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Abstract: The content of this article is the presentation of methods used to identify systems before
actual control, namely decentralized control of systems with Two Inputs, Two Outputs (TITO)
and with two interactions. First, theoretical assumptions and reasons for using these methods are
given. Subsequently, two methods for systems identification are described. At the end of this
article, these specific methods are presented as the pre-identification of the chosen example. The
Introduction part of the paper deals with the description of decentralized control, adaptive control,
decentralized control in robotics and problem formulation (fixing the identification time at the
existing decentralized self-tuning controller at the beginning of control and at the beginning of
any set-point change) with the goal of a new method of identification. The Materials and methods
section describes the used decentralized control method, recursive identification using approximation
polynomials and least-squares with directional forgetting, recursive instrumental variable, self-tuning
controller and suboptimal quadratic tracking controller, so all methods described in the section are
those ones that already exist. Another section, named Assumptions, newly formulates the necessary
background information, such as decentralized controllability and the system model, for the new
identification method formulated in Pre-identification section. This section is followed by a section
showing the results obtained by simulations and in real-time on a Coupled Drives model in the
laboratory.

Keywords: pre-identification; least squares method; instrumental variable method; robotics; sensor

1. Introduction

Most processes in practice are processes that have multiple inputs and multiple out-
puts, and these are influenced by interactions. These systems can be controlled by a
centralized or decentralized controller. The main advantages of decentralization include
simplifying the overall task by dividing it into a set of sub-tasks. Decentralized control
is very often used in practice. Decentralized charge control of electric vehicles is a nice
application. There was introduced a fully decentralized and participatory learning mecha-
nism for privacy-preserving coordinated charging control of electric vehicles that regulates
three Smart Grid socio-technical aspects: (i) reliability, (ii) discomfort and (iii) fairness [1].
Another good application of decentralized control is a quadrocopter, namely outdoor
flocking of quadcopter drones with decentralized model predictive control [2]. From the
theoretical point of view, there was proposed a decentralized explicit (closed-form) itera-
tive formula that solves convex programming problems with linear equality constraints
and interval bounds on the decision variables [3], or decentralized control problem for
non-affine large-scale systems with nonaffine functions possibly being discontinuous [4], or
decentralized adaptive tracking control strategy consisting of a steady-state controller and

Appl. Sci. 2021, 11, 6954. https://doi.org/10.3390/app11156954 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0938-8772
https://orcid.org/0000-0003-3225-0955
https://orcid.org/0000-0003-1548-3212
https://doi.org/10.3390/app11156954
https://doi.org/10.3390/app11156954
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11156954
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11156954?type=check_update&version=2


Appl. Sci. 2021, 11, 6954 2 of 15

modified optimal feedback controller. Design parameters-dependent feasibility conditions
were formulated by using Lyapunov theory to guarantee the existence of the proposed
decentralized control scheme [5]. Decentralized voltage control is another example of a
decentralized strategy. It includes network partitioning strategy for the optimal voltage
control of Active Distribution Networks actuated by means of a limited number of Dis-
tributed Energy Storage Systems [6]. Another paper is concerned with the problem of
decentralized event-triggered dynamic output feedback control for large-scale systems
with unknown interconnections. By using a modified cyclic-small gain condition and
introducing a free-matrix-based integral inequality, a sufficient condition was derived to
ensure that the overall closed-loop system is asymptotically stable with a prescribed H∞
performance [7]. There was also implemented fuzzy decentralized control, for example
an adaptive fuzzy decentralized control approach for a class of nonlinear systems with
unknown control direction and different performance constraints. In the control design, the
different performance constraints, that were the prescribed performance error constraints
for some subsystems and the asymmetric time-varying output constraints for the others,
could be unified as one form by selecting proper performance functions [8]. Adaptive
control is another area that has expanded the use of decentralized control, and here are
at least a few such examples. A minimal-neural-networks-based design approach was
presented for the decentralized output feedback tracking of uncertain interconnected strict-
feedback nonlinear systems with unknown time varying delayed interactions unmatched
in control inputs [9]. The decentralized output-feedback adaptive backstepping control
scheme was also proposed for a class of interconnected nonlinear systems with unknown
actuator failures by introducing a kind of high gain K-filters [10], or decentralized output-
feedback adaptive control scheme for a class of interconnected nonlinear systems with
input quantization. Both logarithmic quantizers and improved hysteretic quantizers were
studied, and a linear time-varying model was introduced to handle the difficulty caused
by quantization [11]. A decentralized adaptive backstepping control scheme was also
proposed for a class of interconnected systems with nonlinear multisource disturbances
and actuator faults. The nonlinear multisource disturbances comprised two parts: one
was the time-varying parameterized uncertainty; the other was the dynamic unexpected
signal formulated by a nonlinear exogenous system [12]. Additionally, the problem of
decentralized adaptive backstepping control for a class of large-scale stochastic nonlinear
time-delay systems with asymmetric saturation actuators and output constraints was also
solved [13]. It can be mentioned that a backstepping-based robust decentralized adaptive
neural H ∞ tracking control method was addressed for a class of large-scale strict feedback
nonlinear systems with uncertain disturbances [14]. Decentralized control was imple-
mented in robotics. The example where a discrete-time decentralized neural identification
and control for large-scale uncertain nonlinear systems at a two degree of freedom planar
robot was implemented can be mentioned [15], or the work that investigated the use of a
decentralized control system for suppressing the vibration of a multi-link flexible robotic
manipulator using embedded smart piezoelectric transducers [16]. Decentralized motion
coordination algorithms were proposed for the robots so that they collectively moved in a
rectangular lattice pattern from any initial position [17]. Mobile robot formations differ in
accordance to the mission, environment and robot abilities. In the case of decentralized
control, the ability to achieve the shapes of these formations has to be built in the con-
trollers of each autonomous robot [18]. A decentralized control algorithm for the robots to
accomplish the sweep coverage was also proposed. The sweep coverage was achieved by
coordinating the robots to move along a given path that was unknown to the vehicles a
priori [19].

During the simulation experiments in the real-time laboratory in recent years, we
reveal the fact that some time is needed to get the appropriate behaviour of control when
the self-tuning controller is used. This time depends on the type of the controlled system.
This is the known problem of self-tuning control because the controller needs the adequate
model of the system. This is one problem that we solve by a new approach described in
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this paper, by the method named as pre-identification. Another problem comes from the
fact that we used the decentralized controllers for the control of multivariable systems.
If one set-point changes its value, it influences all other main subsystems by interactions
and therefore the model of subsystems changes. This could be also fixed by a self-tuning
controller but some time is needed to obtain the stable model. Therefore, by the new
method described in this paper, named as pre-identification, we also solved this problem.

2. Materials and Methods
2.1. Decentralized Control

Using the decentralized approach, the control is divided into a set of sub-tasks that are
matched by simple controllers. These partial tasks will then give us the overall course of
control. The main advantages of decentralized control are primarily that a more complex
system is divided into a set of simple tasks and the resulting controller is more flexible [20].

A special example of multidimensional systems is a system with two inputs and two
outputs. This can be realized by the so-called P structure, see Figure 1. In this case, the
inputs to the systems describing the interactions are the values of the action signals of the
SISO controllers and their outputs are added to the opposite outputs of the main diagonal
systems. From this figure, we get the transfer function equations of the model in the form

GS1 =
Y1

U1
= GS11 −

GS21GS12GR22

1 + GS22GR22
(1)

GS2 =
Y2

U2
= GS22 −

GS21GS12GR11

1 + GS11GR11
(2)
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2.2. Recursive Identification Using Approximation Polynomials

A prerequisite for good control is the most accurate description of the regulated
system. Identification is the procedure by which the mathematical model of a system is
obtained. The beginnings of identification based on continuous models date back to the
middle of the 20th century. For continuous-time identification, the identified model is
in the form of the differential equations. Differential equations contain expressions with
derivatives over time that are not measurable. It is possible to replace the segment by an
approximation polynomial whose derivatives can be calculated analytically in advance
and then calculated numerically, see Figure 2. This approach was for example used by
Perutka [20].
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2.3. Least Squares Method with Exponential Forgetting

The estimation of model parameters is computed as

θ̂(k) = θ̂(k− 1) + K(k)ê(k) (3)

The gain vector is calculated as

K(k) =
C(k− 1)φ(k)

1 + φT(k)C(k− 1)φ(k)
(4)

and covariance matrix

C(k) = C(k− 1)− C(k− 1)φ(k)φT(k)C(k− 1)
1 + φT(k)C(k− 1)φ(k)

(5)

The following applies to the calculation of the prediction error

ê(k) = y(k)− φT(k)θ̂(k− 1) (6)

In the case of exponential forgetting, the criterion of identification is

J =
k

∑
i=k0

(ϕk−ie(i))
2

(7)

where the exponential forgetting factor is chosen in the range of 0 to 1, the most common
near 1.

If
φT(k)C(k− 1)φ(k) > 0 (8)
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Then

C(k) = C(k− 1)− C(k− 1)φ(k)φT(k)C(k− 1)
η−1 + φT(k)C(k− 1)φ(k)

(9)

where

η(k) = ϕ(k)− 1− ϕ(k)
ξ(k)

(10)

If
φT(k)C(k− 1)φ(k) = 0 (11)

Then
C(k) = C(k− 1) (12)

Furthermore

ϕ(k) =
{

1 + (1 + ρ)[ln(1 + ξ(k− 1))] +
[
(v(k− 1) + 1)η(k− 1)
1 + ξ(k− 1) + η(k− 1)

− 1
]

ξ(k− 1)
1 + ξ(k− 1)

}−1
(13)

η(k) =
e2(k)
λ(k)

(14)

v(k) = ϕ(k)[v(k− 1) + 1] (15)

λ(k) = ϕ(k)
[

λ(k− 1) +
e2(k)

1 + ξ(k− 1)

]
(16)

ξ(k) = φT(k)C(k− 1)φ(k) (17)

The parameters estimation vector is in the form

θ̂T(k) =
(

â0, â1, . . . , âdeg(a), b̂0, b̂1, . . . , b̂deg(b), d
)

(18)

and regressor

φT(k) =
(
−y(tk), . . . ,−y(n−1)

L (tk), u(tk), . . . , u(m)
L (tk), 1

)
(19)

2.4. Self-Tuning Controller

The main reason for using adaptive control is that the systems change over time or
the characteristics of the controlled system are unknown. The basic principle of adaptive
systems is to change the characteristics of the controller based on the characteristics of
the controlled process [21]. The general scheme of the self-tuning controller is shown
in Figure 3.
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2.5. Suboptimal Linear Quadratic Tracking Controller

The method was introduced by Dostál [22]. If the system of Figure 4 is considered
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Let us minimize a quadratic functional with two penalty constants

J =
∫ ∞

0

{
µe2(t) + ϕũ2(t)

}
dt (20)

The Laplace image of the set point holds

w(s) =
hw(s)
s fw(s)

(21)

It holds for degrees of polynomials

deg(hw) ≤ deg( fw), fw(0) 6= 0 (22)

We calculate stable polynomials g and n as results of spectral factorizations

(as) ∗ ϕas + b ∗ µb = g ∗ g, n ∗ n = a ∗ a (23)

We solve the following diophantine equation

asp + bq = gn (24)

Considering the transfer function of the system

G(s) =
b0

s2 + a1s + a0
(25)

then the controller is

F(s)Q(s) =
q2s2 + q1s + q0

s(p2s2 + p1s + p0)
(26)

In this case, the polynomials have the form

g(s) = g3s3 + g2s2 + g1s + g0 (27)

n(s) = s2 + n1s + n0 (28)

and to calculate their coefficients obtained by spectral factorization

g0 =
√

µb2
0 (29)

g1 =
√

2g2g0 + ϕa2
0 (30)

g2 =
√

2g3g1 + ϕ(a2
1 − 2a0) (31)

g3 =
√

ϕ (32)

n0 =
√

a0
2 (33)
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n1 =
√

2n0 − a2
1 − 2a0 (34)

2.6. Calculation of Derivatives Using Approximation Functions

To calculate the derivatives, we approximate the closest neighborhood for a given
time by the approximation function. For example, we will use the Lagrange polynomial in
the form

P2(x) =
(x− b)(x− c)
(a− b)(a− c)

f (a) +
(x− a)(x− c)
(b− a)(b− c)

f (b) +
(x− b)(x− b)
(c− a)(c− b)

f (ac) (35)

whose first derivative is

f ′(x) ∼= P′2(x) = 2x−(b+c)
(a−b)(a−c) f (a) + 2x−(a+c)

(b−a)(b−c) f (b)

+ 2x−(a+b)
(c−a)(c−b) f (c)

(36)

and second derivative is

f //(x) ∼= P//
2 (x) =

2 f (a)
(a− b)(a− c)

+
2 f (b)

(b− a)(b− c)
+

2 f (c)
(c− a)(c− b)

(37)

2.7. Recursive Instrumental Variable Method

The instrumental variable method is a modification of the least squares method.
The least squares method uses the quadratic criterion and the existence of one global
minimum. However, a prerequisite for successful least-squares modelling is that the fault is
represented by white noise with zero mean value. The instrumental variable method does
not make it possible to determine the noise properties, but is based on weaker assumptions
than the least squares method. The identification proceeds according to number 5. As with
the least squares method, the method of the instrumental variable can also be formulated
recursively [22–25]. The parameter estimation vector has the form

θ̂T(k) =
(

â0, â1, . . . , âdeg(a), b̂0, b̂1, . . . , b̂deg(b), d
)

(38)

and data vector

θ̂T(k) = (−y(tk), . . .− y(n−1)
L (tk), u(tk), . . . , u(m)

L (tk), 1 (39)

The gain vector is calculated by relation

L(k) =
C(k− 1)z(k)

1 + φT(k)C(k− 1)z(k− 1)
(40)

In addition to the data vector, it is necessary to know the covariance matrix

C(k) = C(k− 1)− C(k− 1)z(k)φT(k)C(k− 1)
1 + φT(k)C(k− 1)z(k)

(41)

and instrument vector

z(k) = (u(tk), u(tk−1), . . . , u(tk−n−m), (42)

which we choose as a set of delayed inputs. The prediction error is calculated by

ê(k) = y(k)− φT(k)θ̂(k− 1) (43)

and estimating the parameters according to

θ̂(k) = θ̂(k− 1) + L(k)ê(k) (44)
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3. Assumptions
3.1. Decentralized Controllability

Assume the existence of a stable minimum phase Linear Time Invariant (LTI) in time of
a continuous multidimensional system of the dimension N × N. Its Laplace transformation
S(s) : S(t) > S(s), which we call the transformed system is in the form

S(s) =

 S11(s)S12(s) · · · S1N(s)
...

. . .
...

SN1(s)SN2(s) · · · SNN(s)

 (45)

where Sij(s), i = 1, 2, . . . , N, j = 1, 2, . . . is Laplace transformation of the ij-th
subset of Sij(t) of the transformed system S(s). The transformed system S(s) je is decentrally
controllable only when its main diagonal is dominant.

3.2. System Model and Shape of Reference Signal

Suppose there exists a system S(t) and a transformed system S(s) as described above.
Then we formulate a model created for the purpose of decentralized control, which we call
M(t), and its Laplace transformation M(s). Consider M(s) as a stable minimum phase linear
time invariant multivariate diagonal matrix in the form

M(s) =


M(s) 0 · · · 0

0 M(s) · · · 0
...

...
. . .

...
0 0 · · · MN(s)

 (46)

where Mi(s), i = 1, 2, . . . , N is the Laplace transformation of the i-th submodule
Mi(t) of the model M(t)of the transformed system S(s). This assumes minimal impact of
extra-diagonal transmissions, which is important because of the deployment of a decentral-
ized controller. Simplification of the N-dimensional system to N-dimensional systems is
simplified.

Furthermore, suppose that the Laplace transformation of the reference signal vector
r(s) is always in the form

r(s) = (R1(s), R2(s), . . . , RN(s)) (47)

where Ri(s), i = 1, 2..., N is the i-th Laplace reference signal of Laplace transformation of the
reference signal vector r(s) and has the form

Ri(s) =
hi
s

(48)

where hi ∈ R, i = 1, 2, . . . , N, is the i-th part by constant function, i.e., reference signal,
which is only a combination of p-l step changes of the signal of its different constant values

hi =


ji1 f or t ∈ 〈0, ti1)

ji2 f or t ∈ 〈ti1, ti2)
...

jip f or t ∈ 〈tip−1, tip)

, 0 < ti1 < ti2 < · · · < tip−1 < tip (49)

where jil ∈ R, i = 1, 2, . . . , N, l = 1, 2, . . . , p, the l-th constant function i-th in parts
by the constant function hi, t is the time til ∈ R+, i = 1, 2, . . . , N, l = 1, 2, . . . , p,
the l-th moment of the i-th in portions of the constant function hi. This means that each
non-zero element of the matrix M(s) has exactly one non-zero element of the vector r(s), i.e.,
that each partial transmission of the overall system model has a reference signal defined
for it. As for the form of the reference signal, it is a constant function in parts. This function
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is approximated from an arbitrary but predetermined number of p segments of a different
but concise value, i.e., it varies over time.

4. Pre-Identification

Consider the validity of the assumption of decentralized controllability, system de-
scription and system model. Then, the transformed system S(s) can be viewed as a black
box model, and let it be identified by direct and/or indirect time-continuous algorithms. In
time, continuous model identification can be realized by following steps: The controller
is not connected in the closed circuit. The values of the vector of difference of output
quantities and reference signals E(t) are sent to the input of the system S(t). The values of
the reference signals are the same and at the same time as those that will be used during
regulation.

1. The controller is not connected in the closed circuit. The values of the vector of
difference of output quantities and reference signals E(t) are sent to the input of the
system S(t). The values of the reference signals are the same and at the same time as
those that will be used during regulation.

2. If switching control is considered, each time interval of the control of the system
S(s) at which all reference signals have a constant value is identified separately, in
so-called Identification Elements (IE).

3. Each identification element is identified several times, each time by a different identi-
fication algorithm, and the obtained model can be verified by comparison with the
measured data. The obtained model, which is most consistent with the measured
data, is then used for control. Let us call this method of Identification More Than One
Method (IMTOM).

The system S(s) is completely identified by the above procedure before the actual
regulation begins, therefore identification during the regulation is not necessary. This
procedure is suitable for processes where the same procedure is repeated many times.

5. Results
5.1. Simulation Results

The verified system is described as

GS(s) =

(
3.7

s2+5.2s+4.6
0.4

s2+4.4s+3.8
0.6

s2+10.6s+10.2
8.7

s2+7.4s+8.2

)
(50)

Since it is the system with two inputs and two outputs, we obtained two suboptimal
linear quadratic controllers in the form that was described in the previous section. These
controllers had the following penalty constants

µ1 = 1, ϕ1 = 30, µ2 = 1, ϕ2 = 30 (51)

We used our algorithm, pre-identification, at this system and we obtained the follow-
ing results, see Figures 5–8. First, we performed system response on the given set-points
depicted in Figure 5. Together with this system response, we obtained the system pre-
identified parameters shown in Figure 6, for the first subsystem in the left one and for
the second subsystem in the right one. According to these pre-identified parameters we
performed the simulation of control which is shown in Figure 7. During the control, the con-
troller parameters were changing, and they are recorded in Figure 8, for the first controller
in left one and and for the second controller in the right one.
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5.2. Results in Real-Time at Laboratory Model

We verified the presented method in real-time control using MATLAB at CE108 Cou-
pled Drives Apparatus Model [26] which is shown in the Figure 9. The laboratory model
CE108 allows solving practical problems of tensioning and speed of material movement in
continuous processes. An example is the speed and tension of the thread when rewinding
from one spool to another, which must be controlled. This situation is adapted for labora-
tory measurements so that the elastic band is mounted on three wheels. The lower two
wheels are fixed, their speed can be measured and regulated. The third wheel can move
(located on a movable arm suspended on a spring) and simulates a workstation along with
tension and speed measurements. Two servomotors control the speed of movement and
tensioning of the belt. The speed is 0–3000 rpm, which corresponds to a voltage of 0–10 V.
Tension measurement is indirect through the angle of the movable arm, from −10 ◦ to 10 ◦,
which corresponds to a voltage from −10 V to 10 V. Inputs and outputs are located on the
front panel of the device; it is the control voltage to the servomotor amplifiers, which are
bidirectional, and which are inputs. There are four outputs, the voltage corresponding to
the speed of the two servomotors and the voltage corresponding to the tension and the
speed of the belt.
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Using the pre-identification method and fully implementing interactions in the main
plants, we obtained the following mathematical model to be used at control of speed

GS(s) =

(
0.78

s2+2.66s+1.33 0
0 4.16

s2+11.66s+16.66

)
(52)

Since it is the system with two inputs and two outputs, we obtained two suboptimal
linear quadratic controllers in the form that was described in the previous section. These
controllers had the following penalty constants

µ1 = 1, ϕ1 = 1, µ2 = 1, ϕ2 = 0.85 (53)

We used our algorithm, pre-identification, at this system and we obtained the follow-
ing results, see Figures 10–13. First, we performed system response on the given set-points
depicted in Figure 10. Together with this system response, we obtained the system pre-
identified parameters shown in Figure 11, for the first subsystem in the left one and for
the second subsystem in the right one. According to these pre-identified parameters we
performed the simulation of control which is shown in Figure 12. During the control,
the controller parameters were changing, and they are recorded in Figure 13, for the first
controller in left one and and for the second controller in the right one.
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Figure 12. Output of control.
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6. Conclusions

This paper presents the new method of identification named as pre-identification
on the theoretical level and subsequently verified it by simulations and in the real-time
experiments at Coupled Drives model in the laboratory. The results confirm that the
method can be successfully used and future work will focus on the verification of this
method on more examples both in simulation and in laboratory conditions. This new
method enhances the usage of a decentralized self-tuning controller in the way that it fixes
the time the adaptive controller needs to adapt its model.
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