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Abstract: Singularities in the stress field of the stagnation-point flow of a viscoelastic fluid have
been studied for various viscoelastic constitutive models. Analyzing the analytical solutions of these
models is the most effective way to study this problem. In this paper, exact analytical solutions of
two-dimensional steady wall-free stagnation-point flows for the generic Oldroyd 8-constant model
are obtained for the stress field using different material parameter relations. For all solutions, com-
patibility with the conservation of momentum is considered in our analysis. The resulting solutions
usually contain arbitrary functions, whose choice has a crucial effect on the stress distribution. The
corresponding singularities are discussed in detail according to the choices of the arbitrary func-
tions. The results can be used to analyze the stress distribution and singularity behavior of a wide
spectrum of viscoelastic models derived from the Oldroyd 8-constant model. Many previous results
obtained for simple viscoelastic models are reproduced as special cases. Some previous conclusions
are amended and new conclusions are drawn. In particular, we find that all models have singularities
near the stagnation point and most of them can be avoided by appropriately choosing the model
parameters and free functions. In addition, the analytical solution for the stress tensor of a near-wall
stagnation-point flow for the Oldroyd-B model is also obtained. Its compatibility with the momentum
conservation is discussed and the parameters are identified, which allow for a non-singular solution.

Keywords: viscoelastic models; stagnation-point flow; stress singularities; Weissenberg numbers

1. Introduction

The working fluids encountered in practical applications and industry are often
non-Newtonian, and research on this type of fluids has been conducted for decades. In
theoretical research, a variety of non-Newtonian fluid models has developed [1]. One
group of these models is of the rate type which involves differential transport equations
for the stress tensor. As these models are highly complex and mostly non-linear, exact
analytical solutions can only be obtained for very special flow cases. Many theoretical
works limit themselves to investigating the distribution of stress tensor in simple canon-
ical viscoelastic flows by means of relatively simple models, such as the Oldroyd-B and
Maxwell-B model, see, e.g., [2–4]. A classical model problem in this context, and also to be
considered presently, is the similarity solution for the velocity field in a stagnation-point
flow described, e.g., in [5]. Therein, the velocity distribution is usually assumed in the
form (u, v) = (x f ′(y),− f (y)), though for a wall-free stagnation-point flow or a creeping
stagnation-point flow far away from the wall, the velocity profile reduces to f (y) = ay,
i.e., (u, v) = (ax,−ay), where a is constant rate of the strain. Under this assumption,
Phan-Thien [6,7] obtained exact solutions to the plane and axisymmetric stagnation-point
flows for both Maxwellian and Oldroyd-B fluids, respectively, where the governing equa-
tions were reduced to a system of ordinary differential equations. It was shown that in a
stagnation-point flow with a certain Weissenberg number, there is a singularity in the stress
field. Renardy [8] analyzed a steady creeping flow of the upper convected Maxwell (UCM)
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fluid, in which the shear stress was assumed to be zero, and the normal stress depended
only on the transverse coordinate of the outflow. His solution demonstrated that a singu-
larity exists not only at the stagnation point, but also along the entire streamline passing
the stagnation point downstream. Thomases et al. [9] used the same ansatz for the velocity
field and solved the stress field of an Oldroyd-B fluid by using the method of characteristics.
Their results showed that the behavior of the solutions is very sensitive to the Weissenberg
number. However, the exact analytical solutions were only constructed for the model
equations of the stress field without considering the compatibility with the momentum
conservation equation. Cruz et al. [10] obtained a general analytical solution for a steady
planar extensional wall-free stagnation-point flow of a viscoelastic fluid described by the
UCM model. This solution depends on both space coordinates, and represents an extension
of the previous solutions considering only the dependence of the transverse coordinate.
Recently, Meleshko et al. [11] extended the analysis of the stress distribution in a wall-free
stagnation-point flow from the UCM model to the Johnson–Segalman model and also took
the momentum conservation equation into account. Their solution demonstrates that the
Johnson–Segalman model has a non-removable logarithmic singularity.

In a near-wall stagnation-point flow, the velocity must satisfy the no-slip con-
dition at the wall, so the velocity profile for the wall-free stagnation-point flow, i.e.,
(u, v) = (x f ′(y),− f (y)) with f (y) = ay, is here no longer suitable. In this case, the
function f (y) could take the form of f (y) = ayn with n > 1 for an impermeable wall
located at y = 0. Under the simplest assumption f (y) = ay2, Becherer et al. [12] and
Van Gorder et al. [13], respectively, considered an UCM fluid and presented the exact solu-
tions to the coupled PDEs of the viscoelastic stress. However, they did not analyze the com-
patibility of their solutions with the momentum conservation equation. Van Gorder [14]
analyzed the same problem and showed that the solution for the stress components fails
to satisfy the momentum conservation equation except in the linear case f (y) = −ay,
corresponding to a wall-free stagnation-point flow. Therefore, to investigate near-wall
stagnation-point flows, a more general velocity profile obeying the momentum conserva-
tion has to be proposed.

All the models mentioned above can be derived from the Oldroyd 8-constant model,
and many other models are also special cases of the Oldroyd 8-constant model [15]. It is
interesting to investigate whether the other viscoelastic models have similar singularities
as the Oldroyd-B, Maxwell-B and Johnson–Segalman models. For this purpose, we will
search for exact analytical solutions for the Oldroyd 8-constant constitutive framework
of a wall-free stagnation-point flow satisfying the compatibility with the conservation of
momentum by means of the method of characteristics and analyze the effect of various
model parameters on the solutions with regard to their singularity. Many conclusions
previously obtained by other researchers for simple viscoelastic constitutive models are
either confirmed or rectified. Some new conclusions are drawn. In particular, we find that
all models have singularities near the stagnation point and most of them can effectively be
avoided by appropriately choosing the model parameters and free functions. For the near-
wall stagnation-point flow satisfying the no-slip conditions, it is impossible to analytically
solve the constitutive equations of the Oldroyd 8-constant model. Instead, we focus on
the Oldroyd-B model and analyze the compatibility of the solution with the momentum
conservation equation.

2. Model Equations
2.1. Conservation Equations

The balance equation of momentum and mass conservation for an incompressible
fluid take the form:

ρ
Du
Dt

= ∇ · σ + ρf, (1)

∇ · u = 0, (2)
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where ρ is the fluid density, u the flow velocity, σ is the Cauchy stress tensor, and f the
volume force which is neglected in the present study. For a Maxwell fluid, σ can be split in
two parts:

σ = −pI + Tp, (3)

where Tp is the polymetric stress contribution and p the dynamic pressure. For an Oldroyd-
type fluid, a Newtonian stress part with a viscosity ηs is added to the total stress and the
Cauchy stress tensor is given by

σ = −pI + 2ηsD + Tp = −pI + T. (4)

here D = 1
2 (∇uT +∇u) is the symmetric rate-of-strain tensor. T is called the deviatoric

stress tensor with T = 2ηsD + Tp.

2.2. The Oldroyd 8-Constant Model

The most general linear viscoelastic model is the Oldroyd 8-constant model [16]
described by

T + λ1
◦
T + µ0(trT)D− µ1(TD + DT) + ν1[tr(TD)]I

= 2η0[D + λ2
◦
D− 2µ2D2 + ν2tr(D2)I],

(5)

where λ1, λ2, µ0, µ1, µ2, ν1, ν2 are material constants with the dimension of time. η0 is the

total viscosity split by η0 = ηp + ηs and ηp is the polymer contribution to the viscosity.
◦
T is

the corotational objective time derivative of T defined as

◦
T :=

dT
dt
−WT + TW, (6)

where W = 1
2 (∇uT −∇u) is the skew-symmetric vorticity tensor. Giesekus [1] has ex-

tended the Oldroyd 8-constant model by adding the term ν0(trT)I to the left-hand side of
(5), but this extension will not be considered in the present investigation.

Most viscoelastic models can be derived from the Oldroyd 8-constant model [15].
For example, setting µ1 = λ1, µ2 = λ2 = ηs

η0
λ1, and µ0 = ν1 = ν2 = 0 in (5) gives the

Oldroyd-B model:

T + λ1
5
T = 2η0

(
D + λ2

5
D

)
(7)

where the symbol 5 is the upper-convected time derivative, defined by

5
T :=

dT
dt
−∇uT · T− T · ∇u. (8)

Usually, a retardation parameter is defined by β =
ηp
η0
∈ [0, 1]. β = 0 corresponds to

a Newtonian fluid, β = 1 to a Maxwell fluid, and in between a Oldroyd fluid. If ηs
η0

= 1,
hence λ2 = λ1, the Oldroyd-B fluid reduces to the Newtonian fluid with the constitutive
equation T = 2ηsD. If ηs = 0, hence λ2 = 0, η0 = ηp, T = Tp, and the Maxwell-B model
is obtained:

Tp + λ1
5
Tp = 2ηpD. (9)

Combining the constitutive Equation (7) and the relation T = 2ηsD + Tp for an
Oldroyd fluid results in a constitutive relation in terms of Tp, which is completely consistent
with the expression of (9). However, in contrast to the Maxwell fluid, the Newtonian
viscosity ηs in the momentum equation of an Oldroyd-type fluid is not zero. More examples
of viscoelastic models derived from the Oldroyd 8-constant model can be found in the
Table II of [15].
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We employed the dimensionless variables, which are scaled by the characteristic
length L0, strain rate a and viscosity η0 as following:

x̃ =
x
L0

, ũ =
u

aL0
, p̃ =

p
aη0

, T̃ =
T

aη0
, Re =

ρaL2
0

η0
, W1 = aλ1,

W2 = aµ0, W3 = aµ1, W4 = aν1, W5 = aλ2, W6 = aµ2, W7 = aν2,
(10)

where W1, ..., W7 are Weissenberg numbers and Re the Reynolds number. Omitting the tilde
symbol, the constitutive Equation (5) can be rewritten in the following dimensionless form:

T + W1
◦
T + W2(trT)D−W3(TD + DT) + W4[tr(TD)]I

= 2[D + W5
◦
D− 2W6D2 + W7tr

(
D2
)

I].
(11)

Then, the dimensionless Oldroyd 8-constant model (11) will be utilized for investigat-
ing the two-dimensional steady stagnation-point flows with regard to their singularities
under different material parameter relations.

3. Analytical Solutions of a Wall-Free Stagnation-Point Flow and Their Singularities

For the velocity field of a two-dimensional steady stagnation-point flow, there exists a
similarity solution described as

u = (x f ′(y),− f (y)), (12)

where f (y) is an arbitrary function depending only on y [5,6]. In the case of a wall-free
stagnation-point flow, the flow is a potential flow, which means ∇× u = 0. This leads to
f ′′(y) = 0, and further f (y) = ay. The parameter a stands for the constant rate of the strain
and is employed in the non-dimensionalization, as shown in (10). Hence, the dimensionless
velocity field is given by

u = (x,−y). (13)

The velocity field is symmetrical for both the x and the y axis, as shown in Figure 1,
so we only need to consider the case with x, y > 0 in the following analysis.

Figure 1. Sketch of the velocity field in a wall-free stagnation-point flow.

The stress tensor is symmetric and takes a two-dimensional form of:

T =

(
T11 T12
T12 T22

)
. (14)



Appl. Sci. 2021, 11, 6931 5 of 17

Substituting (13) and (14) into (11), we obtain the following three scalar constitutive
equations:

W1x
∂T11

∂x
−W1y

∂T11

∂y
= (k1 − 1)T11 − k2T22 − k3 + 2, (15)

W1x
∂T22

∂x
−W1y

∂T22

∂y
= k2T11 − (k1 + 1)T22 − k3 − 2, (16)

W1x
∂T12

∂x
−W1y

∂T12

∂y
= −T12, (17)

where k1 = 2W3 −W2 −W4, k2 = W2 −W4 and k3 = 4(W6 −W7). It is to notice that
◦
D = 0

under the assumption of the velocity (13), so the Weissenberg number W5 has not any
influence on the stress field.

In the PDE system (15)–(17), Equation (17) for T12 is uncoupled with (15), (16), and
thus can be solved independently. The coupling of (15) and (16) for T11 and T22 depends on
the value of k2. If k2 = 0, both the equations are decoupled and can be solved separately
for T11 and T22. If k2 6= 0, Equations (15) and (16) constitute a coupled PDE system with
non-constant coefficients. In addition, the solutions of the PDE system (15)–(17) must also
satisfy the compatibility condition derived by substituting (4), (13) and (14) into the rotation
of the momentum Equation (1):

∂2T11

∂x∂y
− ∂2T22

∂x∂y
− ∂2T12

∂x2 +
∂2T12

∂y2 = 0. (18)

In the following, the analytic solutions of the constitutive Equations (15)–(17) with
consideration of the compatibility condition (18) will be derived, respectively, for the two
cases k2 = 0 and k2 6= 0.

3.1. Case k2 = 0

Many of the viscoelastic models derived from the Oldroyd 8-constant model (11)
are characterized by W2 = W4, i.e., k2 = 0. Examples are the Oldroyd-B, Maxwell-B,
Johnson–Segalman models. Their solutions are all contained in this part.

In the case of k2 = 0, the three components of the stress tensor can be separately
solved by using the method of characteristics. The characteristic equations of (15)–(17) are
given by

dx
W1x

=
dy
−W1y

=
dT11

(k1 − 1)T11 − k3 + 2
, (19)

dx
W1x

=
dy
−W1y

=
dT22

−(k1 + 1)T22 − k3 − 2
, (20)

dx
W1x

=
dy
−W1y

=
dT12

−1
. (21)

The values of k1 − 1 and k1 + 1, arising in (19) and (20) as the coefficients of T11 and
T22, have a crucial effect on the structure of their solutions. Therefore, the solutions will be
further investigated for the following three cases, respectively.
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3.1.1. Case (k1 − 1)(k1 + 1) 6= 0

In this case, k1 6= ±1, we can obtain the following solutions by solving the
Equations (19)–(21):

T11 = F1(ψ) · y
1−k1
W1 +

k3 − 2
k1 − 1

, (22)

T22 = F2(ψ) · y
1+k1
W1 − k3 + 2

k1 + 1
, (23)

T12 = F3(ψ) · y
1

W1 . (24)

F1(ψ), F2(ψ) and F3(ψ) are arbitrary functions of ψ = xy, and ψ = const. represents the
characteristic lines of the solutions. This result is consistent with that obtained by Van
Gorder [14] for the stagnation-point flow of an upper convected Maxwell fluid, in which
k1 = 2W1 and k3 = 0.

Further satisfying the compatibility condition (18) yields the following restriction on
functions F1, F2, and F3:[

ψF′′1 +

(
1− k1

W1
+ 1
)

F′1

]
y−

k1
W1 −

[
ψF′′2 +

(
1 + k1

W1
+ 1
)

F′2

]
y

k1
W1

+

[
ψ2F′′3 +

2
W1

ψF′3 +
1

W1

(
1

W1
− 1
)

F3

]
y−2 − F′′3 y2 = 0.

(25)

the only way to satisfy this condition for any value of y is that all coefficients of yk vanish.
This induces three different cases depending on the value of k1

W1
. The case of k1

W1
= ±2

corresponds to the Oldroyd and Maxwell fluids. Their solutions for Weissenberg number
W1 6= 1

2 are covered in this investigation.

(i) If k1
W1

= 2, only two restriction conditions for F1, F2, and F3 can be obtained from (25),
meaning that:

ψF′′1 +

(
1

W1
− 1
)

F′1 + ψ2F′′3 +
2

W1
ψF′3 +

1
W1

(
1

W1
− 1
)

F3 = 0, (26)

ψF′′2 +

(
1

W1
+ 3
)

F′2 + F′′3 = 0. (27)

Hence, F1 and F2 can be related to F3 by

F1 = −ψF3 +

(
1− 1

W1

) ∫
F3dψ + C1ψ

2− 1
W1 + C2, (28)

F2 = −ψ−1F3 +

(
1

W1
+ 1
)

ψ
− 1

W1
−2
∫

ψ
1

W1 F3dψ + C3ψ
− 1

W1
−2

+ C4, (29)

where C1, C2, C3 and C4 are arbitrary constants, and F3 is still an arbitrary function of
ψ = xy. To avoid the integral terms emerging in the above relations, we replace F3 by
another arbitrary function F(ψ) as follows:

F3 =

(
ψ

1− 1
W1 F′

)′
= ψ

− 1
W1

(
ψF′ − 1

W1
F
)′

. (30)
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Substituting (30) into (28), (29) and then into (22)–(24), results in the final solutions of
the stress tensor:

T11 = −x2− 1
W1 F′′ + C1x2− 1

W1 + C2y
1

W1
−2

+
k3 − 2
k1 − 1

, (31)

T22 = −x−
1

W1 y2F′′ +
2

W1
x−

1
W1
−1yF′ − 1

W1

(
1

W1
+ 1
)

x−
1

W1
−2F

+C3x−
1

W1
−2

+ C4y
1

W1
+2 − k3 + 2

k1 + 1
, (32)

T12 = x1− 1
W1 yF′′ +

(
1− 1

W1

)
x−

1
W1 F′. (33)

In a recent investigation by [17], the solution of a wall-free stagnation-point flow for
the Maxwell fluid with W1 6= 1

2 satisfying the momentum equation was discovered.
This corresponds to our solutions (31)–(33) with k1 = 2W1 and k3 = 0. Physically,
the components of the stress tensor should be limited everywhere, including at the
stagnation point (x, y) = (0, 0) and at infinity. Hence, further restrictions on the
arbitrary constants C1, C2, C3, C4 and the arbitrary function F(xy) in the solutions are
needed. To avoid the singularity of the stress tensor, Ref. [17] suggested the choice:

F(xy) = (xy)2+ 1
W1

+δe−b(xy)2
, C1 = C2 = C3 = C4 = 0, (34)

where δ > 0 and b > 0. However, this choice (34) cannot prevent the singularity
as was claimed. To demonstrate this, as an example, we substitute (34) into (33)
resulting in:

T12 =
[

a1 + a2(xy)2 + a3(xy)4
]
e−b(xy)2 · (xy)1+δ · y

1
W1 = G(xy) · y

1
W1 , (35)

where a1 = (2 + δ)(2 + δ + 1
W1

), a2 = −2b(6 + 2δ + 1
W1

) and a3 = 4b2 are constant
coefficients. For W1 > 0, the particular solution (33) has the following properties:

• Along the characteristic curves xy = 0 and xy→ ∞, T12 → 0, no singularity occurs.
• Along the characteristic curve xy = c0, where c0 is a non-zero finite constant, the

value of G(xy) is a bounded constant G(c0), while y
1

W1 is singular at y→ ∞. An
infinite shear stress T12 arises in the region far away from the stagnation point
(y→ ∞) and near the y-axis (x → 0).

With the choice (34), similar singularities also appear in the stress tensor components
T11 and T22 far away from the stagnation point, for y→ ∞ (but x → 0) or x → ∞ (but
y→ 0). As an example, the corresponding stress components T11 and T12 excluding the
constant part k3−2

k1−1 are presented in Figures 2 and 3 for the case W1 = 0.25, δ = 2 and
b = 12 with a much finer spatial resolution than [17] used. The present figures show
that a singularity in the stress field may arise in the region far away from the stagnation
point (y→ ∞) and near the y axis (x → 0), as previously analytically recognized, while
in [17], this tendency was invisible due to the rather coarse resolution employed.
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Figure 2. Stress component T11 with a spatial resolution of x ∈ [0 : 0.001 : 0.3], y ∈ [0 : 0.001 : 15].

Figure 3. Stress component T12 with a spatial resolution of x ∈ [0 : 0.001 : 0.2], y ∈ [0 : 0.001 : 10].

Actually, the appearance of the singularity at (x, y) → (0, ∞) or (x, y) → (∞, 0)
is independent from the choice of the arbitrary function F(xy). This can be easily
recognized by observing the distribution of the stresses (31)–(33) along an arbitrary
characteristic curve xy = c0, where c0 is non-zero finite constant. As an example, the

term x−
1

W1 F′(xy) tends to be infinite at (x, y)→ (0, ∞) for W1 > 0 or at (x, y)→ (∞, 0)
for W1 < 0. These singularities are independent from the choice of F(xy) and thus non-
removable. However, possible singularity near the stagnation point (x, y) → (0, 0)
can be effectively prevented by choosing a reasonable function F(xy), e.g., (34). This
ensures that no singularity occurs in the stress field near the stagnation point. For
a stagnation-point flow with the velocity field given by (13), the velocity becomes
unbounded at x → ∞ or y → ∞ and is thus physically no longer meaningful. The
singularity arising in the far field at x → ∞ or y → ∞ may not be relevant when a
bounded stagnation-point flow is investigated. We should then focus on the analysis
of singularity in a bounded area near the stagnation point.

(ii) If k1
W1

= −2, performing the similar steps as for the above case gives the solutions:

T11 = x−
1

W1 y2F′′ − 2
W1

x−
1

W1
−1yF′ +

1
W1

(
1

W1
+ 1
)

x−
1

W1
−2F

+C1x−
1

W1
−2

+ C2y
1

W1
+2

+
k3 − 2
k1 − 1

, (36)

T22 = x2− 1
W1 F′′ + C3x2− 1

W1 + C4y
1

W1
−2 − k3 + 2

k1 + 1
, (37)

T12 = x1− 1
W1 yF′′ +

(
1− 1

W1

)
x−

1
W1 F′. (38)

Similarly, by reasonably choosing of Ci (i = 1, 2, 3, 4) and F(xy), singularity near the
stagnation point can be avoided.
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(iii) If k1
W1
6= ±2, we obtain four equations for F1, F2 and F3 from (25). Solving them and

then substituting them into (22)–(24) yield:

T11 = C1x−
1−k1
W1 + C2y

1−k1
W1 − k3 − 2

1− k1
, (39)

T22 = C3x−
1+k1
W1 + C4y

1+k1
W1 − k3 + 2

1 + k1
, (40)

T12 = 0. (41)

To prevent the singularity near the stagnation point (x, y) = (0, 0), only one of C1, C2
and one of C3, C4 need to be zero according to the relative relationship between k1 and
W1. This results in a stress distribution that depends on only one coordinate x or y.

3.1.2. Case k1 − 1 = 0

In this case, the coefficient of T11 in (19) vanishes. The corresponding solution of T11 is
simply given by

T11 =
k3 − 2

W1
ln y + F1, (42)

where F1 is an arbitrary function of ψ = xy. The solutions of T22 and T12 remain the same
as given in (22)–(24). Again, considering the compatibility condition, the final solutions are
obtained depending on the value of W1. All intermediate steps, which are similar to those
in the last Section 3.1.1, are omitted.

(i) If W1 = 1
2 , we obtain the solutions:

T11 = 2(k3 − 2) ln y− F′′ + C1 ln(xy) + C2, (43)

T22 = −x−2y2F′′ + 4x−3yF′ − 6x−4F + C3x−4 + C4y4 − k3

2
− 1, (44)

T12 = x−1yF′′ − x−2F′; (45)

The logarithmic singularity in T11 caused by ln y at y→ 0 can only be avoided when
k3 = 2, i.e., W6 −W7 = 1

2 . In this case, the choice (34) for the arbitrary constants Ci
(i = 1, 2, 3, 4) and arbitrary function F(xy) is still suitable to prevent the singularity
near the stagnation point.
However, for the Oldroyd model, i.e., the case of W6 −W7 = 4(1 − β)W1 with
0 < β < 1 and for the Maxwell model, i.e., the case of W6 −W7 = 0, the logarith-
mic singularity at the Weissenberg number W1 = 1

2 is unavoidable. The similar
conclusion was also drawn by [11] for Maxwell fluid.

(ii) If W1 6= 1
2 :

T11 =
k3 − 2

W1
ln y + C1 ln(xy) + C2, (46)

T22 = C3x−
2

W1 + C4y
2

W1 − k3

2
− 1, (47)

T12 = 0. (48)

The singularity caused by the term ln y can only be avoided if k3 = 2. In addition,
C3 also has to be zero to prevent the singularity at xy → 0. This choice will cause a
uniform stress field, which may be physically disputable.

3.1.3. Case k1 + 1 = 0

Analogous to the last two subsections, the solutions in this case are distinguished for
the following cases.
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(i) If W1 = 1
2 :

T11 = x−2y2F′′ − 4x−3yF′ + 6x−4F + 6C1x−4 + C2y4 − k3

2
+ 1,

T22 = 2(k3 + 2) ln y + F′′ + C3 ln(xy) + C4,

T12 = x−1yF′′ − x−2F′.

(49)

where the logarithmic singularity caused by ln y in T22 could only be avoided with the
extra restriction k3 + 2 = 0. However, for the Oldroyd model there is k3 = 2(1− β)
at W1 = 1

2 with < 0β < 1 and for the Maxwell model k3 = 0, so that logarithmic
singularity is non-removable. The similar conclusion was also drawn by [11] for a
Maxwell fluid.

(ii) For W1 6= 1
2 :

T11 = C1x−
2

W1 + C2y
2

W1 − k3

2
+ 1,

T22 =
k3 + 2

W1
ln y + C3 ln(xy) + C4,

T12 = 0.

(50)

Similar to the last cases, the singularity in T11 and T22 can only be avoided at k3 = −2
with Ci = 0 (i = 1, 2, 3). This again corresponds to a uniform stress field and thus may
be physically disputable.

3.2. Case k2 6= 0

For some of the viscoelastic models derived from the Oldroyd 8-constant model k2
is not zero, such as the Williams 3-constant Oldroyd model, Oldroyd-4-constant model,
etc., details see [15]. For this case, the solution of T12 remains the same as in (24). T11
and T22 need to be solved from the coupled PDE system consisting of (15) and (16) with
non-constant coefficients.

Applying the method of characteristics, the PDE system reduces to the following
ODE system:

W1y
dT11

dy
= (1− k1)T11 + k2T22 + k3 − 2, (51)

W1y
dT22

dy
= −k2T11 + (1 + k1)T22 + k3 + 2, (52)

along the characteristic curves xy = const. Furthermore, using the transformation:

y = eW1 ỹ (53)

Equations (51) and (52) can be transformed into an ODE system with constant coefficients:

dT11

dỹ
= (1− k1)T11 + k2T22 + k3 − 2, (54)

dT22

dỹ
= −k2T11 + (1 + k1)T22 + k3 + 2, (55)

or in matrix form:
dt
dỹ

= At + b (56)

with:

t =
(

T11
T22

)
, A =

(
1− k1 k2
−k2 1 + k1

)
, b =

(
k3 − 2
k3 + 2

)
. (57)
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Eliminating T22 by combining (54) and (55), gives an second-order ODE with constant
coefficients for T11:

d2T11

dỹ2 − 2
dT11

dỹ
+ (1− k2

1 + k2
2)T11 = k2(k3 − 2)− (k1 + 1)(k3 + 2). (58)

The homogeneous solution of this ODE depends on the type of solutions of the
corresponding characteristic equation:

λ2 − 2λ + (1− k2
1 + k2

2) = 0. (59)

Its eigenvalues are:

λ1,2 = 1±
√

k2
1 − k2

2. (60)

Depending on the value of k2
1− k2

2, the homogeneous solution of (58) has the following
three different cases:

(i) If k2
1 − k2

2 > 0, λ1 and λ2 are real numbers with λ1 6= λ2, we obtain:

T11,h = C1 · eλ1 ỹ + C2 · eλ2 ỹ; (61)

(ii) If k2
1 − k2

2 = 0, i.e., λ1 = λ2 = 1, we obtain:

T11,h = (C1 + C2ỹ) · eỹ; (62)

(iii) If k2
1 − k2

2 < 0, λ1/2 = 1± iω with ω =
√

k2
2 − k2

1 are conjugates complex numbers,
the homogeneous solution of T11,h is given by

T11,h = eỹ[C1 sin (ωỹ) + C2 cos (ωỹ)]. (63)

The particular solution of the ODE (58), depending on the value of the coefficient
1− k2

1 + k2
2, includes two cases as follows:

(i) If 1− k2
1 + k2

2 6= 0, we obtain:

T11,p =
k2(k3 + 2)− (k1 + 1)(k3 − 2)

1− k2
1 + k2

2
; (64)

(ii) If 1− k2
1 + k2

2 = 0, the particular solution takes the form:

T11,p = −1
2
[k2(k3 + 2)− (k1 + 1)(k3 − 2)]ỹ. (65)

The general solution of the ODE (58) is expressed as

T11 = T11,h + T11,p. (66)

Obviously, the second case of the particular solution, (65), can only be combined with
the first case of the homogeneous solution, (61).

The solution of T22 can be directly determined by inserting the solution for T11, (66),
into (54):

T22 =
1
k2

(
dT11

dỹ
+ (k1 − 1)T11 − k3 + 2

)
. (67)

To obtain the final solutions of the original PDE system consisting of (15) and (16),

we only need to replace the variable ỹ with y by the transformation ỹ = ln y
1

W1 , and all
arbitrary constants Ci with arbitrary functions Fi(xy). Finally, together with the solution of
T12 in (24), we obtain the complete solutions of the PDE system (15)–(17) as follows.



Appl. Sci. 2021, 11, 6931 12 of 17

(i) If k2
1 − k2

2 > 0 and k2
1 − k2

2 6= 1:

T11 = k2

(
F1 · y

1+ω
W1 + F2 · y

1−ω
W1

)
+

k2(k3 + 2)− (k1 + 1)(k3 − 2)
1− k2

1 + k2
2

,

T22 = (k1 + ω)F1 · y
1+ω
W1 + (k1 −ω)F2 · y

1−ω
W1 +

(k1 − 1)(k3 + 2)− k2(k3 − 2)
1− k2

1 + k2
2

,

T12 = F3 · y
1

W1 .

(68)

(ii) If k2
1 − k2

2 = 1, the solutions take the form:

T11 =k2

(
F1 · y

2
W1 + F2

)
− 1

2W1
[k2(k3 + 2)− (k1 + 1)(k3 − 2)] ln y,

T22 =(k1 + 1)F1 · y
2

W1 + (k1 − 1)F2 −
k1 − 1
2k2W1

[k2(k3 + 2)− (k1 + 1)(k3 − 2)] ln y

− 1
2k2

[k2(k3 + 2)− (k1 − 1)(k3 − 2)],

T12 =F3 · y
1

W1

(69)

(iii) If k2
1 − k2

2 = 0:

T11 = k2F1 · y
1

W1 +
k2

W1
F2 · ln y · y

1
W1 +

k2(k3 + 2)− (k1 + 1)(k3 − 2)
1− k2

1 + k2
2

,

T22 = k1F1 · y
1

W1 + F2 · y
1

W1 +
k1

W1
F2 · ln y · y

1
W1 +

(k1 − 1)(k3 + 2)− k2(k3 − 2)
1− k2

1 + k2
2

,

T12 = F3 · y
1

W1 .

(70)

(iv) If k2
1 − k2

2 < 0:

T11 =k2

[
F1 · cos

(
ln y

ω
W1

)
+ F2 · sin

(
ln y

ω
W1

)]
· y

1
W1

+
k2(k3 + 2)− (k1 + 1)(k3 − 2)

1− k2
1 + k2

2
,

T22 =
[
(k1F1 + ωF2) · cos

(
ln y

ω
W1

)
+ (k1F2 −ωF1) · sin

(
ln y

ω
W1

)]
· y

1
W1

+
(k1 − 1)(k3 + 2)− k2(k3 − 2)

1− k2
1 + k2

2
,

T12 =F3 · y
1

W1 .

(71)

Here, ω =
√

k2
1 − k2

2, F1, F2 and F3 are arbitrary functions of xy.
The logarithmic singularity caused by the term ln y in the solution (69) can only be

avoided under the special circumstance k2(k3 + 2)− (k1 + 1)(k3 − 2) = 0. Similar to the
cases in the last subsection, satisfying the compatibility condition yields three to four
restriction equations on the functions F1, F2, and F3 according to the relationship between
ω and k1. Furthermore, to avoid the singularity near the stagnation point (x, y) = (0, 0),
the obtained final stress distribution either depends on only one variable or is again
meaninglessly uniform. These tedious derivations are not given.

4. Analytical Solutions of a Near-Wall Stagnation-Point Flow

Analytic investigations of near-wall stagnation-point flows of viscoelastic fluids have
rarely been dealt with. These investigations only treat the constitutive stress equations,
however, the momentum equation is not satisfied, as can be seen, e.g., in [12,13]. The
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difficulty is the accessibility of analytic solutions. In contrast to a wall-free stagnation-point
flow, the similarity solution of the velocity field (12) in a near-wall stagnation-point flow
must satisfy the no-slip conditions at the wall y = 0. This requires f ′(0) = 0 in addition to
f (0) = 0. To satisfy this condition, the simplest choice is f (y) = y2 as have been employed
in [12,13]. Here, we investigate a more general form f (y) = yα with α > 1 and y > 0. The
corresponding dimensionless velocity field takes the form:

u = n(αxyα−1,−yα), (72)

where n = ±1 denotes the direction of the flow. As displayed in Figure 4, n = 1 corresponds
to the inflow toward the stagnation point and n = −1 indicates the outflow away from the
stagnation point.

Figure 4. Sketch of velocity field in a near-wall stagnation-point flow.

For such a velocity field, an analytical solution is only attainable for less complex
viscoelastic models. In this paper, we consider the most commonly employed Oldroyd-B
model. As described in Section 2, the constitutive model equation for an Oldroyd-B fluid
can be expressed for Tp, which is the polymetric contribution to the stress tensor. Omitting
the index p, the dimensionless model equation takes the form:

T + W
5
T = 2βD, (73)

where W is the only Weissenberg number in this model, and β =
ηp

ηp+ηs
∈ [0, 1] is the

retardation parameter.
As has been shown, the Reynolds number does not appear in the constitutive model

equations, so its value does not affect the singularities of the models. Therefore, it is conve-
nient and common to assume the Reynolds number Re = 1. In this case, the corresponding
momentum equation is given as

u · ∇u = −∇p + (1− β)∇ ·D +∇ · T. (74)

Inserting the velocity field (72) into the constitutive Equation (73), we obtain a PDE
system, consisting of three equations as follows:

Wαxyα−1 ∂T11

∂x
−Wyα ∂T11

∂y
= (2Wαyα−1 − n)T11 + 2Wα(α− 1)xyα−2T12 + 2βαyα−1, (75)

Wαxyα−1 ∂T22

∂x
−Wyα ∂T22

∂y
= −(2Wαyα−1 + n)T22 − 2βαyα−1, (76)

Wαxyα−1 ∂T12

∂x
−Wyα ∂T12

∂y
= −nT12 + Wα(α− 1)xyα−2T22 + βα(α− 1)xyα−2. (77)
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The solutions of this PDE system must also satisfy the momentum Equation (74).
Applying the curl operator to (74) in order to eliminate the pressure p results in the
compatibility condition:

∂2T11

∂x∂y
− ∂2T22

∂x∂y
− ∂2T12

∂x2 +
∂2T12

∂y2

=2α(α− 1)xy2α−3 − n(1− β)α(α− 1)(α− 2)(α− 3)xyα−4.
(78)

Then, we will give the analytical solution of the PDE system (75)–(77) and discuss its
compatibility with Equation (78).

4.1. Analytical Solutions of the Model Equation

We firstly solve (76) for T22, which is uncoupled from (75) and (77). Then, Equations (75)
and (77) can be successively solved. Using the method of characteristic for (76) yields the
characteristic equations:

dx
Wεxyα−1 =

dy
−Wyα

=
dT22

−(2Wαyα−1 + n)T22 − 2βαyα−1 . (79)

Its solution takes the form:

T22 = F1(xyα) · y2αe−
y1−α

nW(α−1) +
2β

W
αy2αe−

y1−α

nW(α−1)

∫
y−2α−1e

y1−α

nW(α−1) dy, (80)

where F1(xyα) is an arbitrary function of xyα, and xyα = const. represents the characteristic
curves of the solution. Substituting (80) into (77) and solving the resulting PDE with the
same method as above yields:

T12 =F2(xyα) · e−
y1−α

nW(α−1) − F1(xyα) · αxy2α−1e−
y1−α

nW(α−1) +
β

2nW2 xy−α

+
β

nW2 xyα
(
αyα−1 +

1
2nW

)
e−

y1−α

nW(α−1)

∫
y−3αe

y1−α

nW(α−1) dy,

(81)

with the arbitrary functions F1, F2 of xyα. Similarly, substituting (81) into (75) and solving
the consequent PDE result in the solution for T11:

T11 =F3(xyα) · y−2αe−
y1−α

nW(α−1) − 2αF2(xyα) · xy−1e−
y1−ξ

nW(α−1)

+ ξ2F1(xyα) · x2y2α−2e−
y1−α

nW(α−1) − 2αβ

W
y−2αe−

y1−α

nW(α−1)

∫
y2α−1e

y1−α

nW(α−1) dy

− αβ

W2 x2y−ξ−1 − αβ

nW2 x2yα−1(αyα−1 +
1

nW
)
e−

y1−α

nW(α−1)

∫
y−3αe

y1−α

nW(α−1) dy

− α2β

nW2 x2e−
y1−α

nW(α−1)

∫
y−α−2e

y1−α

nW(α−1) dy,

(82)

where F1, F2, and F3, again, are arbitrary functions of xyα.
The solutions in the case α = 2 are consistent with that obtained by [12,13].
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4.2. Compatibility Condition

Substituting the solutions of the stress components (80)–(82) into the compatibility
condition (78) yields the following restriction on the functions F1, F2, and F3:

− αF′1 · y3α−1 −
(

F′′2 +
1

nW
F′1
)
· y2α + α

(
αF′1ψ + 2(α− 1)F1

)
ψyα−3

+ α
(
− αF′′2 ψ2 − (3α− 1)F′2ψ + 2F2 −

α

nW
F′1ψ2 − α− 2

nW
F1ψ

)
· y−2

+ α
(

F′′3 ψ− F′3 −
3

nW
F2 −

1
W2 F1ψ

)
· y−α−1 +

1
nW

( 1
nW

F2 + F′3
)
· y−2α

+ ψ · G(y) = 0,

(83)

where ψ = xyα and:

G(y) =2β
[ 1

nW2 α(α− 1)y−2α +
1

W
α2(α + 1)y−α−1 + nα2(α + 1)2y−2

+ 4Wα2(α + 1)(α− 1)yα−3] · ∫ y−3e
y1−α

nW(α−1) dy

+
[
nα
(
α(α2 − 2α + 5)− 2(1− β)(2α2 − 3α + 3)

)
y−4 − 2α(α− 1)yα−3

+ 4βWα2(α + 1)(α− 1)yα−5 +
2

W
(1− β)α(α− 1)y−α−3] · e y1−α

nW(α−1) .

(84)

The condition (83) could only be satisfied for any value of y along the characteristic
line ψ = 0, which denotes the symmetric line x = 0. Along this line, the compatibility
Equation (83) will be greatly simplified to:

− αF′1 · y3α−1 −
(

F′′2 +
1

nW
F′1
)
· y2α + 2αF2 · y−2

− α
(

F′3 +
3

nW
F2
)
· y−α−1 +

1
nW

( 1
nW

F2 + F′3
)
· y−2α = 0,

(85)

which leads to:

F1(ψ) = F1(ψ = 0) = C1, F2 = 0, F3(ψ) = F(ψ = 0) = C3, (86)

where C1 and C3 are arbitrary constants. The corresponding stress components along the
y-axis are given by

T11 =C3y−2αe−
y1−α

nW(α−1) − 2β

W
αy−2αe−

y1−α

nW(α−1)

∫
y2α−1e

y1−α

nW(α−1) dy,

T22 =C1y2αe−
y1−α

nW(α−1) +
2β

W
αy2αe−

y1−α

nW(α−1)

∫
y−2α−1e

y1−α

nW(α−1) dy,

T12 =0.

(87)

Furthermore, applying the L’Hospital’s rule, we can analyze the behavior of the stress
components near the stagnation point, respectively. Since α > 1 and y > 0, we obtain:

lim
y→0

y±2αe−
y1−α

nW(α−1) =

{
0 for n = 1,

∞ for n = −1,
(88)

lim
y→0

y±2αe−
y1−α

nW(α−1)

∫
y∓2α−1e

y1−α

nW(α−1) dy = 0. (89)

To avoid the singularity for the case of outflow, we can choose C1 = C3 = 0. Hence,
for both the cases of inflow and outflow, regular solutions exist near the stagnation point.
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As mentioned above, the solutions under the velocity assumption (72) can satisfy the
conservation of the momentum equation only on the symmetric axis. In order to obtain a
solution that satisfies the compatibility equation, a more suitable function f (y) to describe
the velocity field has to be proposed. This is an interesting topic for future study. Actually,
in many previous investigations for both wall-free and near-wall stagnation-point flows,
the singularity of the stress field was analyzed by forcing the solution to be independent of
x, see, e.g., [8,12,13].

5. Conclusions

In this paper, we obtained the analytical solutions of the stress distributions of a
wall-free steady stagnation-point flow with the proposed velocity profile u = (ax,−ay)
for the Oldroyd 8-constant model under different material relations. All solutions here
are compatible with the momentum conservation equation, and their singularities are
discussed in detail. The results show that all models have singularities near the stagnation
point. Most of these can be effectively avoided by appropriately choosing the model param-
eters and free functions. However, the singularity in Oldroyd-B and Maxwell-B models at
the Weissenberg number Wi = 1

2 is non-removable. The results in this investigation can be
directly used to analyze the stress contributions and their singularities of a wide spectrum
of viscoelastic models derived from the Oldroyd 8-constant model. Furthermore, for the
Oldroyd-B model, we obtained the analytical solutions of the stress tensor in a near-wall
stagnation-point flow with the proposed velocity profile u = ±(αxyα−1,−yα) with α > 1
and show that the solutions can satisfy the momentum conservation along the streamline
passing the stagnation point. To the best of our knowledge, such an analysis of the compat-
ibility of model solutions with momentum conservation in a near-wall stagnation-point
flow is absent in the literature. To further investigate near-wall stagnation-point flows, a
more general velocity profile has to be proposed.

Furthermore, nowadays, there is a tendency to make comparisons, at least qualitative,
between complete theoretical models that are not computer-implementable and experimen-
tal models in order to understand which terms of the theoretical models are not covered
by the experimental models, and moreover, to understand the correspondences between
terms of the theoretical and experimental models, see, e.g., [18]. For the next step, it will be
an interesting and valuable work to further compare the models discussed in this article
under different material parameter relations with the experimental models.
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