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Abstract: Two infinitely long parallel conductors of arbitrary cross section connected to a voltage
source form a loop. If the source voltage depends on time, then due to induction there is no constant
current density in the loop conductors. It is only recently that a method has been published for
accurately calculating current density in a group of long parallel conductors. The method has
thus far been applied to the calculation of steady-state current density in a loop connected to a
sinusoidal voltage source. In the present article, the method is used for an accurate calculation of
transient current using transient current density. The transient current is analysed when connecting
and short-circuiting the sources of sinusoidal, constant and sawtooth voltages. For circular cross
section conductors, the dependences of maximum current density, maximum current and the time of
achieving steady state on the source frequency, the distance of the conductors and their resistivity
when connecting the source of sinusoidal voltage are examined.

Keywords: transmission and distribution lines; induction; current density; mathematical modelling;
ordinary differential equations

1. Introduction

The article deals with the calculation of transient current density and transient current
in a long loop formed by two long parallel solid conductors of arbitrary cross section and a
voltage source. The source voltage is assumed to be dependent on time t. Due to induction,
the current density in the conductors is a function of t too. It is only recently that a method
has been published for accurately calculating current density in a group of long parallel
conductors [1]. The method has thus far been applied to the calculation of steady-state
current density in a loop connected to a sinusoidal voltage source [2].

The original contributions of the present article are as follows:

• adjustment of the method of current density calculation proposed in [1] to a form
suitable for numerical calculation of transient current density;

• presentation of results of the calculation of transient current density and transient current;
• analysis of transient current when connecting on and short-circuiting a voltage source;
• results of the calculation of the dependences of maximum current density, maximum

current and the time of achieving steady state on the distance of circular cross sec-
tion conductors, the frequency of sinusoidal voltage source and the resistivity of
conductors.

In the existing methods for the calculation of transient current in a pair of conductors
of circular cross section, the current is not determined by transient current density. Either
there is a constant current density in the conductor cross section [3] or the loop is replaced
by a circuit with lumped parameters. The circuit is a series connection of a resistor with the
resistance R and an inductor with the inductance L. The quantities R and L are specified
prior to the calculation of transient current, which is problematic [2]. Using the proposed
method, it is therefore possible to solve problems that have been solved in a steady state
(e.g., [4–7]).

In the calculation of current density, a quasi-stationary process is assumed and the
displacement current and leakage current between conductors are neglected. The conduc-
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tors do not move. The permeability of the conductors and their surroundings equals the
vacuum permeability µ0. In the chosen coordinate system xyz, the conductors are parallel
to the axis z and their cross sections do not depend on z. Figure 1 gives an example of the
cross sections of the conductors A1 and A2 in the plane xy, the cross sections are denoted
by the same symbols as the conductors. The resistivity of the conductors is a function of x
and y, $ = $(x, y). The voltage source the conductors are connected to produces a potential
V(z, t) between the conductors, while the cross section of each conductor is an equipotential
area. When calculating the current density, the voltage U(t) = V(z1, t)−V(z2, t)/(z2− z1),
where z2 > z1, is assumed to be specified. The current I(t) in the loop is the flux of current
density vector J through the cross section of one of the loop conductors. Jz(x, y) = J(x, y)
is the only non-zero component of J.
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Figure 1. The cross sections of the conductors A1 and A2.

2. Calculation of Current Density and Current in Conductors

The essence of the method for calculating current density as published in [1] consists
in the conductors being replaced by the partial conductors Ai, ∀i. The symbol ∀ means
that the quantity after it takes the values 1, 2, . . . , N successively. The cross section of each
partial conductor Ai is also denoted by the symbol Ai. Each cross section A`, ` = 1, 2, can
be replaced with arbitrary precision by the union a(A`) of identical disjunct rectangles that
have been formed using the net of parallel lines

x = kx∆x, y = ky∆y,

where kx, ky are integers and ∆x and ∆y are the chosen lengths of the rectangle sides. The
rectangles of the net, which are subsets in a(A`), ` = 1, 2, are the cross sections of the partial
conductors Ai, ∀i. Ai ⊂ a(A`) if (Xi, Yi) ∈ A`, where (Xi, Yi) is the centre of the rectangle
Ai. The partial conductors Ai, which form a(A1) and a(A2), must be numbered such that
the graph with N vertices (Xi, Yi) and N − 1 edges is a path graph [1,8]. It is assumed that,
in the partial conductor Ai, ∀i, there is a constant resistivity $i = $(Xi, Yi) and that the
current density Ji(t) does not depend on x and y.

According to Coufal [1], the current densities Ji(t), ∀i, in conductors A1 and A2 are a
solution to the system of N − 1 ordinary differential equations

$i Ji(t)− $i+1 Ji+1(t) +
µ0

4π

N

∑
k=1

φik J̇k(t) = δi U(t), i = 1, 2, . . . , N − 1, (1)

and one algebraic equation
N

∑
k=1

Jk(t) = 0. (2)

The differentiation of a function with respect to time t is denoted by a dot over the
symbol of the function. The coefficients φik do not depend on t, and their calculation is
described in the Appendix of [9]. Jk(t)(z2 − z1)µ0 φik/(4π) is the contribution of the kth
partial conductor to the magnetic flux through the segment (between the planes z = z1 and
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z = z2) of the loop formed by partial conductors Ai and Ai+1. The value of the coefficient
δi on the right-hand side of Equation (1) is given by the relation

δi =


1 if (Ai ⊂ a(A1)) ∧ (Ai+1 ⊂ a(A2)),
−1 if (Ai ⊂ a(A2)) ∧ (Ai+1 ⊂ a(A1)),

0 otherwise.
(3)

Prior to the numerical solution to the system formed by Equations (1) and (2),
Equation (2) is substituted by the equation

N

∑
k=1

J̇k(t) = 0. (4)

The system of Equations (1) and (4) can after rearrangement be replaced by a single
equation

φ J̇(t) = 107D+ 107U(t) δ, (5)

where the matrix φ is of the type (N, N), on whose first N − 1 rows are the fluxes
φik, ∀k, i = 1, 2, . . . , N− 1, while on the Nth row are ones (coefficients on the left-hand side
of Equation (4)); 107 = 4π/µ0; the matrices J̇, D and δ are of the type (N, 1). J̇ = [ J̇i(t)];
D = [Di], Di = $i+1 Ji+1 − $i Ji for i = 1, 2, . . . , N − 1, DN = 0. δ = [δi], δi is defined by
relation (3) for i = 1, 2, . . . , N − 1, δN = 0. Multiplying Equation (5) by the inverse matrix
φ−1 from the left yields the equation

J̇ = 107MJ + 107U(t)M, where MJ = φ−1D, M = φ−1δ. (6)

The matrices MJ and M are of the type (N, 1). The rows of the matrix MJ are lin-
ear combinations of the current densities Ji(t). The elements of matrix M are numbers.
Equation (6) is a linear inhomogeneous system of ordinary differential equations with
constant coefficients. According to Rektorys and Vitasek [10], there is just one solution
J = [Ji(t)] to Equation (6) in the interval t ∈ [0, ∞) that satisfies the initial conditions

J(0) = J0, J0 = [Ji(0)]. (7)

The results given below for the solution to Equation (6) were obtained using the
Runge–Kutta method [10–12]. Equation (6) can be written in the form

[ J̇i(t)] = [Fi(t, Jk(t), ∀k)].

If Ji(t), ∀i, is the current density in the ith partial conductor at time t, then

Ji(t + h) = Ji(t) +
1
6
(k1i + 2k2i + 2k3i + k4i)

is the current density in the ith partial conductor at time t + h, where h is the integration step,

k1i = hFi(t, Jk(t), ∀k),

k2i = hFi(t + h/2, Jk(t) + k1k/2, ∀k),

k3i = hFi(t + h/2, Jk(t) + k2k/2, ∀k),

k4i = hFi(t + h, Jk(t) + k3k, ∀k).

All the values of transient current I(t) given below were calculated using the transient
current density in the conductor A1

I(t) = ∆x∆y ∑
i

Ji(t), where Ai ⊂ a(A1).

The current in the conductor A2 is −I(t).
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3. Results and Discussion
3.1. Example 1

The cross sections of the conductors forming the long loop are illustrated in Figure 1.
The temperature of the conductors is 300 K, both conductors are of copper and their
resistivity $ = 1.725× 10−8Ω·m [13]. At time t = 0, the conductors are connected to the
sinusoidal voltage source U(t) = Û sin(ωt + α), Û = 1 V·m−1, the frequency f = ω/(2π)
and the period T = 1/ f .

This example is for f = 1 kHz, the same as in [2], Variant 4; however, in Figure 6 in [2],
the results of the calculation of current density in conductors are only given for the steady
state, i.e., for t→ ∞. Figure 2 illustrates the dependences of current density on x and t for
a constant y in the conductors A1 and A2.
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Figure 2. Example 1, α = 0, f = 1 kHz: The dependences of current density on x and t for a constant
y in the conductors A1 and A2. The curve marked by the character o represents the current density
at time t = o× T/4; J = 0 for t = 0. The axis x at the point marked by the arrow ends in the value
x = 16 mm and continues with the value x = 56 mm. Between these values is the gap between the
conductors, and the current density is zero.

The calculation of transient current density provides a large amount of data that can
be displayed in a similar way to Figure 2. For example, the maximum value of |Ji| is equal
to 6.095 MA·m−2 in the partial conductor that is down on the left in the conductor A2, in
the interval t ∈ [0, T] at time t = 3.3× 10−4 s, for α = 0, f = 1 kHz.

The current densities Ji(t), ∀i, are non-periodic oscillating functions that with increas-
ing t converge to periodic functions. For t→ ∞, it can be assumed that for the sinusoidal
voltage source Û sin(ωt + α) and the cosinusoidal voltage source Û cos(ωt + α) the current
density in the ith partial conductor is

Ji(t) = Ĵi sin(ωt + εi), ∀i (8)

and
Ji(t) = Ĵi cos(ωt + εi), ∀i (9)

respectively. Substituting the assumed solutions to (8) and (9) into (1) and (4) yields the
first and second equation systems, respectively. The two systems form a system of 2N
equations for N unknown amplitudes Ĵi and N unknown initial phases εi. Probably the
simplest way of finding a solution to the two systems is to multiply the first system by the
imaginary unit j and add the second system of equations. This after adjustment yields a
system of N equations for the complex current densities Ĵi exp(jεi) exp(jωt), ∀i. Solving
this system gives current density phasors in the partial conductors, as stated in [1].

With increasing t, the transient current converges to the steady sinusoidal current
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Isin(t) = Î sin(ωt + β).

Figure 3 illustrates the current I(t) in three time intervals.
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Figure 3. Example 1, α = 0, f = 1 kHz: The dependence of current on t in three time intervals: [0, 2T],
[8T, 10T] and [28T, 30T].

Theoretically speaking, the steady state is achieved after an infinitely long time. In
practice, the steady state is reached at time t ≥ tsin, where tsin is determined using the
chosen value of the deviation ∆I . tsin is such a least time that for t ≥ tsin it holds∣∣1− |Ilm(t)|/ Î

∣∣ ≤ ∆I , (10)

where Ilm(t) is the value of the current at the local maximum or minimum. In Example
1 (α = 0, f = 1 kHz), it holds tsin = 29.49 T for ∆I = 0.0032. For ∆I = 0.003 in Example
1, it holds tsin

.
= 0.03− 0.04 s for f ∈ [50, 106] Hz. The time tsin depends substantially

on the initial phase α of the voltage source at time t = 0. In Figure 4, the function I(t) is
illustrated for several values α in Example 1 for f = 1 MHz. It can be seen in Figure 4 that
the steady state is achieved at the instant t = 0 for αsin = 90◦. The value αsin depends on f .
For example, for f = 50 Hz, αsin = 60◦.
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Figure 4. Example 1, f = 1 MHz: The dependence of the current I(t) on the initial voltage phase α

for t ∈ [0, 2T].
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3.2. Example 2

The conductors are the same as in Example 1, but, in contrast to Example 1, they
are connected to the constant voltage source U(t) = Û, Û = 1 V·m−1 at time t = 0. The
voltage source is being short-circuited at time tsho.

Figure 5 illustrates the function I(t) when the voltage source is being connected and
later short-circuited. The graph of the function I(t) has two parts. The first is for t ∈ [0, tsho]
increasing while the second part is decreasing in the interval t ∈ (tsho, ∞).

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

I (kA)

Cu Cu

Al Al

t (0.01 s)

Figure 5. Example 2: The dependence of transient current on time when the source of constant
current is connected at time t = 0 and is later short-circuited at time tsho = 0.005, 0.01, 0.05 s. The
curves (solid lines) denoted by Cu correspond to copper conductors. The curves (thin lines) denoted
by Al correspond to aluminium conductors at a temperature of 300 K, $ = 2.733× 10−8Ω·m [13];
tsho = 0.01, 0.03 s.

If Figure 5 is redrawn in semilogarithmic coordinates, then the second part of the
graph of the function I(t) is a straight line. This means that ln I(t) is a linear function of
t and that the slope |∆ ln I(t)|/∆t is constant. It follows from the results in Figure 5 that
with increasing conductor resistivity the time tsin decreases and the slope of the drop in
current increases after the short-circuiting of the voltage source.

It would undoubtedly be interesting to investigate the disconnection of the source.
However, solving such a problem is beyond the scope of the article. Source disconnection
is realised using a switch, in which an electric arc is excited between the switch contacts.
To calculate transient current density and transient current when disconnecting the source,
it is necessary to replace the source by a physical and mathematical model of the concrete
switch.

3.3. Example 3

The cross section of the two conductors is a circle with the radius r = 8 mm. The cross
sections A1 and A2 have their centres at points (0, 0) and (d, 0), respectively, d ≥ 2r. Both
conductors are of copper and they are connected to a sinusoidal voltage source at time
t = 0, the same as in Example 1.

The solution to Example 3 allows extending and complementing the results of solving
Example 1. With the sinusoidal source connected, the main effect of the transient state is an
increase in the maximum value of the current density

Jmax = max
∀i, t∈[0,T)

|Ji(t)|

and in the maximum value of the current

Imax = max
t∈[0,T)

|I(t)|
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with respect to the steady state. The maximum values Imax and Jmax are obtained during
the first period T. The amplitude of the steady current density attains the maximum

Ĵmax = max
∀i

Ĵi

at the point (r, 0). The point at which the transient current density attains the value Jmax
is on the surface of the conductor A1 (and at the symmetrical point on the surface of the
conductor A2) and its position depends on d and f . The instant at which Jmax is attained
differs from the instant at which Imax is attained (see Figure 6).

0.01

0.1

1

5

−8 −4 0 4 8

J (MA·m−2)

1

2

3

x (mm)

Figure 6. Example 3, d = 100 mm, f = 1 kHz, α = 0: The dependence of current density on x for
y = 0 in the conductor A1. (1) The amplitude of current density in steady state; (2) t = 0.49 ms, the
value of the current I is maximum; (3) t = 0.37 ms, maximum current density.

Table 1 gives the values Jmax/ Ĵmax and Imax/ Î in dependences on f , d and $. The
resistivity of Al conductors is $ = 2.733× 10−8Ω·m [13]. Alloy conductors are of an alloy
of 75 mass% Cu + 25 mass% Al, $ = 1.76× 10−7Ω·m [13].

Table 1. Example 3, α = 0: The dependences of MJ = Jmax/ Ĵmax and MI = Imax/ Î on f , d and $.

f (Hz) d= 16 mm 32 mm 0.1 m 1 m 1 m 1 m
Cu Cu Cu Cu Al Alloy

50 MJ 1.001 1.082 1.232 1.441 1.291 1.002
103 MJ 1.005 1.250 1.358 1.421 1.439 1.599
105 MJ 1.666 1.802 2.057 2.236 1.499 1.425

50 MI 1.033 1.106 1.248 1.453 1.294 1.002
103 MI 1.537 1.801 1.890 1.939 1.920 1.659
105 MI 1.818 1.979 1.990 1.995 1.993 1.983

The transient current I(t) can be considered steady for t ≥ tsin. The instant tsin
is determined by Formula (10) and depends on the chosen value ∆I , the distance d of
the axes of conductor cross sections, the voltage source frequency f = 1/T and the
conductor resistivity. Table 2 gives the values of tsin for several values of f , ∆I and d. The
conductors in Example 3 are of copper and the respective data are given in Table 2, with
the exception of the last column, where the data given hold for aluminium conductors
($ = 2.733× 10−8Ω·m [13]). With increasing conductor resistivity, the time tsin decreases.
This statement is supported by comparing the values in the penultimate and last columns
of Table 2.



Appl. Sci. 2021, 11, 6920 8 of 12

Table 2. Example 3, α = 0: The dependences of time tsin (expressed by the number of whole periods
T and rounded up) on f , ∆I and d.

f (Hz) ∆I(−) 16 mm 32 mm 0.1 m 1 m 1 m, Al

50 0.02 2 2 2 3 2
103 0.02 9 16 26 47 30
105 0.02 525 1425 2478 4574 2887

50 0.01 2 2 3 4 3
103 0.01 11 18 31 55 35
105 0.01 695 1695 3000 5394 3405

50 0.005 2 2 3 4 3
103 0.005 13 21 35 64 40
105 0.005 864 1965 3380 6215 3923

3.4. Example 4

The conductors are the same as in Example 3. At time t = 0, they are connected to a
source of sawtooth voltage (see Figure 7). The voltage is periodic, in the first period

U(t) = Û(1− 2t/T), Û = 1V ·m−1, t ∈ [0, T). (11)

The solution to Example 4, obtained by solving Equation (6), is given in Figure 7. In
the interval t ∈ [0, 2T), the current I(t) is transient, and for t ≥ 2T the current can be
considered steady.

−4

−2

0

2

4

0 1 2 3

−2

−1

0

1

2

I (kA) U (V·m−1)

U

I

t (T )

Figure 7. Example 4, d = 16 mm, f = 60 Hz, Û = 1 V·m−1: The dependences of the current I in the
conductor A1 and the voltage U on time t.

In the theory of circuits with lumped parameters, the non-sinusoidal voltage (thus
also (11)) is in the calculation of steady current I(t) approximated by the first n terms of
the Fourier series [14]. For a source voltage that is equal to the kth harmonic, k = 1, 2, . . . , n,
the current Ik(t) is then calculated. The principle of superposition is used to obtain the
current

I(t) =
n

∑
k=1

Ik(t).

An advantage of such a calculation is that it allows the use of phasors. The Fourier
series can also be used in the calculation of steady current density, and thus also the steady
current, in two parallel long conductors connected to a source of non-sinusoidal voltage
via the method published in [1]. When assessing the suitability of such a procedure, it is
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necessary to take into account that the Fourier expansion is an infinite series while the
calculation can only be performed with a finite number n of series terms. The finite number
of terms only approximates the given voltage course, which also manifests itself in the
resultant current. Instead of n repetitions of the calculation with individual harmonics,
a single calculation can be done of transient current density and current with the given
voltage. The transient current at time t ≥ tsin can be considered steady. Figure 8 gives the
sawtooth voltage in Example 4 and its approximation by n terms of the Fourier series [14]

U(t) =
2 Û
π

∞

∑
k=1

sin(kωt)
k

(12)

and the transient current calculated with the source voltage approximated by n terms of
the expansion (12) (an accurate transient current is in Figure 7).

−4
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4

0 1 2
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I (kA) U (V·m−1)

U

I

t (T )

Figure 8. Example 4, d = 16 mm, f = 60 Hz, Û = 1 V·m−1: Approximation of the voltage U(t) by n
terms of the series (12) for n = 5 (solid line) and n = 20 (thin line). The current I in the conductor A1

when approximating the voltage by ten terms of the series (12).

3.5. Discussion

J. C. Maxwell proposed a method for the calculation of current density in a solitary con-
ductor [15]. Hundreds of works have since been published (more recently, e.g., [1,16–24])
that deal with the calculation of current density in one or two conductors, and exceptionally
in more conductors. The calculation of current density in one conductor is accurate, but it
can only be applied to the solitary conductor connected to the ideal current source, which,
however, cannot be implemented [1]. The published methods, with the exception of those
in [1,3,24], are approximate, with the current density error unknown. The self-inductance
of two conductors cannot be calculated without accurate current density [2] and thus ap-
proximate formulae continue to be used for the calculation of self-inductance of two coaxial
conductors and two circular cross section conductors [2]. According to these formulae,
inductance does not depend on conductor resistivity and voltage source frequency, in
contrast to the inductance calculated using accurate current density.

The subject of the present article is transient current in two solid long parallel conduc-
tors (conductors in the following) connected to the voltage source. A definite contribution
of the article is that current is determined using transient current density. In the article, a
numerical method is proposed and used for solving a system of differential equations for
the calculation of transient current density. The present method of calculating transient
current, not only in the conductors considered in the present article, consists in calculating
transient current in the circuit C with lumped elements, which is a series connection of
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a resistor (with resistance R), an inductor (with inductance L) and a voltage source (with
voltage U). For the circuit C , Kirchhoff’s voltage law holds

Lİ(t) + R I(t) = U(t). (13)

Dividing both sides in (13) by L gives the equation

İ(t) +
R
L

I(t) =
U(t)

L
, (14)

which is an ordinary linear inhomogeneous differential equation. According to Rektorys
and Vitasek [10], there exists just one solution I(t) to Equation (14) in the interval 0 ≤ t < ∞
that satisfies the given initial condition I(0) = I0

I(t) = exp
(
−R

L
t
)[

C +
∫ U(t)

L
exp

(
R
L

t
)

dt
]

, (15)

where the constant C is determined by the initial condition.
For the source of sinusoidal voltage U(t) = Û sin(ωt + α), the transient current is

I(t) = K
[

R
L

sin(ωt + α)−ω cos(ωt + α)

]
+ C exp

(
−R

L
t
)

, (16)

K = Û
[

R2

L
+ Lω2

]−1

.

For the initial condition I(0) = I0, it holds that

C = I0 − K
(

R
L

sin α−ω cos α

)
.

Let us consider the Al conductors A1 and A2 at a temperature of 300 K,
$ = 2.733× 10−8Ω·m [13]. The cross section of the two conductors is a circle the radius
r = 8 mm. The cross sections A1 and A2 have their centres at points (0, 0) and (d, 0),
respectively, d = 2r. At the instant t = 0, the conductors are connected to the source of
sinusoidal voltage U(t) = Û sin ωt, Û = 1 V·m−1, f = 105 Hz. The inductance L of the
conductor pair can be established using the formula [2,15]

Llit =
µ0

π

[
1
4
+ ln

d− r
r

]
.

According to this formula, Llit = 10−7 H·m−1. Figure 9 illustrates the voltage U(t),
the transient current I(16)(t) calculated using formula (16) and the transient current I(t)
calculated by the method proposed in the present article for t ∈ [0, 4T], I(0) = 0. As men-
tioned above, the value of Llit is not accurate. If the accurate value L = 8.404× 10−8 H·m−1,
determined as in [2], were used in (16), the difference between the transient currents would
be even greater than in Figure 9.
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Figure 9. Dependence of the source voltage U and transient currents I(16) and I on t ∈ [0, 4T]. The
symbol Î indicates the steady current amplitude (t→ ∞).

4. Conclusions

Two long parallel conductors with the voltage source form a long loop. A method
for calculating current density in a group of long parallel conductors has recently been
published [1]. This method was derived rigorously from knowledge whose validity cannot
be doubted. The derivation of the method is based, in the first place, on Faraday’s law of
electromagnetic induction and is an application of the Biot and Savart law, loop current
method, Kirchhoff’s voltage law, Ohm’s law, the Jordan measure theory and graph theory.
The essence of the method consists in the conductors being replaced by partial conductors
of rectangular cross section and constant current density. The partial conductors form
partial loops. One metre of each partial loop is replaced by a series resistor-inductor circuit.
The interaction of partial loops through magnetic field is considered. To calculate current
density in the partial conductors, it is not necessary to specify the inductances of inductors
in the partial loops. The transient current in the loop is at each instant equal to the flux of
transient current densities in all the partial loops.

The method described in [1] is extended to a form suitable for numerical calculation
of transient current density. The possibilities of the proposed method are demonstrated by
solving illustrative examples. The method is used for an accurate calculation of transient
current using transient current density. The transient current is analysed when connect-
ing and short-circuiting the sources of sinusoidal, constant and sawtooth voltages. For
circular cross section conductors, the dependences of maximum current density, maximum
current and the time of achieving steady state on the source frequency, the distance of
the conductors and their resistivity when connecting the source of sinusoidal voltage are
examined.
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16. Dlabač, T.; Filipovič, D. Integral equation approach for proximity effect in a two-wire line with round conductors. Tech. Gaz. 2015,

22, 1065–1068. [CrossRef]
17. Raven, M.S. Experimental measurements of the skin effectand internal inductance at low frequencies. Acta Tech. 2015, 60, 51–69.
18. Riba, J.R. Calculation of the ac to dc resistance ratio of conductive nonmagnetic straight conductors by applying FEM simulations.

Eur. J. Phys. 2015, 36, 055019. [CrossRef]
19. Kim, J.; Park, Y.J. Approximate Closed-Form Equation for Calculating Ohmic Resistance in Coils of Parallel Round Wires With

Unequal Pitches. IEEE Trans. Ind. Electron. 2015, 62, 3482–3489.
20. Riba, J.R.; Capelli, F. Calculation of the inductance of conductive nonmagnetic conductors by means of finite element method

simulations. Int. J. Electr. Educ. 2020, 57, 230–252. [CrossRef]
21. Aebischer, H.A.; Friedli, H. Analytical Approximation for the Inductance of Circularly Cylindrical Two-Wire Transmission Lines

with Proximity Effect. Adv. Electromagn. 2018, 7, 25–34. [CrossRef]
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