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Abstract: Diabetes is a serious disease affecting the insulin cycle in the human body. Thus, monitor-

ing blood glucose levels and the diagnosis of diabetes in the early stages is very important. Nonin-

vasive in vivo diabetes-diagnosis procedures are very new and require thorough studies to be error-

resistant and user-friendly. In this study, we compare two noninvasive procedures (two-wave-

length- and three-wavelength-based methods) to estimate glycated hemoglobin (HbA1c) levels in 

different scenarios and evaluate them with error level calculations. The three-wavelength method, 

which has more model parameters, results in a more accurate estimation of HbA1c even when the 

blood oxygenation (SpO2) values change. The HbA1c-estimation error range of the two-wavelength 

model, due to change in SpO2, is found to be from −1.306% to 0.047%. On the other hand, the HbA1c 

estimation error for the three-wavelength model is found to be in the magnitude of 10−14% and in-

dependent of SpO2. The approximation of SpO2 from the two-wavelength model produces a lower 

error for the molar concentration based technique (−4% to −1.9% at 70% to 100% of reference SpO2) 

as compared to the molar absorption coefficient based technique. Additionally, the two-wavelength 

model is less susceptible to sensor noise levels (max SD of %error, 0.142%), as compared to the three-

wavelength model (max SD of %error, 0.317%). Despite having a higher susceptibility to sensor 

noise, the three-wavelength model can estimate HbA1c values more accurately; this is because it 

takes the major components of blood into account and thus becomes a more realistic model. 

Keywords: glycated hemoglobin; error analysis; sensors; mathematical models; photoplethysmog-

raphy 

 

1. Introduction 

Photoplethysmography (PPG) is an optical method of obtaining changes in blood 

volume in tissue. In the general approach of obtaining PPG signals, the tissue in the region 

of the digital or radial artery is illuminated with light of multiple wavelengths. The light 

waves interact with the tissues and blood components and are absorbed or scattered in 

the medium. As the blood volume changes in a certain location of the human body, due 

to the pulsatile nature of blood flow, the received light intensity also changes with the 

change in blood volume. 

Historically, PPG signals have been utilized to detect time-domain properties and 

quantitative properties of the human body. The time-domain properties include—but are 

not limited to—respiratory rate [1] and heart rate [2]. The most widely used quantitative 

property of the human body that is measured with PPG signals is the blood oxygenation 

(SpO2) parameter [3–5]. This parameter indicates the percent amount of oxygenated he-

moglobin with respect to total hemoglobin count. Recently, a study was conducted to 

warn for potential infection by COVID-19 by estimating SpO2 using PPG signals [3]. The 

other quantitative properties include blood pressure [4], hypo- and hypervolemia [5], and 
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blood glucose levels [6,7]. The time-domain properties require single-wavelength PPG 

(SW-PPG) to evaluate. On the other hand, to estimate the quantitative properties, multiple 

wavelengths of PPG (MW-PPG) signals are required. 

Diabetes mellitus is a disease that affects the production and utilization of insulin, 

which directly modifies the consumption of blood glucose by body cells. A result of dia-

betes is the presence of an excessive amount of glucose available in the bloodstream. This 

not only changes the properties of the blood but also causes other serious diseases, includ-

ing kidney failure [8], heart disease [9], and sudden mortality [10]. For these reasons, the 

diagnosis of diabetes is very important for reducing the risk of insulin control failure in 

its early stages. There are several methods available to diagnose diabetes. The main ap-

proaches for diagnosis are random, fasting, or oral glucose tests, and glycated hemoglobin 

test. 

Estimating blood glucose levels non-invasively for the diagnosis of diabetes is a fairly 

new topic within the scope of PPG signals [6]. The current state-of-the-art for non-invasive 

blood glucose estimation is the utilization of external skin tissues and saliva or tears 

[11,12]. There are also other non-invasive procedures, with which glucose levels can be 

estimated [13–16]. 

However, the non-invasive glycated hemoglobin (HbA1c) test is the most recent topic 

of discussion. Since the invasive test of HbA1c requires blood samples, it can be inconven-

ient for users to perform tests frequently. HbA1c is the non-enzymatic bond of hemoglo-

bin with sugar molecules. The sugar molecules are usually monosaccharides. The more 

sugar molecules present in the bloodstream of a person, the more the probability of the 

glycation of hemoglobin increases. Moreover, the final product of glycation (HbA1c) is 

very stable and does not usually alter within the life cycle of the glycated hemoglobin 

molecule. Due to these factors, the HbA1c level in a human body is a very slow varying 

parameter, and is usually considered equivalent to the three-month weighted average of 

the blood sugar level [17]. Measurement of hyperglycemia-associated conditions was per-

formed on mice models to classify normal, obese, and diabetic groups in a recent study 

[18]. In another study, the researchers designed a method to estimate HbA1c by measur-

ing breath acetone components [19]. There are only two papers that conducted studies on 

the estimation of glycated hemoglobin using PPG signals. One of the studies performed 

an in vitro analysis from the blood sample [20], and the other study was designed to meas-

ure the HbA1c by in vivo measurement [21]. 

Although PPG signals are characterized as an easy-to-acquire optical signal com-

pared to other bodily signals (e.g., EEG (Electroencephalography), ECG (Electrocardiog-

raphy), ABP (Arterial Blood Pressure)), there are specific methods and wavelength selec-

tion procedures that are required to obtain a good quality signal. 

Among the wavelength-dependent methods, SW-PPG, MW-PPG, and all-wave-

length PPG (AW-PPG) are employed based on the purpose of the signal acquisition. As 

described previously, time-dependent properties usually require SW-PPG. On the other 

hand, MW-PPG and AW-PPG are employed in the measurement of quantitative proper-

ties. Since glycated hemoglobin is a quantitative property of blood, an MW-PPG or AW-

PPG signal is required for estimation. 

The most widely used technique for acquiring an MW-PPG signal uses discrete LEDs 

of different wavelengths and single or multiple photodetectors (PDs) to record the PPG 

signals. In this method, the specimen or medium is placed between the LEDs and PDs for 

transmission-mode PPG, and the medium is placed on one side of the LED-PD arrange-

ment for reflection-mode PPG signal acquisition. In the reflection mode PPG system, the 

LEDs and PDs are placed in a single plane facing at the medium. Figure 1 depicts the 

different arrangements of LEDs and PDs for PPG signal acquisition. 
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Figure 1. Discrete-LED/PD-based transmission- (left) and reflection-mode (right) PPG acquisition devices. 

The advent of wearable and mobile devices has led to an exponential increase in mo-

bile-based healthcare systems. Smartphones with powerful processors, multiple sensors, 

and large data storage capabilities are well suited for healthcare systems. A smartphone 

camera can be a great candidate for a PPG signal acquisition device, where the camera 

sensor is the PD and the white built-in flashlight is the light source. In this case, the light 

source contains a wide range of wavelengths interacting with the medium, and the camera 

sensor filters the input light into three distinct wavelengths (red, green, and blue). The 

different signals from these three wavelengths can be utilized as an MW-PPG signal. 

Transmission- and reflection-mode PPG signals can also be acquired using smartphone 

cameras by placing the white LED on the opposite side of the medium or at the same plane 

of the camera sensor, respectively. Figure 2 illustrates the different modes of PPG signal 

for a camera-sensor-based PPG system. 

 

Figure 2. Camera-sensor white-LED MW-PPG system. The left figure is the transmission mode and the right figure is the 

reflection mode. 

In this study, we compare the camera-sensor-based and discrete-LED/PD-based pro-

cesses of MW-PPG acquisition to estimate in vivo glycated hemoglobin. We also perform 

comparative analyses on the two PPG-based HbA1c estimation methods described in [20]. 

In this manuscript, the study of [17] is described as a two-wavelength based method, and 

the study of [18] is described as a three-wavelength based method for estimating glycated 

hemoglobin. 

2. Methodology 

In a recent study [21], we built a finger model based on the hypothesis that when 

blood enters a tissue the total volume of the tissue expands, increasing the amount of light 

traversing a path through the tissue medium. 
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Moreover, the study also hypothesized that the blood constitutes oxyhemoglobin 

(HbO), deoxyhemoglobin (HHb), and glycated hemoglobin (HbA1c). The HbA1c compo-

nent of blood is stated to be fixed at a mixture of 98% oxygenated and 2% deoxygenated 

HbA1c. So, the total absorption coefficient of the blood solution becomes 

�� = ��
�����(�) × ������ + ��

���(�) × ���� + ��
���(�) × ���� (1)

�� =  ��
�����(�) + ��

���(�) + ��
���(�) (2)

In (1) and (2), ��, �, and � are the total absorption coefficient of the blood solution, 

molar absorption coefficient, and molar concentration of the individual component of the 

solution, respectively. 

From another study [20], we can obtain a different blood-solution hypothesis to esti-

mate the amount of glycated hemoglobin in the blood. According to the hypothesis, the 

blood solution only contains glycated and non-glycated hemoglobin components. So, the 

blood solution absorption coefficient expression becomes 

�� = ��
����������� + ��

�����������������  (3)

�� = ��
����� + ��

�������� (4)

The system from (3) and (4) greatly simplifies the actual finger structure. The non-

HbA1c component of (3) and (4) mostly indicates the homogenous mixture of 98% oxyhe-

moglobin and 2% deoxyhemoglobin compounds. So, 

��
�������� = ��

��� × 0.98 + ��
��� × 0.02 (5)

Now, from the Beer–Lambert law 

� = ��� =  − log �
�

��
� (6)

In (6), �, �, �, and �� denote the total solution absorbance, light transmission path 

length, received light, and the incident light, respectively. Applying (6) in (1) and (3) with 

different wavelengths of light can enable us to calculate the parameters of (1) and (3), re-

spectively. 

Now, placing (1) in (6), we get 

�(�) = ���
�����(�) × ������ + ��

���(�) × ���� + ��
���(�) × ������ =  − log �

�(�)

��(�)
� (7)

Similarly, placing (3) in (6), we get 

�(�) = ���
����������� + ��

����������������� �� =  − log �
�(�)

��(�)
� (8)

From the discussion of these models, it can be deduced that the oxyhemoglobin and 

deoxyhemoglobin are kept fixed in the latter model, which may lead to more errors due 

to the change of blood oxygenation level (SpO2) in the bloodstream. The processes of error 

analysis are described in the following subsections. 

A. Error analysis between HbA1c estimation models 

To analyze the error level of the models, a reference model should be set. As the first 

model (7) consists of most of the blood parameters (i.e., oxy-, deoxy-, and glycated hemo-

globin), it is considered to be the reference model for estimating the error of the second 

model due to change in SpO2 levels. 

Now, to estimate the error level of the second model, the models are analyzed within 

a range of HbA1c and SpO2 levels. The HbA1c range is set to 4–14%, and the SpO2 is set 

to 70–100%. For each value of HbA1c and SpO2, the ������, ����, and ���� parameters 
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are calculated using the following equations and placed in (7) to calculate absorbance val-

ues for a certain wavelength. 

������ =
%HbA1c

100
× ��� (9)

���� = �1 −
%HbA1c

100
� ×

%SpO�

100
× ��� (10)

���� = �1 −
%HbA1c

100
� × �1 −  

%SpO�

100
� × ��� (11)

��� = 2.2 mol L�� = 2.2 × 10��M (12)

Now from (7), we can define the terms %HbA1c and %SpO2 as 

%HbA1c =
������

������ + ���� + ����
× 100% (13)

%SpO� =
����

���� + ����
× 100% (14)

In (9)–(12), the term ��� indicates the molar concentration of whole blood. 

After calculating the ������, ����, and ���� parameters for a set of HbA1c and SpO2 

values, these are placed in (7) to calculate the absorbance values �(��), �(��), and �(��) 

for three wavelengths—��, ��, and ��—respectively, considering the value of � as 1 cm. 

These three absorbance values are then used to reversely calculate the ������, ����, and 

���� parameters from (7) and ������ and ��������� parameters from (8), using the least 

square curve fitting algorithm. Due to the differences between the model approximations, 

the reversely calculated parameters will be different and will result in errors. 

B. SpO2 approximation error from model (8) 

Though the ���� and ���� parameters cannot be directly evaluated from (8) to esti-

mate the SpO2 value, these parameters can be approximated with certain considerations. 

For the first consideration from (8), the ��������� parameter can be hypothesized as 

being very close to ����, as the ��������� contains 98% of the ���� parameter. So, 

���������  ≈ ���� (15)

Thus, from (9) and (10), we can state that, 

���� =
%SpO�

100
× ��� − ������ ×

%SpO�

100
 

%SpO� =
����

��� − ������
× 100 (16)

Now, from (15) and (16) we determine the molar concentration based approximation 

as below. 

%SpO� ≈
���������

��� − ������
× 100 (17)

On the other hand, ��
�������� can be considered as a mixture of ���� and ����, cor-

responding to the blood oxygenation level. 

��
�������� = ��

��� ×
%SpO�

100
+  ��

��� × �1 −
%SpO�

100
� (18)

Now, from (8) it can be said that, 
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� − ��������
������

� ���������
= ��

�������� 

� − ��������
������

� ���������
=  ��

��� ×
%SpO�

100
+  ��

��� × �1 −
%SpO�

100
� 

So, the molar absorption coefficient based approximation becomes 

%SpO� =

� − ��������
������

� ���������
 −  ��

��� 

��
��� −  ��

���
× 100 

(19)

Using (17) and (19), SpO2 values can be approximated for the second model of (8). 

C. Model error due to sensor-induced noise levels 

The PDs used in discrete-LED/PD systems and the color sensor used in the camera-

sensor-based PPG signal acquisition system have their own sensitivity, noise level, sam-

pling rate, and quantization limitations. In this study, we perform a noise analysis on the 

models (7) and (8), which is based on the experimental noise levels obtained from two 

different sensors. The noise is added to the received light intensity of the sensor and the 

������, ����, and ���� parameters are reversely calculated using the least square curve 

fitting method. 

To estimate the estimation error due to sensor-induced noise, the HbA1c and SpO2 

levels are taken in a range as previously described. Utilizing (9) to (12), different parame-

ters are evaluated and placed in (7) to calculate the absorbance values �(��), �(��), and 

�(��) in different wavelengths of light. Two ratio values are also calculated from these 

absorbance values to cancel out the light traversing path length term, �. From the original 

hypothesis of [21], we can say that the parameter � will change slightly when the blood 

enters a tissue region. So, 

�� = �� − �� and ��(�) = ��(�) − ��(�) 

Here, ��  and ��  indicate the two absorbance values at ��  and �� , respectively. 

These two values, �� and ��, represent the diameter of the blood vessel when blood en-

ters and leaves the vessel, respectively. So, we can define the ratio terms from these equa-

tions as (20) and (21). 

�� =
��(��)

��(��)
=  

����
�(�2)
�(�1)

�
�1

����
�(�2)
�(�1)

�
�3

 (20)

�� =
��(��)

��(��)
=  

����
�(�2)
�(�1)

�
�2

����
�(�2)
�(�1)

�
�3

 (21)

At this stage, the received light values are calculated from (6), and a noise parameter 

is added with the received light for each set of HbA1c and SpO2 values, 

�(�) =  ��10�� (22)

��(�) = �(�) + � (23)

In (23), ��(�) is the noisy received light when a Gaussian noise � is added with the 

ideal received light, �(�). The values of the terms �� and �� cancel out in the ratio equa-

tions. 
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After adding noise to the received light, the ratio values are calculated using (20) and 

(21), resulting in ��
�  and ��

� . These two ratio values are used to inversely calculate the 

������, ����, and ���� parameters from (7) and ������ and ��������� parameters from 

(8), respectively, using the least square curve fitting algorithm. We then calculate the 

HbA1c estimation error for different models in different sensor-induced noise levels. 

3. Results 

To quantitatively analyze the errors associated with the analysis methods described 

in the previous section, we have selected 3 wavelengths of light (�� =  465 nm , �� =

525 nm, and �� = 615 nm). The molar absorption coefficients for these selected wave-

lengths are given in Table 1. 

Table 1. Table of molar absorption coefficients of HbA1c [22], HbO, and HHb [23] for selected wave-

lengths. 

Wavelength (nm) 
HbA1c 

(�������) 

HbO 

(�������) 

HHb 

(�������) 

465 549,024.7353 38,440.2 18,701.6 

525 455,139.5677 30,882.8 35,170.8 

615 170,555.4218 1166.4 7553.4 

A. Error analysis between HbA1c estimation models 

Comparing model (7) with the model (8) by the process described in the previous 

section, taking (7) as a reference, yields two error metrics: HbA1c error and SpO2 error. 

Figure 3 illustrates the HbA1c and SpO2 error for model (7), and the HbA1c error for 

model (8). The SpO2 error is not shown in this section as the SpO2 parameter cannot be 

directly deduced from the model (8). The SpO2 approximation results and errors are de-

scribed in the following sub-section. 

  

(a) (b) 
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(c) 

Figure 3. Error analysis between HbA1c estimation models: (a) HbA1c error for model (7), (b) SpO2 estimation error for 

model (7), and (c) HbA1c estimation error for model (8). For (a,c), the color bar represents the reference SpO2 values and 

the color bar in (b) represents reference HbA1c values. 

In Figure 3, the estimation error associated with the model (7) and (8) based systems 

with respect to reference values is shown. Figure 3a–b illustrate the estimation error of 

HbA1c and SpO2 associated with the model (7), whereas Figure 3c depicts the estimation 

error of HbA1c with the model (8). 

The color bars drawn in Figures 3a–c show the corresponding reference SpO2 level 

for each data point. The color bar in Figure 3b shows the reference HbA1c value for each 

estimation data point of SpO2. 

In Figures 3a–b, the model-(7)-based HbA1c and SpO2 estimation error is in the range 

of 10��� and 10���, respectively. These error values can be associated with floating-point 

errors in computing algorithms. In Figure 3c, the HbA1c estimation error varies from 

−1.306% to 0.047%. This large error is due to the lack of parameters for changes in blood 

oxygenation level. 

The mean of the error levels for Figure 3a,c are found to be 8.52−17, −1.60−15, and −0.60, 

respectively. The standard deviation (SD) values of the error levels are also found to be 

2.90−15, 3.31−14, and 0.37, respectively, for the corresponding plots. 

B. SpO2 approximation error from model (8) 

The blood oxygenation parameter can be approximated from the model (8). Two 

equations, (17) and (19) were derived to approximate the SpO2 value. Equation (17) only 

depends on estimated non-HbA1c and HbA1c molar concentrations, whereas (19) de-

pends on light-wavelength-dependent properties. So, approximating SpO2 with (19) can 

render different SpO2 approximations for different wavelengths of light. Figure 4 shows 

the SpO2 approximation error for (17). 

The molar concentration based SpO2 approximation results give an error range of 

−4% to −1.9% in the range of 70 to 100% reference SpO2 values. Figure 5 depicts the SpO2 

approximation error of (19) for 465 nm, 525 nm, and 615 nm. 
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Figure 4. Molar concentration based SpO2 approximation error for (17) from the model (8). 

 

(a) 

 

(b) 
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(c) 

Figure 5. Molar absorption coefficient based SpO2 approximation error of (19) for (a) 465 nm, (b) 525 nm, and (c) 615 nm. 

The color bar represents the reference HbA1c values. 

The 3-dimensional plots of Figures 4 and 5a, c illustrate the approximation error of 

SpO2 using model (8). The X, Y, and Z axes of the plots are reference HbA1c, reference 

SpO2, and SpO2 approximation error, respectively. The 2-dimensional plot beside the 3-

dimensional figure depicts the Y-Z plane, which is the SpO2 approximation error vs. ref-

erence SpO2 values. 

From all these figures (Figures 4 and 5), we can see that the SpO2 values do not de-

pend on the HbA1c values. Furthermore, for the approximation with (19), the error range 

changes depend upon the wavelength selection. A reduction in the oxygenation of the 

blood sample increases the approximation error of SpO2. As a result, the minimum ap-

proximation error can be found for 465 nm (−9 at SpO2 70% and about 1 at SpO2 100%). 

C. Model error due to sensor induced noise levels 

To examine the sensor-induced noise levels in the HbA1c estimation models, we con-

sidered two sensors for PPG acquisition. One of the sensors is the Osram SFH7050 with 

AFE4404 and the other is the TCS34725 color sensor. The Osram SFH7050 and AFE4404 

pair are considered as a discrete-LED/PD-based PPG acquisition system. On the other 

hand, the TCS34725 is considered to be a camera-sensor-based PPG acquisition system. 

According to our tests on these sensors, the standard deviation (SD) of error values gen-

erated by the AFE4404 front end is 1.820 × 10��  for transmission-mode PPG, and 

1.480 × 10��  for reflection mode PPG signals. The TCS34725 sensor has an SD of 

3.640 × 10��  and 6.711 × 10��  for transmission and reflection mode PPG signals, re-

spectively. 

Considering the method described in subsection C of the Methodology section, the 

width of the Gaussian function is set using the SD values obtained from the different sen-

sors for different modes, as given previously. Figure 6 shows the HbA1c values estimated 

from the noise-prone ratio values (�� and ��) for the AFE4404 based sensor and PPG 

mode. On the other hand, Figure 7 illustrates the HbA1c estimation error for the TCS34725 

sensor. 
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(a) (b) 

  

(c) (d) 

Figure 6. HbA1c estimation error due to AFE4404-based sensor-induced noise. Model-(7)-based HbA1c estimation values 

are illustrated for (a) reflection-mode and (b) transmission-mode PPG signal. Model-(8)-based estimation values are given 

for (c) reflection-mode and (d) transmission-mode PPG signals. The color bar represents the reference SpO2 values. 

  

(a) (b) 
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(c) (d) 

Figure 7. HbA1c estimation error due to TCS34725 sensor-induced noise. Model-(7)-based HbA1c estimation values are 

illustrated for (a) reflection-mode and (b) transmission-mode PPG signal. Model-(8)-based estimation values are given for 

(c) reflection-mode and (d) transmission-mode PPG signals. The color bar represents the reference SpO2 values. 

In Figure 6, the estimation error of HbA1c is illustrated with respect to reference 

HbA1c values for model (7) (Figure 6a–b) and model (8) (Figure 6c–d), respectively. From 

all these figures it is evident that the estimation error level increases as the HbA1c level 

increases. This is due to the high light attenuation property of HbA1c molecules. An in-

crement of HbA1c molecules inside a solution can lead to reduced amplitudes in received 

light signals, resulting in greater errors in estimation. 

The standard deviation (SD) of the erroneous estimation for the AFE4404-based sen-

sor of the model (7) is found to be 0.258 and 0.317 for reflection and transmission modes, 

respectively. On the other hand, model (8) has an SD of 0.114 and 0.142 for reflection and 

transmission modes, respectively. 

Figure 7 also depicts similar illustrations to Figure 6. However, since the TCS34725 

sensor receives less signal noise than the AFE4404, the SD of the estimation error of HbA1c 

is reduced greatly, which can be seen in Figure 7. 

The SD of the erroneous estimation of the model (7) is found to be 0.117 and 0.063 for 

reflection and transmission modes, respectively. For model (8), SD is found to be 0.052 

and 0.028, in reflection and transmission modes, respectively. 

4. Discussion 

From the above discussions that assess the two models for their different errors in 

estimating in vivo glycated hemoglobin values, certain important points can be made. 

Upon comparing the two models (model (7) and model (8)), it can be easily seen that 

model (8) is a simplified version of model (7). Model (8) combines the oxygenated and 

deoxygenated hemoglobin parts into one variable. For this reason, a change in the blood 

oxygenation value (i.e., a change in the ratio of oxygenated and deoxygenated hemoglobin 

count in the bloodstream) can significantly impair the HbA1c estimation accuracy of 

model (8). 

On the contrary, model (7) is more susceptible to the sensor noise, degrading the es-

timation accuracy of glycated hemoglobin as compared to model (8). This occurs as model 

(7) is more complex and more parameters are built into the model equation itself. As a 

result, any error in the input of the model amplifies the error with the model parameters 

and gives more erroneous results. From Figure 6 and Figure 7, we can see that the error 

level of model (7) is almost double when compared to the error level of the model (8) for 

both modes of PPG signal using the AFE4404-based sensor and TCS34725-based sensor. 

Though the sensitivity of model (7) to noise is large compared to model (8), model (7) can 
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be made robust against sensor noise by taking multiple sampling processes in the appli-

cation of the model. The sensors usually exhibit random noise in the signals. Taking the 

arithmetic mean of several samples of measurement can ensure the reduction of random 

noise, hence reducing random estimation error. 

From Figures 6 and 7, it is also evident that the more the HbA1c components are 

present in the blood solution, the greater the error level becomes. This is due to the fact 

that the glycated hemoglobin component of blood has a much higher molar absorption 

coefficient than that of the other two components of blood considered in this study (HHb 

and HbO). Thus, an increase in HbA1c decreases the received light intensity, and conse-

quently decreases the signal-to-noise ratio for a fixed amount of added noise, resulting in 

poor estimation accuracy. 

5. Conclusions 

In this study, we performed a quantitative analysis on two models for the non-inva-

sive estimation of glycated hemoglobin (HbA1c). Comparing the two models, by taking 

one as a reference for different parametric states, the two-wavelength model was found 

to have errors in the range of −1.306% to 0.047% of HbA1c, depending on the amount of 

oxygenated and deoxygenated hemoglobin compounds present in the blood solution. On 

the other hand, the three-wavelength model’s HbA1c-estimation error was found to have 

a magnitude of 10��� %. 

From the approximation of the blood oxygenation (SpO2) value of the two-wave-

length model, it can be seen that a lower error can be attained by using the molar concen-

tration based SpO2 approximation technique, as compared to the molar absorption coeffi-

cient based method. The method based on the molar absorption coefficient depends on 

the wavelength of the light and, in our experiment, we observed that the light at a wave-

length of 465 nm produced the lowest error for the two-wavelength-based SpO2 approxi-

mation. 

Finally, from the estimation error of HbA1c due to sensor noise level, it can be seen 

that the two-wavelength-based model has a higher resistance to sensor noise, and that the 

three-wavelength-based model is more susceptible to noise due to the higher complexity 

of the model. Though the two-wavelength based model has a low error level even when 

the sensor noise is high, the model performs poorly (error range varies between −1.306% 

and 0.047% with the change in SpO2 values) when estimating the glycated hemoglobin as 

compared to the three-wavelength based model. This is because the two-wavelength 

based model does not consider the two major hemoglobin components of blood. 
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