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Featured Application: The proposed time-domain dynamic modeling method can be applied to
analysis and design of heavy-duty gearboxes in wind turbines, cranes, drilling rigs and so on.

Abstract: Expert insights into the time-domain dynamic behavior of heavy-duty gearboxes form
the foundations of design evaluation and improvement. However, in the existing lateral–torsional
coupling (LTC) modeling method for gearboxes that is normally used for frequency-domain dynamic
behavior, the meshing forces are modeled as spring dampers with fixed acting points on the meshing
gears to simulate only the transient LTC effect, and thus the steady state characteristic in the time
domain cannot be obtained due to the unrealistic distortion of positions and orientations as the
gear angles increase. In this paper, a novel and generally applicable LTC modeling method for
heavy-duty gearboxes, mainly planetary gear sets with floating components, is proposed by using
space-fixed spring dampers with floating acting points on the meshing gears to study the time-
domain dynamic response and to support the dynamic design of heavy-duty gearboxes. Based
on the proposed method, a LTC model of a 2 megawatt (MW) wind turbine gearbox with floating
components considering the time-varying meshing stiffness, bearing stiffness, torsional stiffness,
and floating effect was established. The simulated results of representative components were in
accordance with experimental results on a test rig, and dynamic behavior was calculated.

Keywords: heavy-duty gearbox; dynamic design; time-domain; lateral-torsional coupling; float-
ing effect

1. Introduction

Gear systems are the most significant and extensively adopted mechanical transmis-
sion devices in modern applications such as automobile, locomotive, mining, metallurgy,
electric power, petroleum and chemical industries. As mechanical equipment tends to
develop in the direction of larger scale and higher performance, gear systems with high
power, high speed and heavy load are in great demand. The working environment for
gear transmission systems is extremely complex, especially for the heavy-duty gearboxes
adopted in large ships, offshore platforms, wind power machines, etc. There exist not only
external incentives introduced by the variable load condition and power plant, but also
internal incentives from the time-varying meshing stiffness, the gear transmission error, the
meshing impact, etc. Taking the wind turbine gearbox (WTG) as an example, as the drive-
train that connects the rotor hub with the generator converts the wind energy into electrical
energy, the wind field turbulence through the hub and the electricity grid disturbance
through the generator become the external excitations [1]. Meanwhile, since most WTGs
contain planetary gear sets with floating components because of the advantages of compact
structure, high power density, and coaxial arrangement of transmission shafts [2], the
varying mesh stiffness, meshing incentive, impact of floating components, and composition
error generate the internal excitations [3,4]. These make the service condition of WTGs
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quite unique and rigorous. The service life of a wind turbine is usually designed to last
more than 20 years [5]. However, internal WTGs have the highest failure rate of all wind
turbine components [6,7], and the main cause of wind turbine standstill is the vibration
issue [8]. Hence, the dynamic behavior and working performance of gearboxes have a
significant impact on the whole machine, and research on the vibration characteristics is
critical to the design and redesign of gearboxes.

Considerable efforts have been made to give comprehensive insights into the dy-
namic behavior and vibration issues of gearboxes, especially of planetary gear sets [9,10].
Kahraman et al. [11] derived a time-varying dynamic model of a planetary transmis-
sion including the manufacturing error, assembly variation and time-varying stiffness.
Lin and Parker et al. [12] developed an analytical lumped-parameter model of a plan-
etary gear set and used it to investigate the natural frequencies and vibration modes.
Abousleiman et al. [13,14] investigated the vibration behavior of a planetary gear set with
an elastic ring gear and an elastic planet carrier. Chen and Shao [15] derived a mesh
stiffness model of an internal gear pair with a tooth root crack in the ring gear based on the
potential energy principle. Christopher et al. [16] proposed a finite element formulation for
the dynamic response of gear pairs. Maláková et al. [17] analyzed the main influencing
factors on the meshing stiffness, as changes in the stiffness are a significant source of noise
and vibration. She also designed a non-circular gear transmission system with continuously
changing gear ratio and studied its kinematical characteristics [18]. Girsang et al. [19] stud-
ied the dynamic response of a WTG by enhancing the capability of FAST (a wind turbine
CAE tool) [20] through the integration of a gearbox model built using Simscape, which
took into account excitations from both the wind field and the generator. Zhu et al. [21,22]
used the lumped parameter method to study the dynamic behavior of a WTG with flexible
pins and proved that the flexible pins can improve the load sharing ability. Park et al. [23]
investigated the influence of non-torque loads on the dynamic behavior of planetary gears,
including the loading distribution and loading sharing, and concluded that considering
the non-torque load during the design stage is quite important to accurately determine the
design load that will guarantee the service life of a WTG.

In large-scale mechanical systems, heavy-duty gearboxes with planetary gear sets
are adopted extensively due to their unique advantages of high power density and high
transmission ratio; however, this yields complex configurations and characteristic serving
circumstances. Thus, more stringent design criteria are desired than for common industrial
gearboxes, and the dynamic forces become the major limiting factor to achieving better
performance [24]. In previous studies concerning gearboxes, the assessment of dynamic
behavior is usually centered on the frequency domain. Hence, a study of dynamic behavior
in the time domain becomes significant, as it can confirm the dynamic loading factors,
which are usually chosen by experience from a manual according to the traditional design
code for common gearboxes. In this paper, an appropriate and generally applicable
modeling approach of heavy-duty gearboxes, mainly the planetary gear set, is proposed to
investigate dynamic behavior in the time domain, and a LTC model of a 2 MW WTG was
built in which the time-varying meshing stiffness, bearing stiffness, torsional stiffness, and
floating factor were considered. The model was then verified by experiments on a test rig,
and dynamic characteristics of the WTG were finally revealed on the verified model.

2. LTC Modeling Approach of Heavy-Duty Gearbox

To establish a dynamic model of a heavy-duty gearbox, modeling of a planetary
gear set with floating components serves as the most basic as well as the most significant
portion. This is mainly because common gear transmissions can be simplified or derived
from planetary gear sets. Therefore, a planetary gear set model will be highlighted and
introduced as a representative basis in this section.
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2.1. LTC Models of Planetary Gear Set

Interactive incentives between the gear engagements occur mainly through the mesh-
ing forces. The existing LTC model of a planetary gear set is shown in Figure 1a. The
translation flexibility is simplified as linear spring dampers in the XY plane, while the
flexibility between gear engagement, which is mainly caused by bending deflections and
contact deformations of gear teeth, is simplified as a spring damper with equivalent av-
erage stiffness along the line of engagement with fixed acting points [12,15,25–30]. Thus,
each component is modeled with three degrees of freedom (DOF), and the bearing stiffness
and time-invariant meshing stiffness are considered. This method has an inherent defect in
that only small angular displacements of gears are permitted, and thus only the transient
vibration characteristic of gear pairs can be solved and obtained.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 20 
 

2.1. LTC Models of Planetary Gear Set 
Interactive incentives between the gear engagements occur mainly through the 

meshing forces. The existing LTC model of a planetary gear set is shown in Figure 1a. The 
translation flexibility is simplified as linear spring dampers in the XY plane, while the 
flexibility between gear engagement, which is mainly caused by bending deflections and 
contact deformations of gear teeth, is simplified as a spring damper with equivalent aver-
age stiffness along the line of engagement with fixed acting points [12,15,25–30]. Thus, 
each component is modeled with three degrees of freedom (DOF), and the bearing stiff-
ness and time-invariant meshing stiffness are considered. This method has an inherent 
defect in that only small angular displacements of gears are permitted, and thus only the 
transient vibration characteristic of gear pairs can be solved and obtained. 

 
Figure 1. LTC modeling of a planetary gear set: (a) using the existing method (b) using the proposed method. 

This paper proposes a novel method for LTC modeling. The elasticity and viscidity 
of gears, carriers, shafts, bearings, etc., are represented by time-varying stiffness–damping 
forces, while the bodies of gears, carriers and shafts are all modeled as rigid elements. 
Thus, a final multibody system of the gear set with consideration of time-varying stiffness, 
friction, damping, etc. is established. Based on Newton’s third law, the interaction of two 
bodies can be represented by an action force and an opposite reaction force that are func-
tions related to the corresponding characteristic parameters of the two bodies. According 
to the basic law on parallel translation of force, forces on the contact point are equal to the 
combined effects of component force in XY plane and component torque around the Z 
axis in the center. With these proper transformations, the meshing effect can be modeled 
as a normal pressure force, represented by a time-varying stiffness spring damper force, 
and a tangential force, represented by a synthesis of a viscous damping force and a cou-
lomb friction force (Figure 1b). These two kinds of force can eventually be replaced by 
time-varying component forces and torques with respect to the generalized coordinates 
on gear centers of the input and output gears respectively. Hence, large angular displace-
ments of gears are allowed, and the entire coupling model can be utilized for the calcula-
tion of system dynamic behavior in the time domain. 

The proposed method operates as space-fixed spring dampers with floating acting 
points, which guarantees that the positions and orientations of spring dampers coincide 
with the actual meshing forces regardless of changes in the centroids or the angles of the 
meshing gears. The proposed method is compared with the existing method in Table 1. 
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This paper proposes a novel method for LTC modeling. The elasticity and viscidity of
gears, carriers, shafts, bearings, etc., are represented by time-varying stiffness–damping
forces, while the bodies of gears, carriers and shafts are all modeled as rigid elements.
Thus, a final multibody system of the gear set with consideration of time-varying stiffness,
friction, damping, etc. is established. Based on Newton’s third law, the interaction of
two bodies can be represented by an action force and an opposite reaction force that
are functions related to the corresponding characteristic parameters of the two bodies.
According to the basic law on parallel translation of force, forces on the contact point
are equal to the combined effects of component force in XY plane and component torque
around the Z axis in the center. With these proper transformations, the meshing effect
can be modeled as a normal pressure force, represented by a time-varying stiffness spring
damper force, and a tangential force, represented by a synthesis of a viscous damping
force and a coulomb friction force (Figure 1b). These two kinds of force can eventually be
replaced by time-varying component forces and torques with respect to the generalized
coordinates on gear centers of the input and output gears respectively. Hence, large angular
displacements of gears are allowed, and the entire coupling model can be utilized for the
calculation of system dynamic behavior in the time domain.

The proposed method operates as space-fixed spring dampers with floating acting
points, which guarantees that the positions and orientations of spring dampers coincide
with the actual meshing forces regardless of changes in the centroids or the angles of the
meshing gears. The proposed method is compared with the existing method in Table 1.
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Table 1. Comparison of existing and proposed method.

Methods Existing Method Proposed Method

Frequency-domain behavior
√ √

Transient time-domain behavior
√ √

Continuous time-domain behavior ×
√

2.2. Detailed Formulations

Due to the unique status of the planetary gear set in heavy-duty gearboxes, detailed
formulations of LTC dynamic equations of a planetary gear set with floating components
are emphasized. Each object in the planetary gear set is modeled with three DOFs. The
translational displacements and rotational angle are chosen as the generalized coordinates:

(xb, yb, θb) while, b = R, S and C
(xi

b, yi
b, θi

b) while, b = Pi (i = 1, 2, . . . , n)
, (1)

in which R is the ring gear, P is the planet gear, S is the sun gear, and C is the planet carrier.
A schematic diagram of a force analysis of the whole gear set is shown in Figure 2.

The reaction forces on the ith planet gear include Ni
RP and f i

RP, the normal pressure force
and tangential force that the ring gear exerts; Ni

SP and f i
SP, the normal pressure force and

tangential force that the sun gear exerts; and Fi
CP and Ti

CP, the reaction force and reaction
torque from the bearing. Force analyses of the ring gear and the sun gear can be presented
in the same way, which consist of the meshing forces and the reaction bearing forces if
they exist.
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Figure 2. Force analysis of the planetary gear set.

2.2.1. Force Derivation of the Engagement of the Sun and ith Planet Gears

The composite deformation in normal and tangent directions of a meshing can be
obtained from the generalized displacements; thus, the normal force N and tangent force
f are derived. As shown in Figure 3, two main influencing factors exist: the difference
between the actual and the ideal angle, and the time-varying center distance between the
sun and planet gear that is mainly introduced by the floating components.
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Under the ideal condition where the deformations of bearings and gear teeth are not
considered, the movement of the ith planet and the sun gear can be regarded as fixed-axis
rotation. The angles fit a transmission ratio equation as follows:(

θi
P − ∆γi

PS

)
· ZP +

(
θS − ∆γi

PS

)
· ZS = 0, (2)

where γi
PS = arctan

[(
yi

P − yS
)
/
(
xi

P − xS
)]

is the time-varying position angle between
the center connection line Oi

POS and X axis, ∆γi
PS = γi

PS − γi
PS0, and Z denotes the

tooth number.
However, when considering the flexibility of the gear body, the deflection of gear

teeth and the deformation of gear contact, the preceding equation does not fit anymore.
The ideal angle θ′ iP−PS of the planet gear under the condition of a rotation angle θS and a
position angle ∆γi

PS is

θ′
i
P−PS = −

(
θS − ∆γi

PS

)
· ZS/ZP + ∆γi

PS. (3)

As a result, the angle difference ∆θi
P−PS with respect to the ith planet gear is

∆θi
P−PS = θi

P − θ′
i
P−PS. (4)

The linear deformation caused by this angle difference is

δi
θn−PS = ri

P−PS · tan ∆θi
P−PS · cos αi

PS, (5)

where ri
P−PS = di

PS · ZP/(ZS + ZP) is the pitch radius of the ith planet gear, which is
time-varying during the meshing process and can be derived from the center distance

di
PS = [(xi

P − xS)
2
+ (yi

P − yS)
2
]
1/2

, and αi
PS in the equation is the engagement angle:

αi
PS = arccos[(rPb + rSb)/di

PS].
As shown in Figure 3b, ∆di

PS = di
PS− di

PS0, which denotes the center distance variation
of di

PS, is another crucial factor in calculating the composite deformation. The linear
deformation caused by the variation of center distance is

δi
dn−PS = −∆di

PS · sin αi
PS. (6)

The normal composite deformation of the equivalent spring damper between the
planet and sun gears is therefore given by

δi
n−PS = δi

θn−PS + δi
dn−PS = ri

P−PS · tan ∆θi
P−PS · cos αi

PS − ∆di
PS · sin αi

PS. (7)
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The tangent composite deformation that is mainly caused by variation in center
distance can be represented as

δi
t−PS = −∆di

PS · cos αi
PS. (8)

Furthermore, during the gear meshing process, the stiffness of an equivalent spring
damper varies with changes in the gear meshing pair number, which toggles between 1 and
2 for a spur gear and is larger for a helical gear. According to the parameter identification
of gear meshing stiffness, the relationship between the single pair and double pair gear
meshing stiffness can be represented by a coefficient ξ (generally 1 < ξ < 2). Starting from
the moment that a single meshing begins, the time-varying meshing stiffness in one cycle is

kPS =

{
k 0 ≤ θ ≤ (2− ε) θT

ξk (2− ε) θT < θ ≤ θT
, (9)

where θ is the meshing phase angle, and θT is the cycle phase angle.
In addition, exchanges between the single and double pair of different planet-sun

gear pairs are asynchronous during the process of loading sharing. Thus, the initial phase
angles ϕi representing the meshing state are introduced. Supposing that the total number
of planets is n, and under the premise that design, manufacturing and assembly errors
are ignored, the initial phase angle of an ith planet gear that is different from the adjacent
one is

ϕi = (n− 1)ϕS0 & ϕS0 =

[
ZS
n
− int

(
ZS
n

)]
· 2π

ZS
. (10)

Thus, the time-varying meshing stiffness of the ith planet-sun gear meshing pair is

ki
PS =

{
k (i− 1)ϕS0 ≤ θ ≤ (i− 1)ϕS0 + (2− ε) θT

ξk 0 < θ < (i− 1)ϕS0 or (i− 1)ϕS0 + (2− ε) θT < θ ≤ θT
. (11)

Based on the above derivations of the time-varying stiffness and composite deforma-
tions in the normal and tangent directions, the normal force exerted on the ith planet gear
by the sun gear in Figure 2 is calculated as

Ni
SP = ki

PS · δi
n−PS

= ki
PS ·

[
ZP(rPb+rSb)

ZS+ZP
tan(θi

P + ZS
ZP

θi
S −

ZS+ZP
ZP

∆γi
PS)− (di

PS − di
PS0) · sin αi

PS

] . (12)

The direction of this force is tangent to the base circle of the planet gear. The angle
between it and the X axis is

βi
SP−N = π/2 + γi

SP − αi
PS. (13)

The tangent friction force between the planet and sun gear is composed of the viscous
damping and coulomb friction forces:

f i
SP= (µPSNi

SP + cPS ·
.
δ

i
t−PS) · sgn(

.
δ

i
t−PS). (14)

In this equation, µPS is the coulomb friction coefficient, cPS is the viscous damping
coefficient, and sgn (x) is the sign function.

The tangent friction force is perpendicular to the normal force, direction of which is
opposite to the direction of the relative sliding velocity. The angle between it and the X
axis is

βi
SP− f = γi

SP − αi
PS. (15)
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2.2.2. Force Derivation of the Engagement of the Ring and ith Planet Gear

Analysis procedures to derive the force between the ring and ith planet gears are
similar to the analysis procedures for that between the sun and ith planet gears. The
difference is mainly concentrated in a small fluctuation in meshing stiffness between
the ring and planet gear due to the high contact ratio, such that meshing stiffness can be
regarded as a constant in some situations, which will be proved via parameter identification
results in a later section.

The center distance of the ith planet and ring gear is

di
PR =

√(
xi

P − xR
)2

+
(
yi

P − yR
)2. (16)

The time-varying position angle between the center connection line and the X axis is

γi
PR = arctan

[(
yi

P − yR

)
/
(

xi
P − xR

)]
& ∆γi

PR = γi
PR − γi

PR0. (17)

Under the ideal condition, the rotational angles fit a transmission ratio equation
as follows: (

θi
P − ∆γi

PR

)
· ZP −

(
θR − ∆γi

PR

)
· ZR = 0. (18)

The ideal angle θ′ iP−PR of a planet gear under the condition of rotation angle of θR and
∆γi

PR is

θ′
i
P−PR =

(
θR − ∆γi

PR

)
· ZR/ZP + ∆γi

PR. (19)

As a result, the angle difference ∆θi
P−PR with respect to the ith planet gear is

∆θi
P−PR = θi

P − θ′
i
P−PR. (20)

The linear deformation caused by the angle difference is

δi
θn−PR = −ri

P−PR · tan ∆θi
P−PR · cos αi

PR, (21)

where αi
PR is the engagement angle and ri

P−PR is the time-varying pitch radius of the ith
planet gear, which can be derived from the center distance di

PR, ri
P−PR = di

PR ·ZP/(ZR − ZP).
The linear deformation caused by the variation in center distance is

δi
dn−PR = ∆di

PR · sin αi
PR. (22)

Thus, the equivalent normal composite deformation of the spring damper between
the ring and ith planet gears is

δi
n−PR = δi

θn−PR + δi
dn−PR = −ri

P−PR · tan ∆θi
P−PR · cos αi

PR + ∆di
PR · sin αi

PR. (23)

As in the previous section, the tangent deformation mainly caused by variation in
center distance between the ring and planet gear is

δi
t−PR = −∆di

PR · cos αi
PR. (24)

kPR denotes the equivalent meshing stiffness of the ring and planet gears, and the
fluctuation its value can be ignored. Based on the previous derivation of the deformation,
the normal force on the ith planet gear can be computed as

Ni
RP = kPR · δi

n−PR

= kPR ·
[
− ZP(rRb−rPb)

ZR−ZP
tan(θi

P −
ZR
ZP

θi
R + ZR−ZP

ZP
∆γi

PR) + (di
PR − di

PR0) · sin αi
PR

] , (25)
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Its direction is tangent to the base circle of the ith planet gear, and the angle between
it and the X axis is

βi
RP−N = π/2 + γi

PR + αi
PR. (26)

The tangent friction force f i
RP between the ith planet gear and ring gear is composed

of the viscous damping and coulomb friction forces:

f i
RP= (µPRNi

RP + cPR ·
.
δ

i
t−PR) · sgn(

.
δ

i
t−PR), (27)

in which the definitions of µPR, cPR and the function sgn(x) are almost the same as in the
previous subsection.

The tangent friction force is perpendicular to the normal force, direction of which is
opposite to the direction of relative sliding velocity. The angle between it and the X axis is

βi
RP− f = π + γi

PR + αi
PR. (28)

2.2.3. Bearing Force Analysis between Carrier and ith Planet Gear

The interaction between the carrier and the planet gear can be represented using an
equivalent spring damper force and a friction torque. RP denotes the distribution radius of
the planets, and γi

CP0 is the initial distribution angle, namely the angle between the center
line of the ith planet and the carrier along the X axis. As such, the deformation of the ith
planet relative to the carrier is

δi
CP−x = xi

P −
[

xC + RP · cos
(

θC + γi
CP0)

]
& δi

CP−y = yi
P −

[
yC + RP · cos

(
θC + γi

CP0)
]
. (29)

The rotational angle of the ith planet relative to the carrier is δi
CP−θ = θi

P − θC. There-
fore, the reaction force and torque on the center of the ith planet are computed as follows:

Fi
CP−x = −kCPB · δi

CP−x
Fi

CP−y = −kCPB · δi
CP−y

Ti
CP−z = −

(
µCPB

√
Fi

CP−x
2 + Fi

CP−y
2 · dCPB/2 + cCPB ·

.
δ

i
CP−θ

)
· sgn(

.
δ

i
CP−θ)

, (30)

where kCPB is the bearing stiffness, dCPB is the nominal diameter of bearings, µCPB is the
coulomb friction coefficient, and cCPB is the viscous damping coefficient.

2.2.4. System Dynamic Equations

To construct the sun gear dynamic equations, supposing that kSB and cSB are the
bearing stiffness and the rotational viscous damping coefficient of the sun gear bearing if it
exists, respectively, and that there exist n planet gears:

MS
..
xS + kSBxS −

n
∑

i=1

(
Ni

PS−x + f i
PS−x

)
= FSx

MS
..
yS + kSByS −

n
∑

i=1

(
Ni

PS−y + f i
PS−y

)
= FSy + GS

IS
..
θS + cSB

.
θS −

n
∑

i=1

(
Ti

PS−N + Ti
PS− f

)
= TS

. (31)

Fx, Fy and T in Equations (31)–(38) are the external forces and torque respectively,
values of which are considered zeroes if they do not exist. Substituting the specific formulas
of Ni

PS, f i
PS and Ti

PS, the sun gear dynamic equations can be rewritten as

MS
..
xS + kSBxS +

n
∑

i=1

{
Ni

PS ·
[
sin(γi

SP − αi
SP) + µPS cos(γi

SP − αi
SP)
]
+ cPS

di
PS0(rPb+rSb)

di
PS

2

.
d

i
PS cos(γi

SP − αi
SP)

}
= FSx

MS
..
yS + kSByS +

n
∑

i=1

{
Ni

PS ·
[
cos(γi

SP − αi
SP) + µPS sin(αi

SP − γi
SP)
]
+ cPS

di
PS0(rPb+rSb)

di
PS

2

.
d

i
PS cos(αi

SP − γi
SP)

}
= FSy

IS
..
θS + cSB

.
θS +

n
∑

i=1

{
Ni

PS ·
[
rSb − µPS

ZS
ZS+ZP

di
PS sin αi

PS

]
− cPS

ZSdPS0(rPb+rSb)

(ZS+ZP)di
PS

sin αi
PS · di

PS

}
= TS

. (32)
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For the ring gear, the dynamic equations derivation process is similar. kRB and cRB are
assumed to be the ring bearing stiffness and the rotational viscous damping coefficient if
they exist, respectively.

MR
..
xR + kRBxR −

n
∑

i=1

(
Ni

PR−x + f i
PR−x

)
= FRx

MR
..
yR + kRByR −

n
∑

i=1

(
Ni

PR−y + f i
PR−y

)
= FRy + GR

IR
..
θR + cRB

.
θR −

n
∑

i=1

(
Ti

PR−N + Ti
PR− f

)
= TR

. (33)

Plugging in the corresponding terms, the equations can be rewritten as

MR
..
xR + kRBxR +

n
∑

i=1

{
Ni

PR ×
[
sin(γi

RP + αi
RP) + µPR cos(γi

RP + αi
RP)
]
+ cPR

di
PR0(rPb+rRb)

di
PR

2

.
d

i
PR cos(γi

RP + αi
RP)

}
= FRx

MR
..
yR + kRByR +

n
∑

i=1

{
Ni

PR ×
[
cos(γi

RP + αi
RP) + µPR sin(αi

RP + γi
RP)
]
+ cPR

di
PR0(rPb+rRb)

di
PR

2

.
d

i
PR cos(αi

RP − γi
RP)

}
= FRy + GR

IR
..
θR + cSB

.
θS +

n
∑

i=1

{
Ni

PR ×
[
rRb + µPR

ZR
ZR+ZP

di
PR sin αi

PR

]
− cPR

ZRdPR0(rPb+rRb)

(ZR+ZP)di
PR

sin αi
PR × di

PR

}
= TR

. (34)

For the ith planet gear, as the applied forces on it include the engaging forces from the
ring and sun gear and the bearing force, its dynamic equations are given by

MP
..
xi

P + kCPB ·
[
xi

P − xC − RP · cos
(
θC + γi

CP0)
]

−Ni
PS ·

[
sin(γi

SP − αi
SP) + µPS cos(γi

SP − αi
SP)
]
− cPS

di
PS0(rPb+rSb)

di
PS

2

.
d

i
PS cos(γi

SP − αi
SP)

−Ni
PR ·

[
sin(γi

RP + αi
RP) + µPR cos(γi

RP + αi
RP)
]
− cPR

di
PR0(rPb+rRb)

di
PR

2

.
d

i
PR cos(γi

RP + αi
RP) = 0

, (35)

MP
..
yi

P + kCPB ·
[
yi

P − yC − RP · sin
(
θC + γi

CP0)
]

−Ni
PS ·

[
cos(γi

SP − αi
SP) + µPS sin(αi

SP − γi
SP)
]
− cPS

di
PS0(rPb+rSb)

di
PS

2

.
d

i
PS cos(αi

SP − γi
SP)

−Ni
PR ·

[
cos(γi

RP + αi
RP) + µPR sin(αi

RP + γi
RP)
]
+ cPR

di
PR0(rPb+rRb)

di
PR

2

.
d

i
PR cos(αi

RP − γi
RP) = GP

, (36)

Ii
P

..
θ

i
P + cPB(

.
θ

i
P −

.
θR)− Ni

PS ·
[
rSb − µPS

ZS
ZS+ZP

di
PS sin αi

PS

]
+ cPS

ZSdPS0(rPb+rSb)

(ZS+ZP)di
PS

sin αi
PS · di

PS

−Ni
PR ·

[
rRb + µPR

ZR
ZR+ZP

di
PR sin αi

PR

]
+ cPR

ZRdPR0(rPb+rRb)

(ZR+ZP)di
PR

sin αi
PR · di

PR = 0
. (37)

For the planet carrier, similarly, dynamic equations can be expressed as

MC
..
xC − kCPB ·

n
∑

i=1

[
xi

P − xC − RP · cos
(
θC + γi

CP0)
]
= FCx

MC
..
yC − kCPB ·

n
∑

i=1

[
yi

P − yC − RP · sin
(
θC + γi

CP0)
]
= FCy + GP

Ic
..
θc + cpb(

.
θr − i

.
θp) + kCPB ·

n
∑

i=1

[
xi

P − xC − RP · cos
(
θC + γi

CP0) · (xi
P − xC)

]
−kCPB ·

n
∑

i=1

[
yi

P − yC − RP · sin
(
θC + γi

CP0) · (yi
P − yC)

]
= Tc

. (38)

3. Dynamic Modeling of a WTG Test Rig

A full test rig which was used to test and evaluate the dynamic performance of a
2 MW WTG is introduced in this section. A LTC model considering specific structures of
this WTG was constructed using the proposed modeling approach of a planetary gear set
with floating components.

3.1. Structure of the Full Test Rig

The 2 MW WTG modeled is depicted in Figure 4. It primarily consists of three gear
sets: a low-speed planetary gear set (LSP), a high-speed planetary gear set (HSP) and a
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parallel-shaft helical gear set (PSH). To reach the design objective of power dividing, the
LSP had four transverse fixed planet gears and a floating sun gear, while the HSP had a
fixed ring gear and a floating carrier with three planet gears affixed with bearings. The
wind field excitation acted on the ring gear of the LSP, and the grid load from the electric
generator acted on the output axis of the PSH. The intricate dynamics of the entire floating
component, including the sun gear from the LSP, the carrier and three planet gears from
the HSP, made this WTG quite distinct from common designed ones.
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Figure 4. 3D drivetrain model of the 2 MW WTG.

Figure 5 shows the 3D geometry model of the entire test rig. Part 1 is a loading
motor, the speed of which was controlled, and part 2 is an auxiliary reduction gearbox. A
combination of the two was utilized to imitate the wind input. Part 5 is a loading generator,
the torque of which was controlled. Part 4 is the tested 2 MW WTG, which is connected
with Part 2 through a universal coupling and with Part 5 through a flexible flange.
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3.2. Dynamic Model of the Full Test Rig

A LTC model of the full test rig was constructed based on the proposed method in
order to analyze the dynamic loading factors and dynamic behavior.

Figure 6 shows the schematic of the simplified LTC dynamic model of the full test
rig. Not only the meshing effect but also the bearing flexibility and torsional elasticity
of shafts and joints were considered. In the model, the gear meshing effects of the LSG
and HSG gear sets were considered using the proposed method. The PSH was regarded
as a spur gear set with high contact ratio under the condition that axial flexibility was
not considered. The imitated wind input that combined a loading motor and a reduction
gearbox was considered an excitation with rotational inertia, and the output generator was
considered a torque loading with rotational inertia. In addition, torsional models of the
spline connection, the universal coupling and the flange joint were built, and the radial
stiffness of different bearings was included.
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This proposed LTC model in Figure 6 was implemented with the aid of the MS.
ADAMS software due to its superiority in calculation of multibody systems. In the sim-
ulated model, translational displacements and rotational angles of all components were
acquired in real time. The time-varying deformations and relative velocities of the elastic
elements in Figure 6 were calculated using the derived equations. The meshing forces of
gears, torques of shafts, bearing forces, etc. were then also computed using the equations
in Section 2, and finally acted on the corresponding components using the force func-
tion of ADAMS. It should also be noted that parameters like meshing stiffness were also
time-varying according to the related switching conditions derived in Section 2.

3.3. Parameter Identification of the Dynamic Model

Tables 2 and 3 show the main design parameters of the LSP, HSP and PSH gear sets,
based on which basic parameters of gears and gear pairs could be derived and calculated.

Table 2. Design parameters of the planetary gear sets.

Items Ring
Tooth Number

Planet
Tooth Number

Sun
Tooth Number Module Tooth

Profile Angle

LSP 118 48 22 16 20◦

HSP 118 50 17 12 20◦

Table 3. Design parameters of the helical gear set.

Item Input
Tooth Number

Output
Tooth Number Helical Angle Module Tooth

Profile Angle

PSH 59 21 8◦ 9 20◦

As shown in Figure 7, parameter identifications of the gear meshings, the connections
and the shafts were conducted by means of Finite Element Analysis (FEA). In the process,
the loading was increased gradually until reaching the service load, and the stiffness value
was calculated as the slope of the nonlinear force-displacement curve on the operating
point. For gear meshing, both the single and double pair contact situations were calculated.
Detailed identification results are shown in Tables 3–5.

Parameter identification of the radial bearing stiffness was conducted in a similar way.
The inner or outer ring was fixed while the other one was loaded until reaching the service
load, and the bearing stiffness was calculated through the nonlinear relationship between
loading force and relative radial displacement. Table 6 shows the identification results.
With these identified parameters, dynamic behavior of the 2 MW WTG could be simulated.
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Table 4. Parameter identification results of the gear meshings.

Position
Service Load

(×105 N)

Torsional Stiffness
(×108 N·m/rad)

Variable
Stiffness

CoefficientSingle Pair Double Pair

LSP: sun–planet 3.55 1.54 1.69 1.10
LSP: planet–ring 3.55 8.78 8.94 1.01
HSP: sun–planet 1.04 1.75 2.45 1.40
HSP: planet–ring 1.03 3.20 3.25 1.00

PSH: input–output 1.17 0.96 1.01 1.05

Table 5. Parameter identification results of the connections and shafts.

Position Service Load
(×104 N·m)

Torsional Stiffness
(×108 N·m/rad)

Wind input–input shaft 127 0.49
LSP sun–HSP carrier 23.9 1.81
HSP sun–PSH input 2.99 0.17

PSH output–output shaft 1.06 0.055
Output shaft–generator 1.06 0.45

Table 6. Parameter identification results of the bearings.

Bearing Position Service Load
(×105 N)

Bearing Stiffness
(×109 N/m)

LSP: planet bearing 6.68 5.02
HSP: planet bearing 1.94 4.20

HSP: sun bearing 0.115 2.60
PSH: input bearing 1 0.58 3.46
PSH: input bearing 2 0.58 3.60

PSH: output bearing 1 0.58 2.70
PSH: output bearing 2 0.58 0.43

4. Experimental Validation and Dynamic Analysis of the WTG

To demonstrate the validity of the novel proposed modeling method of heavy-
duty gearboxes, experiments were conducted on the 2 MW WTG test rig specified in
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Figures 4 and 5, and the experimental results were compared with the simulation results
from the LTC model of the entire test rig under loading conditions identical to the rated
working environment. Furthermore, dynamic loading factors of different gear sets, which
are crucial to the design of WTG system, were calculated based on the LTC model that was
verified by experiments.

4.1. Configuration of the Full Test Rig

The experiments were conducted in a workshop of SANY (a wind power equipment
company). The test rig was loaded according to the rated working condition of the 2 MW
WTG: the rated rotating speed of the imitated wind input that combined the loading motor
and the reduction gearbox was 15 rpm and the rated loading torque from the generator,
acting on the PSH output axis, was 1.06 × 104 N·m. Single-axis vibration acceleration
sensors (PCB 352C34) were utilized to measure the vibration behavior of the WTG system,
and the detailed position arrangement of sensors is shown in Figure 8. The data acquisition
bandwidth was set to be 8192 Hz. Sensor signals were imported into a LMS SCADAS III
data acquisition system, and the accompanying software LMS Test was employed for data
processing and analysis. The simulation LTC dynamic model was loaded on the input
equivalent moment of inertia progressively to a constant rotating speed of 15 rpm and on
the output equivalent moment of inertia with an identical torque, to make sure that the
loading conditions of the simulation and experiment WTG were identical. The variable
stiffness coefficients of the three gear sets in the simulation model were set to be 1.1, 1.4
and 1.05, respectively, based on the identification results.
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4.2. Comparison of the Simulated and Experimental Results

Based on the identified parameters and loading conditions, theoretical meshing fre-
quencies of the tested WTG were computed through multiplying the rotating frequency
by the tooth number. The results are listed in Table 7, and were 29.5 Hz, 158.2 Hz and
628.3 Hz, respectively.
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Table 7. Theoretical meshing frequencies at the rated rotating speed of 15 rpm.

Position Rotating Speed
(r/min) Tooth Number Theoretical Meshing Frequency

(Hz)

LSP: ring 15 118 29.5
LSP: planet 36.87 48 29.5

LSP: sun 80.45 22 29.5
HSP: planet 189.84 50 158.2

HSP: sun 638.82 17 158.2
PSH: input 638.82 59 628.3

PSH: output 1794.75 21 628.3

Acceleration signals from the X and Y directions were synthesized to reveal the lateral
vibration behavior of the full test rig. Figures 9 and 10 are the comparison diagrams for
the front chassis and the output shaft respectively, and Table 8 shows the comparison of
the main frequency components of the experimental and simulated results from different
locations on the entire WTG system.
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Table 8. Eigen-frequencies comparison of the entire system.

Measured Position Measured Acceleration
Frequency (Hz) Simulated Position Simulated Acceleration

Frequency (Hz)

Front chassis 62.5, 114.4,156.3, 312.5, 625 LSP: bearing 59.2, 158.7, 316.2, 628.1

HSP:ring gear 62.5, 312.5, 479.1, 625 HSP: ring gear 59.2, 316.5, 474.4, 628

Output shaft 62.5, 156.3, 312.5, 479.1, 500.2, 625
PSH: input bearing & HSP:

output bearing
29.5, 158.7, 316.2, 413.2, 474.4,

506.6, 537.3, 628.1
Back chassis 62.5, 312.5, 416.6, 479.1, 541.7, 625

Input of generator 31, 312.5, 625

Due to the time-varying stiffness, the gear meshing effect can be regarded as inner
excitations to some extent, and thus the vibration characteristic of the entire system be-
came complex, which can be identified from the abundant frequency components of both
vibration spectra. Experimental frequencies from the front chassis mainly concentrated
on 62.5 Hz, 114.4 Hz, 156.3 Hz, 312.5 Hz, 625 Hz, etc., while the main frequencies of the
output shaft were 62.5 Hz, 156.3 Hz, 312.5 Hz, 479.1 Hz, 500.2 Hz, 625 Hz, etc. Detailed
comparisons from the figures and tables show that the major frequency components and
corresponding amplitudes of the experimental results were in accordance with the sim-
ulated ones; thus, validation of the dynamic modeling method and the WTG model is
demonstrated.

4.3. Time-Domain Dynamic Results of the WTG

Figures 11–13 are the numerical time-domain dynamic meshing forces between the
sun and planet gears of the LSP and HSP, and the meshing force of the PSH, respectively.
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On this basis, the dynamic loading factors between gears, which are significant for the
design stage, were calculated to be 1.12, 1.37 and 1.27 and are listed in Table 9. The results
were different from the chosen factors of 1.02, 1.08, 1.07 obtained from an experiential
manual. Under larger dynamic loadings that exceed the design limits, gear cracks may
occur. Further dynamic examinations of the whole system in both the frequency and time
domains can be conducted using the proposed method, while these examinations are
beyond the scope of the existing method.

Table 9. Dynamic loading factors of the gear system.

Position Load Fluctuation (×105 N) Dynamic Loading Factor

LSP: planet–sun 3.34 ± 0.39 1.118
LSP: planet–ring 3.55 ± 0.47 1.134
HSP: planet–sun 0.97 ± 0.36 1.373
HSP: planet–ring 0.98 ± 0.34 1.349

PSH: input–output 1.09 ± 0.29 1.268

5. Conclusions

In this paper, a novel and generally applicable LTC modeling approach for calculating
the dynamic behavior of heavy-duty gearboxes in the time domain with consideration of
the floating effect, time-varying meshing stiffness, bearing stiffness, torsional stiffness, etc.,
is proposed. This approach is more comprehensive and apparently gives clearer insights
into the time-domain dynamics of heavy-duty gearboxes, such as WTGs, than the existing
method. Based on the proposed method, a LTC model of a full test rig was built, which
was used to test a 2 MW WTG consisting of two planetary gear sets and a parallel-shaft
helical gear set. Dynamic experiments were conducted on the test rig. Validity of the
proposed method and the built model were demonstrated, as the simulated results were in
accordance with the experimental results. According to the time-domain results of meshing
forces in the verified model, larger dynamic loading factors than the designed ones chosen
by a traditional empirical method were found. This means that gear damage may occur
in actual working conditions and the built 2 MW WTG system must be redesigned and
improved. In conclusion, the proposed method can give a new perspective on heavy-duty
gearboxes that is preferable to the existing method, and can provide sufficient time-domain
information to contribute to the design, evaluation and redesign of large-scale mechanical
systems as represented by WTG systems.
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Nomenclature

Symbol/Abbreviation Description
LTC Lateral-torsional coupling (model/modeling)
MW Megawatt
WTG Wind turbine gearbox
DOF Degrees of freedom
LSP Low-speed planetary gear set
HSP High-speed planetary gear set
PSH Parallel-shaft helical gear set
FEA Finite element analysis
xR, yR Translational displacements of the ring gear
xS, yS Translational displacements of the sun gear
xC, yC Translational displacements of the carrier
θR, θS, θC Rotational angles of the ring gear, sun gear and carrier respectively
xi

P, yi
P, θi

P Translational displacements and rotational angle of the ith planet gear
Ni

RP, f i
RP Normal pressure force and tangential force exerted on the ith planet gear

by the ring gear
Ni

SP, f i
SP Normal pressure force and tangential force exerted on the ith planet gear

by the sun gear
Fi

CP, Ti
CP Reaction force and torque exerted on the ith planet gear by the bearing

OS, Oi
P, OR Center points of the sun gear, the ith planet gear, and the ring gear

respectively
γi

PS Time-varying position angle between the center connection line Oi
POS

and the X axis
γi

PS0 Inital position angle between the center connection line Oi
POS

and the X axis
∆γi

PS Time-varying changing value of position angle γi
PS

ZS, ZP, ZR Tooth number of the sun gear, planet gear, and ring gear respectively
θ′ iP−PS Ideal rotational angle of the ith planet gear under θP
∆θi

P−PS Difference between the ideal and actual rotational angles of the ith
planet gear

δi
θn−PS Linear deformation caused by angle difference ∆θi

P−PS
di

PS Time-varying center distance between the ith planet gear and the sun gear
di

PS0 Initial center distance between the ith planet gear and the sun gear
∆di

PS Time-varying changing value of center distance di
PS

ri
P−PS Pitch radius of the ith planet gear while engaged with sun gear

αi
PS Engagement angle between the ith planet gear and sun gear

rPb, rSb, rCb Radius of base circle of the planet gear, sun gear and ring gear respectively
δi

dn−PS Linear deformation caused by variation of center distance ∆di
PS

δi
n−PS Normal composite deformation between the ith planet and sun gear

δi
t−PS Tangent composite deformation between the ith planet and sun gear
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ξ Coefficient representing the double pair gear meshing stiffness with
respect to single pair gear meshing stiffness

ϕi Initial phase angle of the ith planet gear
ϕS0 Phase difference of adjacent planet gears into a single tooth meshing state
ki

PS Time-varying meshing stiffness of the ith planet gear and sun gear
βi

SP−N Angle between the normal force Ni
SP and the X axis

µPS Coulomb friction coefficient of the sun gear and planet gear
cPS Viscous damping coefficient of the sun gear and planet gear
βi

SP− f Angle between the tangent friction force f i
SP and the X axis

di
PR Time-varying center distance between the ith planet gear and the ring gear

γi
PR Time-varying position angle between the center connection line Oi

POR
and the X axis

γi
PR0 Inital position angle between the center connection line Oi

POR
and the X axis

∆γi
PR Time-varying changing value of position angle γi

PR
θ′ iP−PR Ideal rotational angle of the ith planet gear under θR
∆θi

P−PR Angle difference between the ideal and actual rotational angles of the ith
planet gear

δi
θn−PR Linear deformation caused by angle difference ∆θi

P−PR
di

PR Time-varying center distance between the ith planet gear and the ring gear
di

PR0 Initial center distance between the ith planet gear and the ring gear
∆di

PR Time-varying changing value of center distance di
PR

ri
P−PR Pitch radius of the ith planet gear while engaged with ring gear

αi
PR Engagement angle between the ith planet gear and ring gear

δi
dn−PR Linear deformation caused by variation of center distance ∆di

PR
δi

n−PR Normal composite deformation between the ith planet and ring gear
δi

t−PR Tangent composite deformation between the ith planet and ring gear
kPR Meshing stiffness of the planet gear and sun gear
βi

RP−N Angle between the normal force Ni
RP and the X axis

µPR Coefficient of coulomb friction of the ring gear and planet gear
cPR Viscous damping coefficient of between the ring gear and planet gear
βi

RP− f Angle between the tangent friction force f i
RP and the X axis

RP Distribution radius of planet gears
γi

CP0 Initial distribution angle of the ith planet gear
δi

CP−x, δi
CP−y Deformations of the ith planet relative to the carrier in X and Y

directions respectively
δi

CP−θ Rotational angle of the ith planet relative to the carrier
kCPB Translational stiffness of the bearings between carrier and planet gear
dCPB Nominal diameter of bearings between carrier and planet gear
µCPB Coulomb friction coefficient of the bearings between carrier and planet gear
cCPB Viscous damping coefficient of the bearings between carrier and planet gear
kSB, cSB Bearing stiffness and rotational viscous damping coefficient of the sun

gear bearing
kRB, cRB Bearing stiffness and rotational viscous damping coefficient of the ring

gear bearing
Ma, Ia, Ga (a=S,P,R,C) Mass, inertia and gravity of the sun gear, planet gear, ring gear and carrier

respectively
Ta (a=S,R,C) Torques on the sun gear, ring gear and carrier respectively
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