK-187 2999 3.74% 1.98% 0.02% 0.01%
(D = 19993) 3999 3.33% 2.62% 0.62% 0.58%

After dimensionality reduction by using random projection, there is no significant change in WCSS. The larger
the k, the smaller the € value.

Table 2. Training time comparison.

Dataset d k=8 k=10 k=20 k =50
baseline 20.48 33.47 141.22 920.74
Reuters-21578 200 8.61 11.49 26.28 135.16
(D =2003) 300 10.65 14.39 32.59 132.22
401 13.03 17.89 41.63 175.59
baseline 3.77 5.93 22.44 142.02
GLI-85 2228 4.77 5.33 8.68 33.63
(D =22283) 3342 6.7 7.24 11.21 37.07
4457 8.85 9.30 13.34 40.89
baseline 5.96 8.88 32.27 194.97
SMK-187 1999 5.92 6.35 9.86 31.76
(D =19993) 2999 8.48 8.97 12.97 38.41
3999 10.99 11.56 16.07 4494

The larger the dataset, the bigger the time improvement. There is a computational advantage for the proposed
method with reduced execution time when k > 20 in general.

Throughout the experiments on the bioinformatics datasets of GLI-85, SMK-187, and the
Reuters-21578 dataset, it is found that the dimensionality reduction using random projection
does not induce any significant increase to the € of the center point initialization. The
figures also show that the dimensionality could be reduced down to 10% of the original
dimensionality, and the center point initialization still performs well with a small . In general,
it is also found that the larger the number of clusters (i.e., the k), the smaller the € induced by
our approximation.

In the experiment on the Reuters-21578 dataset, since it is the largest dataset among
three datasets, (i.e., n = 21,578, D = 2003), time improvement on the center point ini-
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tialization exists in most of the experiments with different parameters. For the GLI-85
and SMK-187 datasets, the major time reduction only happens on the large k. When the
k is small, the cost of random projection offsets the cost reduced from the center point
initialization. In other words, the proposed solution is especially fit for solving problems in
high dimensionality and when the k is large.

4.6.2. Clustering Performance of Our Method

We evaluated the clustering performance on six different real-world datasets. Figure 4
indicates that the overall execution time improvement in the projected space can be seen in all
experiments. With enough dimensionality such that no performance degradation is observed,
it is shown that our method generally reduces the execution time by over 50%. With the
bioinformatics dataset, kernel k-means++ in the projected space runs 10-20 times faster than
the ordinary kernel k-means in the original input data space. Table 3 summarizes the time
reduced in our experiments. With the execution time of the baseline, it is not always the case
that k-means++ can shorten the clustering process. The execution time on the bioinformatics
dataset GLI-85 and SMK-187 indicate that, on a dataset with high dimensionality and limited
data points (e.g., bioinformatics data), the k-means++ takes much longer time to find the
initial centers than the computation of kernel k-means clustering.
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Table 3. Training time reduced with our method compared to that of vanilla kernel k-means. In
general, the higher the original dimensionality (D), the more the speed-up.

Dataset D d Proposed ! Baseline 2 Speed-up
MNist 784 100 0.42 2.22 5.4x
ImageNet-Cat 1000 200 19.80 81.82 4.13x
SMK-187 19,993 100 0.53 13.80 26.1x
GLI-85 22,283 100 0.36 3.24 9.10x
Reuters 929 100 110.2 603.3 5.47 x
20Newsgroups 947 200 27.8 65.9 2.37%

1 The execution time of our proposed method. 2 The execution of the vanilla kernel k-means.

Figure 5 illustrates the clustering performance of the proposed method against the
increasing dimensionality. There are two horizontal lines in green and blue, corresponding
to kernel k-means and kernel k-means++, respectively, in the input feature space (the
baseline) with the clustering performance of our methods in black and red against an
increasing number of dimensions.

The results with the six experiments generally indicate that the clustering perfor-
mance of the kernel k-means++ is either better than or close to that of kernel k-means
in the original input space or the projected feature space. In the projected data space,
WCSS is much higher than that of the baseline only when the dimensionality is very low.
In other words, the performance deteriorates a lot when the data have been projected
into an extremely low dimensional space. The clustering performance converges to the
performance of the baseline when the number of dimensions increases. In general, the
performance with projection converges to that of the baseline when the dimensionality
is between 100 and 200.
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Appl. Sci. 2021, 11, 6963

14 of 17

5. Discussions
5.1. Optimal Dimensionality of the Projected Space

We evaluated our methods on six datasets, and the performance deteriorates a lot
when the dimensionality is extremely low. The performance converges to the result of
the baseline until the optimal dimensionality is reached. The optimal dimensionality
varies among different datasets. In the experiment on the ImageNet-Cat dataset, if we
pick synsets very different from each other (e.g., newspaper vs. tiger cat), which means
the data instances among these synsets, with bag-of-visual-words scale-invariant feature
transform (SIFT) features, are very separable. In such cases, this problem could be solved
even in a very low-dimensional (i.e., even below 10) feature space. In other words, we may
start the algorithm in a low-dimensional space and observe the clustering performance
improvements by increasing the dimensionality until it saturates.

5.2. Ablation Study on Our Method

The performance of our proposed method, kernel k-means++ with random projection
shown with the red lines in Figure 5 is close to the performance of kernel k-means in
the original input space in green lines. For the training time in Figure 4, we can observe
the time consumption of different components of the method. For kernel k-means in the
projected feature space, the black lines in the figure correspond to experiments without
k-means++ initialization and red lines correspond to experiments with k-means++. It can
be observed that both kernel k-means and kernel k-means++ take more time to complete
without random projection. The execution time increases linearly when the projected
dimensionality increases. From the clustering performance point of view, in all our results,
kernel k-means++ performs close to kernel k-means whether or not clustering is performed
in the original input space or the projected low-dimensional space.

5.3. Reliability, Stability and Robustness

Table 4 presents some other clustering performance measurements that help assess
the reliability, stability and robustness of the proposed method.

Table 4. Other clustering accuracy measurements of our experiments.

Dataset gl % Changes Stdev / Mean of Stdev / Mean of
in WCSS?  Kernel Kmeans++ w/RP 3  Vanilla Kernel Kmeans *

100 -1.18% 1.83%

MNIST 200 —1.47% 1.81% 1.6%
500 —1.40% 1.70%
100 —2.14% 4.78%

ImageNet 200 —2.84% 5.01% 4.32%
500 —2.59% 3.99%
100 0.41% 0.53%

20 Newsgroup 200 0.04% 0.69% 0.5%
500 —0.21% 0.75%
200 0.16% 0.40%

Reuters 300 0.20% 0.38% 0.23%
400 0.27% 0.81%
50 0.60% 1.55%

GLI-85 100 0.11% 1.53% 1.41%
200 1.12% 1.48%
50 —0.02% 2.13%

SMK-187 100 0.37% 1.96% 1.35%
200 —0.67% 2.16%

! The projected dimensionality d. 2 Percentage change in result WCSS by the proposed kernel k-means++ with
random projection, compared to the vanilla kernel k-means. 3 Fluctuation of the result WCSS by the proposed
kernel k-means++ with random projection (kernel k-means++ w/RP). # Fluctuation of the result WCSS by the
vanilla kernel k-means.
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5.3.1. Reliability

Since our method is an approximation to the kernel k-means, we assessed the accuracy
of our approximation by observing the percentage change in WCSS compared to the vanilla
kernel k-means. The percentage changes in WCSS of Table 4 show that in all the six datasets,
the resulting WCSS from our method is very close to that (i.e., below one percent) of the
vanilla kernel k-means. Some cases record negative changes in WCSS, which represents
that the clustering performance from our method is even better than the vanilla kernel
k-means.

5.3.2. Robustness

For algorithm robustness, it usually represents the comparison between the training
error and the test error for supervised learning. In our case of clustering, we are assessing
the robustness by considering the noise associated with the random projection. In our
experiments, when the projected dimensionality is small, the noise induced by the random
projection is theoretically higher than that of higher projected dimensionality. In our
experiments with six datasets, when d > 200, percentage changes in WCSS are less than
1% in most of the cases. In other words, the proposed method remains robust when the
projected dimensionality d is greater than 200.

5.3.3. Stability

In our experiments, for each combination of the dataset and d, we iterated the eval-
uation of our proposed method ten times. We can estimate the stability by means of
fluctuation (i.e., stdev/means) of the resulting WCSS from our proposed method. It is
found that fluctuation of the WCSS is only below 5% of the mean WCSS, and most of the
cases are below 2%. They are close to the fluctuation of the resulting WCSS from vanilla
kernel k-means. On the other hand, it is also found that the fluctuation of WCSS from our
approximation approach is always higher (by less than one percent) than that from the
vanilla kernel k-means. In other words, the speed-up from our proposed solution comes
with a cost, but this cost is relatively small in our experiment with six datasets.

6. Conclusions

We propose a method to utilize dimensionality reduction before k-means++ centroid
initialization and kernel k-means clustering. To justify the clustering performance of the
proposed method using random projection for both k-means++ and kernel k-means, the JL
lemma and the improved bound for kernel methods from [2] are considered. Experimental
results indicate that the performance with our approach is close to that of kernel k-means
with k-means++ initialization without significant degradation. On a high dimensional
dataset in our experiment (n = 187, D = 19,993), it is shown that the speed-up of the
proposed algorithms is 26 times compared to that of vanilla kernel k-means. The result
demonstrates that the proposed method speeds up the kernel k-means, by means of dimen-
sionality reduction using random projection, without significant performance degradation.

6.1. Managerial and Academic Implications

Clustering is one of the major approaches in unsupervised learning. They are heavily
used in many areas like spam filtering, marketing and document analysis, etc., and k-means
is one of the most popular methods in clustering. However, k-means does not scale very
well when the dimensionality of a dataset is very high. The method we proposed tackles
this weakness and improves the scalability of k-means++ and kernel k-means.

6.2. Limitations

The method we propose only reduces the dimensionality from D to d, and the com-
plexity of the method is reduced from O(nkD) to O(nkd). On the other hand, the number of
data points (i.e., 7) remains unchanged. Therefore, the execution time may remain sensitive
to n.
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6.3. Future Studies and Recommendations

In the proposed method, we reduce the computational cost of k-means++ and kernel
k-means using random projection. The random projection could be further sped up by
some advanced approaches [36-39]. It could be interesting to consider these approaches to
further speed up the k-means clustering algorithm.
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