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Abstract: The use of remote sensing technology to monitor farmland is currently the mainstream
method for crop research. However, in cloudy and misty regions, the use of optical remote sensing
image is limited. Synthetic aperture radar (SAR) technology has many advantages, including high
resolution, multi-mode, and multi-polarization. Moreover, it can penetrate clouds and mists, can
be used for all-weather and all-time Earth observation, and is sensitive to the shape of ground
objects. Therefore, it is widely used in agricultural monitoring. In this study, the polarization
backscattering coefficient on time-series SAR images during the rice-growing period was analyzed.
The rice identification results and accuracy of InSAR technology were compared with those of three
schemes (single-time-phase SAR, multi-time-phase SAR, and combination of multi-time-phase SAR
and InSAR). Results show that VV and VH polarization coherence coefficients can well distinguish
artificial buildings. In particular, VV polarization coherence coefficients can well distinguish rice
from water and vegetation in August and September, whereas VH polarization coherence coefficients
can well distinguish rice from water and vegetation in August and October. The rice identification
accuracy of single-time series Sentinel-1 SAR image (78%) is lower than that of multi-time series SAR
image combined with InSAR technology (81%). In this study, Guanghan City, a cloudy region, was
used as the study site, and a good verification result was obtained.

Keywords: multi-time series SAR; InSAR; cloudy; rice identification; remote sensing

1. Introduction

Satellite remote sensing has become an important means of crop monitoring. Optical
remote sensing can be used to monitor relevant parameters in an all-around manner during
the rice-growing period. To classify agricultural crops by remote sensing, a discriminant
function is established on the basis of crop characteristics, including brightness, hue,
position, texture, and structure. However, optical remote sensing data are often affected by
cloud, rain, fog, and other bad weather conditions in practical applications. For example,
cloud cover and frequent rainfall in mountainous or basin areas make it difficult to find a
suitable image for studying the rice-growing season. In addition, the optical image may
contain similar objects with different spectra and different objects with similar spectra.
Therefore, the use of optical remote sensing data in the identification and monitoring of
rice and other crops will be greatly limited.

Synthetic aperture radar (SAR) can make up for the deficiency of optical remote
sensing due to its high resolution; multi-mode; multi-polarization direction; all-weather
acquisition; cloud cover penetration; all-time Earth observation; and sensitivity to the
shape, material, moisture, and surface roughness of ground objects [1–3]. For SAR imagery,
the time-phase change in backscattering characteristics of rice is much greater than that of
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other crops. Therefore, the use of SAR imagery in monitoring rice in cloudy regions is of
great significance.

At present, two primary methods are used to map rice-planting areas using SAR
imagery. One is to identify by using the threshold of SAR data before and after rice planting.
The other is to classify by using multi-time-phase SAR data. Previous studies identified
rice-planting areas by only using single-time-phase radar images [4,5]. In addition, most of
them are in the C and L bands. The main data types include ERS-1/2, JERS-1, ENVISAT
ASAR, and RADARSAT-1. The polarization mode used is VV or HH. In 1989, LeToan [6]
first put forward the feasibility of rice identification by using SAR imagery. By analyzing
the backscattering characteristics of ground objects in the X-band radar image, they found
that the change in the backscattering coefficient of rice with time was much greater than
that of other crops. Therefore, the use of SAR imagery in rice identification was proposed.
Gaohan [7] classified crops in Dongting Lake experimental area using Gaofen-3 SAR
imagery. The overall classification accuracy of rice and other crops was 85%, and the
Kappa coefficient was greater than 0.8. The single-time-phase SAR imagery has single
polarization mode and only one time phase. In addition, the early SAR imagery has
low spatial resolution and poor image quality, which greatly restricts the effect of crop
classification and identification by SAR, especially in regions with tattered farmland and
complex planting structure.

Multi-time-phase SAR imagery, which makes use of a number of time-phase SAR
images, can fully reflect the change of rice in the growth cycle and has more advantages than
single-time-phase radar [8–10]. On the basis of the comparative analysis of the difference
in backscattering strength between rice in the growing period and other ground objects,
the most different time phases are selected to distinguish rice from other ground objects.
Bazzi [11] used the time-series Sentinel-1 SAR imagery to extract rice-planting areas with
an accuracy of >80%. Nguyen [12] mapped rice-planting areas in the Mekong Delta on
the basis of time-series dual-polarization (VV/VH) Sentinel-1A interferometric wide (IW)
images. The accuracy reached 87.2%. Several studies demonstrated that time-series SAR
can efficiently extract rice-planting areas and achieve good results. Compared with single-
time phase, multi-time phase [13–16] can better reflect the polarization backscattering
strength of rice in the growing period and its changes so as to better separate other
ground objects.

The coherent processing is performed by using two SAR imagery in the same region
taken at similar times but different viewing geometries. The phase difference informa-
tion (interference phase) between the corresponding pixels is obtained, and the phase
information is used to acquire the displacement along the line of sight of the radar in the
target region. Thus, interference SAR (InSAR) [17,18] is established. InSAR technology is
very sensitive to the spatial distribution, height, shape, and direction of surface scatterers.
Therefore, interferometric radar has more advantages than single polarimetric radar in
the extraction of vertical structure information of surface vegetation. The one relevant for
most satellite systems is the repeat-pass interferometry configuration. This mode utilizes
the fact that the repeat cycle of the satellite is not perfect, resulting in an across-track shift
of orbits of typically a few hundred meters. And this means that the repeat-pass data
are acquired at different times compared with the single-pass modes. This provides the
possibility to study phenomena related to surface changes and feature sensitivity such
as land deformation, land cover changes, and crop identification occurring between the
satellite acquisitions. InSAR technology combined with time-series SAR can improve the
application accuracy of SAR imagery to a certain extent. The coherent images obtained by
Ghula [19] in invasive plant species, which were based on L-band PALSAR (HH/VV) data
combined with InSAR technology, played an important role in mapping invasive plant
species in the sub-coronal layer of tropical rain forests. Thus, the invasive and fast-growing
plants were successfully identified. Jiang [20] improved the accuracy of land-cover research
by using InSAR covariance matrix of HH polarimetric TerraSAR-X. The overall accuracy
reached 82.46%, and the classification accuracy by InSAR was improved by about 9%. At
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present, InSAR technology has been widely used in the monitoring, identification, and
classification of forests, snow, wetlands, soil, and cities, as well as in digital elevation model
(DEM) production generation, deformation measurement, earthquake observation and
measurement, and 3D reconstruction [21–23].

In cloudy regions, the use of optical remote sensing image in the monitoring and
identification of rice and other crops is greatly restricted. However, the traditional method
is mainly used in single- and multi-time-phase radar images; that is, the difference in
the backscattering strength among ground objects is based to distinguish rice from other
ground objects while overcoming the problems of the SAR image itself. Polarimetric
InSAR technology is used for rice identification. It is very sensitive to the spatial distribu-
tion, height, shape, and direction of surface vegetation scatterers. Therefore, it can more
efficiently extract the rice-planting areas compared with other technologies.

Although it is not a precedent to monitor rice based on InSAR technology, some stud-
ies only calculated and adopted the theoretical coherence diagram, namely, the coherence
diagram of the two most different time phases. Based on the time-series polarimetric inter-
ference radar, combined with the change of backscattering strength of rice and coherence
coefficients, this study created pairs across time, performed rice identification using a
time-series Sentinel-1 and a time-series Sentinel-1 scheme incorporating the polarization
coherence coefficient, and used high-resolution Sentinel-2 optical images as the result vali-
dation. The rice-planting areas were extracted by using the object-oriented classification
method, which provides a reference for the monitoring and identification of rice and other
crops in cloudy regions.

2. Materials and Methods
2.1. Study Area

Guanghan is located in the core area of Chengdu Plain in Sichuan Basin, with a total
area of 538 km2, and is gently inclined from northwest to southeast in the topography. It
mainly features plains, combined with low hills, mountains, and flat dams. Among them,
the hills are mainly concentrated in the south, and the mountains are mainly in the northeast.
The average altitude is around 450 m, with the lowest value of 442 m and the highest value
of 734 m in the east. Guanghan (Figure 1) is located in subtropical monsoon climate zone.
It is mainly characterized by abundant precipitation, with annual precipitation of more
than 800 mm, less rainfall in spring, and more rainstorm in summer. Affected by basin
effect and climate, it is cloudy and foggy. Rice has one or two growth seasons annually,
and it is transplanted in May, matures in mid-August, and is harvested in mid-September.
According to the widely used Biologische Bundesanstalt, Bundessortenamt und CHemische
scale (a German scale used to identify the phenological development stages of cereals,
BBCH), the phenological stage of rice growth is shown in Table 1. We determined the
rice-planting area according to the crop growth terminal, and the whole area in Chengdu
Plain is mainly rice.

Table 1. Phenological stage of rice growth in the study area.

Time Phenological Stage

Late March Seeding
Mid-April Seeding–emerging
Late April Raising on seed bed
Early May Transplanting–turning green
Early July Booting–heading
Mid-July Booting–heading

Mid-August Grouting–milky ripe
Late August Milky ripe–mature

Early September Mature–harvesting
Mid-September Mature–harvesting
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Figure 1. Location of the study area.

2.2. Methodology

Based on the time-series SAR images of rice-growing season, after multi-looking
processing, registration, polarization filtering, and geographic coding, the polarization
post-scattering coefficient of typical ground such as rice, artificial building, water, and
vegetation was extracted by sample point. After combining with the InSAR technology, the
baseline estimation, interference generation, adaptive filtering, and coherence calculations,
the VV and VH polarization coherence coefficients of the SAR images were obtained.
The polarization coherence coefficient of typical samples such as rice, artificial building,
water, and vegetation was extracted from sample data, and then the variation of the
time-series coherence coefficient of typical ground objects was analyzed. Selecting the
appropriate time-series SAR image polarization information and the coherence coefficient,
the contribution of coherence coefficient to time-series SAR image was studied. How to
select the appropriate polarization information and the coherence coefficient to extract the
rice-planting area information was the key point and difficulty of this study.

Based on the time-series SAR images and rice improvement identification results
of coherence-coefficient SAR images, Sentinel-2 optical image and grain statistical data
were verified data with the aim to verify the reliability of rice identification results of
SAR images.

The framework of the study was as follows (Figure 2).



Appl. Sci. 2021, 11, 6923 5 of 20

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 20 
 

 
Based on the time-series SAR images and rice improvement identification results of co-

herence-coefficient SAR images, Sentinel-2 optical image and grain statistical data were veri-
fied data with the aim to verify the reliability of rice identification results of SAR images. 

The framework of the study was as follows (Figure 2). 

Baseline estimation

Interferogram generation

Geocoding and calibration

SLC Imagery

Adaptive filter and coherence generation

Coherence imagery 

Multi-look processing

Geocoding and calibration

Polarization filtering

SLC Imagery

Multi-look 
processing

Sentinel-1（InSAR）
Processing

Sentinel-1 
Processing

Rice sample point: ROI Feature extraction

Scale segmentation

Sample extraction

RGB false color 
synthesis

VV/VH, HH/HV

Intensity data of  growth season 

Identification results

Results analysis

Sample-point 
verification Area verification

Ground ROI
Statistical Yearbook 

data

Object-oriented feature 
extraction and 
classification

 
Figure 2. The framework of the study. 

2.3. Data and Preprocessing 
2.3.1. Data Used in This Study 

Six Sentinel-1A single-look complex (SLC) images covering the study area in 2017 
were selected in this study. The parameters are shown in Table 2. The Sentinel-1 satellite 
[24,25], equipped with C-band SAR sensor, can be used for all-weather Earth observation. 
It has four imaging modes, namely, IW swath mode, stripmap mode, wave mode, and 
extra-wide swath mode, and it can be used to realize single and dual polarization. SLC 
products are SAR data with focus. Sufficient signal bandwidth is adopted to realize the 
single-look processing in each dimension in these products, and the complex is used to 
save the phase information. The SLC in IW mode includes three images corresponding to 
three bands in single polarization. The interferometric wide (IW) swath mode is the main 
acquisition mode over land and satisfies the majority of service requirements. It acquires 
data with a 250 km swath at 5 m by 20 m spatial resolution (single look). IW mode captures 
three sub-swaths using Terrain Observation with Progressive Scans SAR (TOPSAR). TOP-
SAR mode replaces the conventional ScanSAR mode, achieving the same coverage and 
resolution as ScanSAR but with a nearly uniform signal-to-noise ratio and distributed tar-

Figure 2. The framework of the study.

2.3. Data and Preprocessing
2.3.1. Data Used in This Study

Six Sentinel-1A single-look complex (SLC) images covering the study area in 2017 were
selected in this study. The parameters are shown in Table 2. The Sentinel-1 satellite [24,25],
equipped with C-band SAR sensor, can be used for all-weather Earth observation. It has
four imaging modes, namely, IW swath mode, stripmap mode, wave mode, and extra-wide
swath mode, and it can be used to realize single and dual polarization. SLC products are
SAR data with focus. Sufficient signal bandwidth is adopted to realize the single-look
processing in each dimension in these products, and the complex is used to save the phase
information. The SLC in IW mode includes three images corresponding to three bands
in single polarization. The interferometric wide (IW) swath mode is the main acquisition
mode over land and satisfies the majority of service requirements. It acquires data with a
250 km swath at 5 m by 20 m spatial resolution (single look). IW mode captures three sub-
swaths using Terrain Observation with Progressive Scans SAR (TOPSAR). TOPSAR mode
replaces the conventional ScanSAR mode, achieving the same coverage and resolution as
ScanSAR but with a nearly uniform signal-to-noise ratio and distributed target ambiguity
ratio. IW SLC products contain one image per sub-swath and one per polarization channel,
for a total of three (single-polarization) or six (dual-polarization) images in an IW product.
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Table 2. Sentinel-1A data.

Imaging
Mode Acquisition Time Track

Number Resolution Multi-Look
Resolution

Polarization
Type

IW 19 May 2017 128 10 × 9.99 20 × 19.988 VH/VV
IW 12 June 2017 128 10 × 9.99 20 × 19.988 VH/VV
IW 18 July 2017 128 10 × 9.99 20 × 20.002 VH/VV
IW 11 August 2017 128 10 × 9.99 20 × 19.988 VH/VV
IW 16 September 2017 128 10 × 9.99 20 × 20.003 VH/VV
IW 10 October 2017 128 10 × 9.99 20 × 19.988 VH/VV

2.3.2. SAR Data Preprocessing

Sentinel-1 data preprocessing [26] involves track correction, thermal denoising, radio-
metric calibration, multi-look processing, filtering, topographic correction, and backscatter
normalization. The ENVI-based SARscape module is used in Sentinel-1A data preprocess-
ing. This module can comprehensively preprocess and analyze polarimetric radar data in
various bands. SARscape currently supports the import, geometric correction, multi-look
processing, registration, denoising, geocoding, and polarization decomposition of radar
data and a series of basic processing functions. Because the study area is mainly in the plain
with relatively flat terrain and mountainous area less than 3% of the total area, the slope
effect cannot be considered in the processing. Preprocessing is made for VV polarization
and VH polarization at the same time. The preprocessing process mainly includes the
import, multi-look processing, registration, polarization, filtering, and geocoding of the
data (Figure 3).
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Taking VV and VH data on May 19 as the benchmark image, five images from June
to October were registered. Time-series filtering [27] was conducted on the registered
images to remove the speckle noise of the radar image. This method can be applied to
single-band and multi-time-phase radar images. Multi-time-phase radar filtering includes
De Grand and anisotropic nonlinear diffusion. In this study, De Grand was adopted to
process multi-time-phase SAR in the study area. GAMMA-MAP filtering was used in
this study. The window was set to 5 × 5. Three RGB channels were used to display VV
polarization and VH polarization in the study area after preprocessing.
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On the basis of the image after geocoding, RGB channels were used to display the
composite graph of VV and VH polarization (R (05/19), G (06/12), B (07/18)) in the study
area. The results are shown in Figure 4.
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2.4. Extraction and Analysis of Rice Coherence in the Sentinel-1A Image

The purpose of SAR image interference processing is to obtain the index representing
the similarity between two images or among many SAR complex images, called coher-
ence [28]. The similarity of target scatterers is reflected by radar echo. The similarity
information and intensity information of ground objects provide the information related to
target scatterers. The study on the surface activities in a specific region should be realized
through decoherence in the interference analysis. The coherence coefficient is an important
index of coherence. It is introduced to measure the similarity of measured ground objects.
On the basis of many SAR images at different times in the study area, quantitative analysis
was adopted to monitor the change of rice-planting area in different growth periods so as
to extract the rice-planting area.

The rice in the study area is cultivated from March to April, including seeding and
seedling raising. The rice is transplanted in May, matures in August, and is harvested in
September. During the whole period, the rice field exhibits obvious changes. Therefore, this
study was based on InSAR technology, and the changes in the rice field were monitored by
using Sentinel-1A data in the process of transplanting, heading, ripening, and harvesting
of rice so as to provide a reference for the identification of rice-planting areas.

The coherence of VV and VH polarization in Sentinel-1 time series was calculated on
the basis of the SARscape module, and then the coherence coefficient is obtained. The data
processing for calculating the coherence (Figure 5) included baseline estimate, interfero-
gram generation, self-adaptive filtering, coherence calculation, registration, geocoding and
calibration, and cutting the study areas.

The baseline is an important part in coherence generation. The baseline and slope
distance of two SAR images form a triangle so as to produce the coherence. The baseline
estimate is used to evaluate the quality of interference image pair. Thus, interference can
happen. The SAR images generally used for change monitoring must meet the following
conditions: the same sensor, the same ascending track (descending track), and incident
angle. Taking the SAR image in rice field cultivation monitoring as an example, the sensor,
ascending track, and incident angle meet the use conditions [29]. When at least two
antennas are overlapped in obtaining the ground reflection, interference can be produced.
The baseline-estimated relevant parameters of this study are shown in Figure 6. The
accuracy of elevation and deformation increases with the increase of coherence. The
baseline is 73.348 m long, which is far less than the critical baseline (486.486 m). The
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minimum change in the elevation that can be detected is 211.737 m, and the minimum
deformation is 0.028 m. The baseline estimate result (Figures 7 and 8) shows that the
quality of interference image pair used in the research satisfies the requirement of InSAR
technology [30].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 20 
 

 

Baseline estimate

Interferogram 
generation

Geocoding and 
calibration

Radar SLC image

Adaptive filtering and coherence 
calculation

Coherent graph

 
Figure 5. InSAR processing flow. 

The baseline is an important part in coherence generation. The baseline and slope 
distance of two SAR images form a triangle so as to produce the coherence. The baseline 
estimate is used to evaluate the quality of interference image pair. Thus, interference can 
happen. The SAR images generally used for change monitoring must meet the following 
conditions: the same sensor, the same ascending track (descending track), and incident 
angle. Taking the SAR image in rice field cultivation monitoring as an example, the sensor, 
ascending track, and incident angle meet the use conditions [29]. When at least two an-
tennas are overlapped in obtaining the ground reflection, interference can be produced. 
The baseline-estimated relevant parameters of this study are shown in Figure 6. The accu-
racy of elevation and deformation increases with the increase of coherence. The baseline 
is 73.348 m long, which is far less than the critical baseline (486.486 m). The minimum 
change in the elevation that can be detected is 211.737 m, and the minimum deformation 
is 0.028 m. The baseline estimate result (Figures 7 and 8) shows that the quality of inter-
ference image pair used in the research satisfies the requirement of InSAR technology [30]. 

Figure 5. InSAR processing flow.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 6. Baseline estimate result. 

 
Figure 7. Relationship diagram between Sentinel-1 elevation accuracy and coherence. 

 
Figure 8. Relationship diagram between Sentinel-1 deformation accuracy and coherence. 

Normal Baseline (m) = 73.348 Critical Baseline min - max(m) = [−6443.325] – [6443.325] 
Range Shift (pixels) = −20.602 
Azimuth Shift (pixels) = 0.415 
Slant Range Distance (m) = 878730.362 
Absolute Time Baseline (Days) = 24 
Doppler Centroid diff. (Hz) = −3.797 Critical min-max (Hz) = [−486.486] – [486.486] 
2 PI Ambiguity height (InSAR) (m) = 211.737 
2 PI Ambiguity displacement (DInSAR) (m) = 0.028 
1 Pixel Shift Ambiguity height (Stereo Radargrammetry) (m) = 17785.947 
1 Pixel Shift Ambiguity displacement (Amplitude Tracking) (m) = 2.330 
Master Incidence Angle = 39.590  
Absolute Incidence Angle difference = 0.005 
Pair potentially suited for Interferometry, check the precision plot 
 
Description: 
(1) The length of Normal Baseline (m) = 115.237, less than 1/3 of critical baseline: Critical Baseline 
minmax (m) = [−486.486] – [486.486]. 
(2) Can detect the minimum change in the elevation: 2 PI Ambiguity height (m) = 211.737 
(3) Can detect the minimum deformation: 2 PI Ambiguity displacement (m) = 0.028 
(4) Doppler Centroid difference: Doppler Centroid diff. (Hz) = −3.797 in the critical range   

Critical min-max(Hz) = [−486.486] – [486.486] 
(5) Time baseline: 24 days 

Figure 6. Baseline estimate result.



Appl. Sci. 2021, 11, 6923 9 of 20

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 6. Baseline estimate result. 

 
Figure 7. Relationship diagram between Sentinel-1 elevation accuracy and coherence. 

 
Figure 8. Relationship diagram between Sentinel-1 deformation accuracy and coherence. 

Normal Baseline (m) = 73.348 Critical Baseline min - max(m) = [−6443.325] – [6443.325] 
Range Shift (pixels) = −20.602 
Azimuth Shift (pixels) = 0.415 
Slant Range Distance (m) = 878730.362 
Absolute Time Baseline (Days) = 24 
Doppler Centroid diff. (Hz) = −3.797 Critical min-max (Hz) = [−486.486] – [486.486] 
2 PI Ambiguity height (InSAR) (m) = 211.737 
2 PI Ambiguity displacement (DInSAR) (m) = 0.028 
1 Pixel Shift Ambiguity height (Stereo Radargrammetry) (m) = 17785.947 
1 Pixel Shift Ambiguity displacement (Amplitude Tracking) (m) = 2.330 
Master Incidence Angle = 39.590  
Absolute Incidence Angle difference = 0.005 
Pair potentially suited for Interferometry, check the precision plot 
 
Description: 
(1) The length of Normal Baseline (m) = 115.237, less than 1/3 of critical baseline: Critical Baseline 
minmax (m) = [−486.486] – [486.486]. 
(2) Can detect the minimum change in the elevation: 2 PI Ambiguity height (m) = 211.737 
(3) Can detect the minimum deformation: 2 PI Ambiguity displacement (m) = 0.028 
(4) Doppler Centroid difference: Doppler Centroid diff. (Hz) = −3.797 in the critical range   

Critical min-max(Hz) = [−486.486] – [486.486] 
(5) Time baseline: 24 days 

Figure 7. Relationship diagram between Sentinel-1 elevation accuracy and coherence.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 6. Baseline estimate result. 

 
Figure 7. Relationship diagram between Sentinel-1 elevation accuracy and coherence. 

 
Figure 8. Relationship diagram between Sentinel-1 deformation accuracy and coherence. 

Normal Baseline (m) = 73.348 Critical Baseline min - max(m) = [−6443.325] – [6443.325] 
Range Shift (pixels) = −20.602 
Azimuth Shift (pixels) = 0.415 
Slant Range Distance (m) = 878730.362 
Absolute Time Baseline (Days) = 24 
Doppler Centroid diff. (Hz) = −3.797 Critical min-max (Hz) = [−486.486] – [486.486] 
2 PI Ambiguity height (InSAR) (m) = 211.737 
2 PI Ambiguity displacement (DInSAR) (m) = 0.028 
1 Pixel Shift Ambiguity height (Stereo Radargrammetry) (m) = 17785.947 
1 Pixel Shift Ambiguity displacement (Amplitude Tracking) (m) = 2.330 
Master Incidence Angle = 39.590  
Absolute Incidence Angle difference = 0.005 
Pair potentially suited for Interferometry, check the precision plot 
 
Description: 
(1) The length of Normal Baseline (m) = 115.237, less than 1/3 of critical baseline: Critical Baseline 
minmax (m) = [−486.486] – [486.486]. 
(2) Can detect the minimum change in the elevation: 2 PI Ambiguity height (m) = 211.737 
(3) Can detect the minimum deformation: 2 PI Ambiguity displacement (m) = 0.028 
(4) Doppler Centroid difference: Doppler Centroid diff. (Hz) = −3.797 in the critical range   

Critical min-max(Hz) = [−486.486] – [486.486] 
(5) Time baseline: 24 days 

Figure 8. Relationship diagram between Sentinel-1 deformation accuracy and coherence.

On the premise that the baseline estimate meets the interference processing, the
interferogram was generated. The interferogram generation results include interferogram
(Figure 9) and flattened interferogram (Figure 10).
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On the basis of the interferogram, self-adaptive filtering and coherence calculation
were performed, and the Sentinel-1 coherence graph (Figures 11 and 12) was obtained.
The coherence coefficient of the study area was extracted. Preprocessing of the interfero-
metric data included the selection of the suitable SLC pairs for InSAR data analysis, then
splitting Sentinel-1 data into sub-swath levels covering the study area (IW2 and IW3),
selecting VV polarization for the InSAR coherence analysis, and applying a precise or-
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bit file, followed by co-registration to the sub-pixel accuracy using the Sentinel-1 TOPS
co-registration algorithm.
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3. Result
3.1. Extraction and Analysis of Rice Coherence
3.1.1. The Change of Coherence Coefficient of VV Polarization

On the basis of the analysis of the change in the coherence coefficient of VV polari-
metric ground objects, the coherence coefficient of rice first decreases and then increases
(Figure 13). Among them, the minimum value appears in August, when the rice is mature.
The radar backscatter coefficient mainly represents the backscatter intensity of rice canopy.
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In May, the backscatter coefficient of rice mainly represents the backscatter intensity of
the water in the rice field. Therefore, the coherence coefficient is small and varies greatly.
After harvesting the rice in September, the radar backscatter coefficient mainly comes
from the surface soil or the surface water in the rice field after harvest. Therefore, the
coherence coefficient is similar to that in June and varies slightly. The coherence coefficients
of artificial buildings from June to October are more than 0.46, and the difference between
the maximum and the minimum is 0.06. The mean value is far higher than that of rice,
water area, and vegetation.
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Figure 13. Sentinel-1 VV polarization coherence coefficient map.

If the coherence coefficient is greater, the coherence is higher; that is, it varies less.
Most of the artificial buildings in the study area are buildings, roads, etc., which change
slightly with time. Due to time variation and low single-to-noise ratio, the water surface
shows low interference coherence. The study area is located in the subtropical monsoon
climate zone. Thus, the growing period of rice overlaps with the rainy season. The seasonal
sudden rainfall will cause the rise of water level and the expansion of water area. However,
the coherence coefficient of the water changes by not more than 0.01. The climate of
Guanghan belongs to the subtropical monsoon climate, but the city is located in the core
area of Chengdu Plain. Therefore, there is no large area of vegetation that is common in
subtropical monsoon climate zones, such as subtropical evergreen broad-leaved forest.
Small areas of vegetation are mostly present in the study area. Therefore, although the
rainfall increases, the vegetation grows insignificantly in the growing period of rice. During
this period, the coherence coefficient varies slightly (Table 3).

Table 3. Coherence coefficient of ground objects of VV polarization.

12-June 18-July 11-August 16-September 10-October

Artificial buildings 0.52 0.50 0.52 0.50 0.46
Rice 0.06 0.07 0.04 0.04 0.07

Water area 0.08 0.09 0.09 0.09 0.08
Vegetation 0.10 0.11 0.10 0.09 0.08

3.1.2. The Change of Coherence Coefficient of VH Polarization

Different from the change in VV polarization coherence coefficient, the change in VH
polarization coherence coefficient of rice shows a wave shape (Figure 14). The minimum
coherence coefficient is observed in June, August, and October, whereas the maximum
coherence coefficient is observed in July and September. Similar to the VV polarization
coherence coefficient, the VH polarization coherence coefficient of artificial buildings is
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greater than 0.37, which is far higher than that of rice, water area, and vegetation. The
change in the VH polarization coherence coefficient of water is similar to that of the VV
polarization coherence coefficient. Due to time variation and low single-to-noise ratio, the
surface shows low interference coherence. The study area is located in the subtropical
monsoon climate zone, and thus the growth period of rice overlaps with the rainy season.
The seasonal sudden rainfall will cause the rise of water level and the expansion of water
area. However, the coherence coefficient of the water changes by not more than 0.01. The
change in the VH polarization coherence coefficient of vegetation is also similar to that of
VV polarization (Table 4).
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Figure 14. Sentinel-1 VH polarization coherence coefficient map.

Table 4. Coherence coefficient of VH polarization.

12-June 18-July 11-August 16-September 10-October

Artificial buildings 0.50 0.43 0.45 0.41 0.37
Rice 0.04 0.07 0.04 0.06 0.04

Water area 0.07 0.08 0.08 0.07 0.08
Vegetation 0.10 0.08 0.08 0.09 0.10

On the basis of the VV and VH polarization coherence coefficients of ground objects,
the VV polarization coherence coefficient of artificial buildings is greater than the VH
polarization coherence coefficient. No remarkable difference can be observed between the
VV and VH polarization coherence coefficients of rice, vegetation, and water area. However,
the VV and VH polarization coherence coefficients can be used to better distinguish artificial
buildings from other ground objects. The VV polarization coherence coefficient can be
used to distinguish rice from water area and vegetation in August and September, whereas
the VH polarization coherence coefficient can also be used to well distinguish rice from
water area and vegetation in August and October. However, after harvesting the rice in
October, the SAR images show two intensities of soil and water in the rice field. In addition,
the base time in this study is May. The difference between rice planting and harvest is
little. Therefore, the coherence coefficient in October is not highly available. It may be more
effective to distinguish rice by using the coherence coefficients of two time phases, namely,
rice maturity and harvest. On the basis of the comprehensive analysis on the polarization
coherence coefficients, this study shows that the polarization interferogram introduced by
InSAR technology can support rice identification.
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3.2. Extraction and Analysis of Backscattering Characteristics of Rice

On the basis of the time-series Sentinel-1A image, the rice-planting areas were ex-
tracted according to the backscatter coefficients of various land types in the growth period
of rice.

3.2.1. Change in the VV Polarization Object Backscatter Coefficient

The VV polarization backscatter coefficients of artificial buildings are greater than
−3.98 (Table 5), whereas the backscatter coefficients of water areas are less than −19.21.
The two ground objects can be well distinguished from rice and vegetation. Except in
the rice maturation period on July 18, the polarization backscatter coefficient of rice is
slightly higher than that of vegetation and lower than that of vegetation in other periods
(Figure 15).

Table 5. VV polarization backscatter coefficient of ground objects.

19-May 12-June 18-July 11-August 16-September 10-October

Artificial buildings −5.20 −4.15 −4.10 −4.97 −3.98 −3.99
Rice −12.23 −11.51 −10.05 −12.71 −11.26 −10.40

Water area −20.10 −19.21 −19.74 −20.25 −19.51 −19.58
Vegetation −10.70 −9.79 −10.41 −11.60 −9.63 −9.65
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3.2.2. Change in the VH Polarization Backscatter Coefficient of Ground Objects

Similar to VV polarization, artificial buildings and water area have the maximum
and minimum polarization backscatter coefficients, respectively (Figure 16). Both can be
distinguished from rice and vegetation obviously. However, the polarization backscatter
coefficients of vegetation and rice are in a spirally interweaved state. The polarization
backscatter coefficient of rice basically shows an increasing trend in the whole growth cycle,
except from mid-July to mid-August, which shows a decreasing trend. The polarization
backscatter coefficient of vegetation can be better distinguished from rice on June 12, but
there is little difference in other months (Table 6).
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Table 6. VH polarization backscatter coefficient of ground objects.

19-May 12-June 18-July 11-August 16-September 10-October

Artificial buildings −11.86 −11.65 −11.03 −11.25 −10.67 −10.83
Rice −18.69 −18.94 −16.40 −17.34 -15.74 −14.93

Water area −23.75 −23.28 −22.91 −23.14 −22.94 −23.07
Vegetation −19.67 −16.67 −17.17 −17.00 −15.00 −15.34

3.2.3. Change in the VV/VH Polarization Backscatter Coefficients of Ground Objects

VV/VH is the ratio of VV polarization to VH polarization (Figure 17). The change
trend of the VV/VH ratio of artificial buildings and water area is similar to that of VV
and VH polarization backscatter coefficients, which can be used to distinguish between
rice and vegetation. Except in other months, the VV/VH value of vegetation is difficult to
distinguish from rice on 12 June and 11 August (Table 7).
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Figure 17. Sentinel-1 VV/VH polarization backscatter coefficient of ground objects.

Table 7. VV/VH polarization backscatter coefficient of ground objects.

19-May 12-June 18-July 11-August 16-September 10-October

Artificial buildings 0.45 0.46 0.38 0.41 0.40 0.38
Rice 0.69 0.61 0.67 0.73 0.72 0.70

Water area 0.85 0.82 0.86 0.88 0.85 0.85
Vegetation 0.65 0.59 0.72 0.74 0.64 0.63
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By comprehensively considering VV, VH, VV/VH, coherence coefficient, and other
parameters of Sentinel-1 SAR image, this study aimed to comparatively analyze the rice
identification results under two conditions, namely, time series and combination of time se-
ries and coherence coefficient so as to verify the contribution of SAR polarization coherence
coefficient to rice identification.

3.3. Rice Identification on the Basis of the Time-Series Sentinel-1A SAR

On the basis of the comprehensive analysis of VV, VH, VV/VH, coherence coefficient,
and other parameters, the features with great difference among different ground objects
were considered. In addition, the features were used as the basic features of rice identifi-
cation so as to rapidly extract the rice-planting areas. Classification was made based on
the VV and VH polarization on 12 June, VV polarization on 11 August, and VV/VH value
in two months. In addition, the results are shown in R (12/06VV), G (11/08VV), and B
(12/06VH)) in three channels (Figure 18). In Figure 18, rice is colored red and dark brown,
water is colored black, artificial buildings are colored yellow and white, and vegetation is
colored dark green. Therefore, the color can be used to easily distinguish rice from other
ground objects.
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3.4. Rice Identification on the Basis of Time-Series SAR + Coherence Coefficient

Time series + coherence coefficient refers to time-series SAR combined with the
polarization coherence coefficients on 12 June and 11 August, and the results are shown
in R (12/06VV), G (11/08VV), and B (12/06VV coherence coefficient) in three channels
(Figure 19). In Figure 19, rice is colored dark red, water is colored black, artificial buildings
are colored blue and white, and vegetation is colored light green. The color can be used to
easily distinguish rice from other ground objects.
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3.5. Accuracy Evaluation

To further verify the accuracy of rice extraction on the basis of SAR image, the rice-
planting area in the study area was extracted by using object-oriented classification method
(segmentation scale 10; the proportion of each band is 1) on the basis of Sentinel-2 optical
remote sensing image. The local effect is shown in Figure 20. To verify the reliability of the
classification result, 200 validation sample points of four land types were collected from
Google Earth, and the classification accuracy of the statistical area of rice in Guanghan City
in 2017 was evaluated by using an error matrix based on TTA Mask.
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The classification accuracies of time-series SAR and time-series SAR combined with
coherence coefficient are shown in Tables 8 and 9, respectively. The user classification
accuracy of Scheme 1 is 78%, whereas that of Scheme 2 is improved by 3%. On the basis of
area verification in Table 10, the accuracy of Scheme 2 is improved by 2.05% compared to
that of Scheme 1. On the basis of the verification result of the error matrix and statistical
area accuracy, the accuracy can be improved significantly after the coherence coefficient
is combined with time-series SAR classification. On the basis of the rice area statistical
accuracy in Table 10, the accuracy of the rice-planting area extraction of Scheme 2 is
significantly higher than that of Scheme 1.

Table 8. Time-series SAR classification accuracy.

Artificial Buildings Rice Water Area Vegetation Total User Accuracy (%, UA)

Artificial Buildings 170 12 7 11 200 85.00
Rice 11 156 5 28 200 78.00

Water area 5 2 188 5 200 94.00
Vegetation 12 21 8 159 200 79.50

Total 198 191 208 203 800
Mapping accuracy (%, PA) 85.86 81.68 90.38 78.33

Overall accuracy (OA) = 84.13% Kappa coefficient = 0.7883

Remark: PA: Producer’s Accuracy; OA: Overall Accuracy; UA: User’s Accuracy.

Table 9. Classification accuracy of time-series SAR and coherence coefficients.

Artificial Buildings Rice Water Area Vegetation Total User Accuracy (%, UA)

Artificial Buildings 175 9 6 10 200 87.50
Rice 9 162 6 23 200 81.00

Water area 1 2 189 8 200 94.50
Vegetation 10 16 5 169 200 84.50

Total 195 189 206 210 800
Mapping accuracy (%, PA) 89.74 85.71 91.75 80.48

Overall accuracy (OA) = 86.87% Kappa coefficient = 0.8249

Table 10. Statistical accuracy of rice area.

Classification
Scheme

Statistical
Area/Hectare

Classification
Area/Hectare Accuracy%

Time series 26191 21435 81.84
Time series +

coherence coefficient 26191 21972 83.89

Figure 20 shows that the rice-planting area extracted by this scheme basically corre-
sponds to the spatial position extracted by the optical image (Area A in Figure 20). This
scheme proves to be practical and has significance for the large-scale monitoring of rice
and other food crops.

The polarization backscatter coefficient of rice cannot be easily distinguished from
vegetation in the SAR image, which leads to error in the extraction of rice and vegeta-
tion information. On the basis of InSAR, the coherence coefficient was introduced in
this study, which helps to distinguish rice and vegetation information and improve the
identification accuracy.

Finally, on the basis of the analysis of the overall accuracy and Kappa coefficient of
the two schemes, the overall accuracy is improved by 2.74%, and the Kappa coefficient
is improved by 0.366 due to the use of coherence coefficient. On the basis of the above
analysis, the introduction of coherence coefficient to extract the rice-planting area can
significantly improve not only the accuracy of rice identification but also the accuracy of
land cover classification. Moreover, it is of great significance for studies on land cover on
the basis of SAR images.
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In cloudy regions, the application of optical image is restricted. The SAR image can
penetrate through clouds and mists and therefore make up for the limitation of optical
image. Hence, the use of optical image or SAR image should be determined according
to the characteristics of the study area, research purpose, and research methods in rice
monitoring and other fields. In this selection, the accuracy difference in the rice extraction
result between optical image and SAR image should be analyzed under different cloud
covers to obtain a scale. This scale can be used to determine which data source should be
selected efficiently and quickly.

4. Conclusions

In this study, the core area of Chengdu Plain was taken as a case example. The
polarization coherence coefficient of rice on the basis of InSAR technology was analyzed,
and the polarization backscatter coefficient and polarization coherence coefficient of rice on
the basis of time-series SAR image were extracted. The two schemes based on time-series
SAR image and time-series SAR combined with the coherence coefficient were analyzed to
identify the rice-planting area. The following conclusions can be drawn:

(1) The VV and VH polarization coherence coefficients of typical ground objects
during the growing period of rice were obtained on the basis of InSAR technology. The
analysis showed that the VV and VH polarization coherence coefficients can be used
to well distinguish artificial buildings from other ground objects. The VV polarization
coherence coefficient can be used to well distinguish rice from water area and vegetation in
August and September; the VH polarization coherence coefficient can also be used to well
distinguish rice from water area and vegetation in August and October.

(2) The rice identification accuracy on the basis of time-series Sentinel-1 SAR image
is lower than that of time-series Sentinel-1 SAR image combined with InSAR technology.
The user accuracies of both methods are 78% and 81%, respectively. The rice identification
result based on Sentinel-2 optical remote sensing images was compared with three rice
identification results based on Sentinel-1 SAR images. Compared with single-time-phase
SAR, the time-series SAR image can distinguish rice and vegetation information more
significantly, thus improving the rice identification accuracy. The introduction of coherence
coefficient not only improves the classification accuracy of artificial buildings but also
significantly distinguishes vegetation and rice, thus improving the identification accuracy.
Rice identification on the basis of time-series Sentinel-1 SAR image combined with In-
SAR technology can achieve a good classification result, which shows that the coherence
coefficient improves rice identification.

(3) In monitoring rice and other crops in cloudy regions, optical data are preferred
if they are available. If optical data are lacking, SAR data can be used to monitor crops.
The Sentinel-1 series images reach 250 km in width, which is significantly conducive to
large-scale rice monitoring or mapping in plains or areas with small topographic relief.
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