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Abstract: The generalized spectral subtraction algorithm (GBSS), which has extraordinary ability in
background noise reduction, is historically one of the first approaches used for speech enhancement
and dereverberation. However, the algorithm has not been applied to de-noise the room impulse
response (RIR) to extend the reverberation decay range. The application of the GBSS algorithm in
this study is stated as an optimization problem, that is, subtracting the noise level from the RIR
while maintaining the signal quality. The optimization process conducted in the measurements
of the RIRs with artificial noise and natural ambient noise aims to determine the optimal sets of
factors to achieve the best noise reduction results regarding the largest dynamic range improvement.
The optimal factors are set variables determined by the estimated SNRs of the RIRs filtered in the
octave band. The acoustic parameters, the reverberation time (RT), and early decay time (EDT),
and the dynamic range improvement of the energy decay curve were used as control measures and
evaluation criteria to ensure the reliability of the algorithm. The de-noising results were compared
with noise compensation methods. With the achieved optimal factors, the GBSS contributes to a
significant effect in terms of dynamic range improvement and decreases the estimation errors in the
RTs caused by noise levels.

Keywords: generalized spectral subtraction algorithm; noise reduction; decay range improvement;
reverberation time

1. Introduction

Reverberation time (RT) is the most representative and physically important parameter
related to the average properties of a room [1–3] and is essential for predicting speech
intelligibility [4,5]. A well-known and widely used method to calculate RT is determined
by the energy decay curve (EDC) generated by Schroeder’s method [6]; however, the
measured room impulse response (RIR) presents ambient noise, and equipment noise may
deteriorate the EDC, leading to errors in predicting room acoustic parameters [7,8]. The
relative errors for RTs, early decay time (EDT), and other acoustic parameters, without
noise compensation, could exceed 5% [9,10].

In the past few decades, studies and achievements have been based on using mathe-
matical models to improve the accuracy of estimating RT, etc. To minimize the noise effects
in the backward integration method, typical research focused on the noise compensation
method to truncate the RIR at a point where the RIR decay intersects with the constant noise
floor [7], which is technically the truncation time, to generate noise-free decay curves [11,12].
Nevertheless, the performance of EDCs generated from different compensation methods is
significantly influenced by the estimated upper integration time and the noise levels at the
truncation time [13]. This problem identified two casual factors: the upper integration time
of RIR and the estimated background noise levels at the truncation time. Consequently,
a correction term was added to the integration to prevent the truncation error [9,13,14].
For mathematical advantages, nonlinear regression methods [15] were investigated to
fit the RIR to calculate the slope of the EDC. The technique was further developed as
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an automated detection method for calculating the correction term and determining the
truncation time [5,8]. All the methods were set out from the time domain. Advanced
technical methods have been applied to remove the non-decaying frequency-dependent
noise floor of the direction room impulse response, measured with spherical microphone
arrays with an exponentially decaying zero-mean Gaussian noise [16,17]. An application
of wavelet techniques for reducing the RT estimation error caused by noise showed the
possibility of implementing the de-noising approach to reduce the noise of RIR [18].

Regarding well-known de-noising techniques involving a forward and an inverse
Fourier transform [19] performed on the Frequency domain, spectral subtraction algorithms
(SS) that have extraordinary ability in removing the signal noise levels were considered to
minimize the noise effects on estimating acoustic parameters, such as RTs and EDT. The
technique was used to de-noise the RIR because the algorithm has a similar de-noising
rule to the noise subtraction method [20], in which the noise levels were subtracted from
the noisy signal to estimate the clean signal. Unlike the SS algorithm, the de-noising
processing of the noise subtraction method was conducted in the time domain. In contrast,
the SS algorithms used a novel noise estimation approach to adaptively estimate the
addictive noise levels during the silent periods of the signal and were subtracted from the
noisy signals frame-by-frame. The methods were studied intensively based on short-time
spectral amplitudes (STSA) and were used to suppress the noise with a relatively stable
power spectral density. They were initially proposed for speech enhancement [21] and had
been applied successfully in other areas, such as underwater acoustic sounds [22], speech
dereverberation [23], and electronic noise reduction [24,25]. Nevertheless, the random
variations of noise leading to an inaccurate estimation of the noise levels and the processing
of noise subtraction may result in much of the interfering noise remaining, causing some
original signals to be removed [26].

Many algorithms have been developed to minimize the distortion caused by noise
subtraction processing between an enhanced signal and a clean signal [27]. Among these
methods, Berouti proposed a generalized spectral subtraction based on short-time spectral
amplitudes, called Berouti’s GSS (GBSS), which was implemented to de-noise the RIRs
because of its computational simplicity and the flexibility of parametric adjustments in
the technique for producing significant de-noising improvements [28–34]. The ultimate
purpose of the algorithm was used to extend the reverberation decay range of the EDCs for
RTs estimation. The corresponding two factors, an over subtraction factor and a spectral
floor parameter, were used to maintain the trade-off between the remaining noise levels
and the signal quality. However, subtracting a constant ratio of noise levels over the
entire frequency of the RIR may also remove parts of the clean signal and deteriorate the
estimation of the RTs. Therefore, it is essential to have prior knowledge of the motivation
of the parameters of the GBSS algorithm to determine the optimal sets of factors to mitigate
unwanted noise effects and improve the dynamic range, without or with an acceptable
minimal degradation of the reverberation decay.

The subject of this paper is to investigate the possibilities of implementing the GBSS
algorithm in de-noising the RIRs to extend the reverberation decay range of the correspond-
ing EDCs. Because the algorithm is based on a hypothesis that the noise is relatively stable
or a slowly varying process, the measurements are conducted in the “real-world” with
a relative stable background noise. The most promising factors of the GBSS algorithm,
including the over-subtraction factor and the spectral flooring factor, were used to suppress
the noise levels. The optimal factors were achieved experimentally through measurements
of the RIRs with artificial noise added and the natural ambient noise improve the dynamic
range of the EDCs significantly, which is analyzed in detail in Section 4. In the de-noising
processing, the parameters of RTs, EDT, and the dynamic range were used as the control
measures and the evaluation criteria to ensure the accuracy of the RIR de-noising pro-
cessing. The acoustic parameters estimated from the EDCs of the de-noised RIRs, with
acceptable degradation of the reverberation decay rate, were compared to the compensa-
tion method. The proposed algorithm gave somewhat more stable results in some cases.
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Furthermore, the GBSS algorithm with optimal factors significantly improved the dynamic
range and decreased the estimation errors in RTs caused by noise levels.

2. Principle of Spectral Subtraction
2.1. Basic Spectral Subtraction

The spectral subtraction algorithm is one of the earliest and longest-used techniques
for background noise reduction and has been mainly applied to improve the quality of
speech [21]. The basic principle is to subtract the magnitude spectrum of noise from the
noisy signals where the signal and noise are considered uncorrelated. The method assumes
that speech and noise are uncorrelated, and noise is added in the time domain, which
is why the SS algorithm is applied to de-noise the RIRs, because the background noise
presented in the RIRs is assumed to be additive noise. The discrete-time noisy RIR y(n) is
composed of a clean signal, x(n), and the noise d(n) is expressed as,

y(n) = x(n) + d(n). (1)

In the application of the SS, the discrete Fourier transform (DFT) of both sides is taken,
where the general form of the enhanced signal spectrum can be described in terms of its
magnitude spectrum of one frame, as follows,∣∣X̂(ω)

∣∣b = |Y(ω)|b −
∣∣D̂(ω)

∣∣b, (2)

where
∣∣D̂(ω)

∣∣ is the estimated noise spectrum and the updated during periods of silence
and,

∣∣X̂(ω)
∣∣ is the enhanced signal spectrum calculated using the inverse Fourier transform

with the information of phase of the original signal |Y(ω)|. When reconstructing the
enhanced signal, its phase is approximated by the phase of the original signal, owing to
the estimated phase of the noise spectrum, causing a sharp increase in the complexity of
the algorithm, and when the SNR is comparatively high, leading to an imperceptible phase
difference [29,30]. The value b is the exponent determining the transition sharpness, b = 2
represents the power spectral subtraction, while b = 1 represents the magnitude spectral
subtraction. In this paper, the b = 2 is applied.

Although the spectral subtraction algorithm can easily reduce noise, the enhanced
spectrum may contain some negative values because of the inaccurate estimation and
nonlinear compensation processing of the noise, leading to spectral peaks that do not
belong to the original signal. When converting in the time domain, these peaks sound like
tones and generate the perceptually annoying residual noise named musical noise [28].
Therefore, special attention should be paid to musical noise when applying the spectral
subtraction algorithm to de-noise the RIR without affecting the reverberation decay. The
basic approach proposed by Boll [21] to reduce the musical noise effects was to set the
spectral magnitude negative rather than set them to zero and is expressed as follows,

∣∣X̂(ω)
∣∣2 =

|Y(ω)|2 −
∣∣D̂(ω)

∣∣2, i f |Y(ω)|2 −
∣∣D̂(ω)

∣∣2 > max
(∣∣D̂(ω)

∣∣2)
min

j = i−1,i,i+1

∣∣X̂j(ω)
∣∣2 else

, (3)

where
∣∣X̂(ω)

∣∣2 is the enhanced spectrum of the RIR in frame and
∣∣D̂(ω)

∣∣2 is the estimated
spectrum of the noise, which is estimated at the beginning or the end of the RIR.

The common and most straightforward method to estimate and update the noise
during silence (the pause) in speech uses the voice activity detector (VAD) because silence
exists not only at the beginning or the end of a sentence, it also exists in the middle of
a sentence [31]. However, the VAD algorithms have less effect on the RIRs because the
background noises exist at the beginning and end of the RIRs. Applying the SS for the
RIRs with stable background noises, the mean amplitude differences between the dynamic
ranges of the EDCs and the reduced noise levels with and without VAD algorithms were
around 1 dB. Hence, the VAD algorithm will no longer be applied for the RIR. In using the
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algorithm to de-noise the RIR, the noise floors were reduced by approximately 5 dB. As a
result, the de-noised EDCs go below the noisy EDCs, leading to about 6 dB in the dynamic
range improvement for noise levels of −60 dB. The results suggest that the SS algorithm
has the possibility to reduce the noise presented in the corrupted RIRs. Comparing with the
dynamic range improvement (up to 18 dB), achieved using generalized spectral subtraction
with the optimal factors presented in Section 4.1, the SS algorithm shows a weaker ability
to improve the EDCs dynamic range. The algorithm requires access to future enhanced
spectra that may not be amenable to real-time implementation [27]. Therefore, the GBSS
algorithm was explored to lower the overall noise levels in the RIRs and increase the
dynamic range of the EDCs because of its ability to eliminate the music noise to further
reduce the background noise.

2.2. Generalized Spectral Subtraction

The generalized spectral subtraction algorithm (GBSS) does not require access to
further information and affords extraordinary ability in background noise reduction with
little effect on speech intelligibility [28,34]. It is the primary motivation for investigating
the algorithm to de-noise the RIR to improve the dynamic range. The algorithm consists of
two additional parameters that offer a significant amount of flexibility in the generalized
spectral subtraction to reduce the remnant noise, the over-subtraction factor and the noise
spectral floor. The proposed method is given as follow:

∣∣X̂(ω)
∣∣2 =

{
|Y(ω)|2 − α

∣∣D̂(ω)
∣∣2, i f |Y(ω)|2 > (α + β)

∣∣D̂(ω)
∣∣2

β
∣∣D̂(ω)

∣∣2 else
, (4)

where α ≥ 1 and 0 < β ≤ 1.
In order to reduce distortion of the signal by the GBSS algorithm, experimental results

showed that the α should vary from frame to frame. The formula applied to de-noising the
RIR is as follows,

α = α0 + (snr− snrmin)((αmin − α0)/20) snrmin ≤ snr ≤ snrmax . (5)

Here, α0 is the desired value at the snr = 0, and the snr is a short time posterior
calculated in each frame which is based on the ratio of the noisy RIR to estimate the
noise power,

snr = 10 ∗ log10(
N

∑
ω = 1

|Y(ω)|2/
N

∑
ω = 1

∣∣D̂(ω)
∣∣2). (6)

Here, snrmax = 20, snrmin = −5, and αmin = 1. N is the number of frames in
the signal. The noise floor factor β depends on the snr effects in converting the narrow
band noise to wideband noise to reduce the perceived musical noise and the residual noise
levels. Although a large β gives less musical noise, it may increase the added broadband
noise levels that do not belong to the original signal. The over-subtraction factor α is
applied to reduce the overall level of the residual noise, including the broadband noise
and the musical noise, decided by the α0. Studies have shown that the noise levels can be
remarkably removed from the signal with a higher α0. At the same time, the signal may
be severely distorted to the point causing the speech to suffer from intelligibility damage.
That could explain why special attention should be paid to the spectral subtraction rule
applied in de-noising the RIRs, because the de-noising effects are essentially controlled by
parameters β and α0 [28].

3. Implementation and Experiment
3.1. Experiment Design

The investigation in this paper is carried out on real measured RIRs to analyze and
confirm the performance of the GBSS algorithms and the feasibility of the subtraction
factors implemented in de-noising RIRs. The measured RIRs are achieved in five different
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structure rooms to enable the GBSS algorithm to work on a real room case with various
acoustic features.

Three of the measured RIRs were used to determine the optimal factors contributing
to the best dynamic range improvement. Artificial white and pink noises of different
levels (from −65 dB to −40 dB with step −5 dB) were added to the RIRs to have various
dynamic ranges and SNRs. The reason for using these RIRs was because the wall reflection
coefficients of the three rooms were different, and the background noise was low, which
could be used to add artificial noises. Furthermore, the acoustic parameters achieved in
low background noise were more accurate, enabling a reliable evaluation. Table 1 lists
the detailed parameters of the three rooms. The anechoic chamber had a lower limit of
the RT, providing a limiting case for the detecting algorithm [35]. The meeting room with
130 seats is made of perforated plates and a mineral wool sound-absorbing board. The hall
was an empty but large room, similar to a classroom. The three rooms enabled tranquil
environments where the noise levels estimated from the RIRs were less than −70 dB.
The values of the noise levels were estimated from the normalized energy time curve
(normalized energy RIR) determined using iterative techniques [9].

Table 1. Information of the measured rooms.

Room Type
Room Size (m) Volume

(m3)
Temperature

(◦C)
Reference

RTLength Width Height

Anechoic Chamber 8.4 7.2 6.0 363 22.7 0.08
Meeting Room 16.5 4.35 9.95 714 23.2 0.67

Hall 16.5 11.5 9.0 1708 22.8 3.14
Room A 12.0 9.0 3.2 346 20.2 1.32
Room B 8.5 7.5 3.2 204 20 0.72

Once the sets of the factors were achieved, the RIRs measured in two normal rooms
(room A and room B), listed in Table 1, were used to verify the accuracy of the obtained
optimal factors of the GBSS algorithm (Section 4.4). In this case, the noise levels of the
reference RIRs measured at midnight were approximately −60 dB. In comparison, the RIRs
measured in the daytime have natural ambient noise levels (including equipment noise)
and were −40 dB and −46 dB. Strong sound reflection occurred in room A because the
structure of the two walls was glass, resulting in a higher RT (1.32 s). Another room was the
most normal room with an RT = 0.72 s. Six positions were used to test the RIRs in the hall,
four positions in the meeting room and room A, while three positions were used in room B
and one position in the anechoic chamber, yielding 63 conditions to verify the model.

To evaluate the reference RTs for the five rooms, experiments were designed to follow
ISO 3382-1:2009 [14]. In this experiment, an ABSWA MPA201 free-field microphone, which
was connected to a SCIEN ADC 3241 professional sound card through a BNC connector
cable to the adopted signal, was set beside the Brüel and Kjær high-power omnidirectional
sound sources. The loudspeaker was calibrated to eliminate the influence of distance
in advance to generate a sweep signal, and the RIRs were measured by a measuring
microphone that was added near the loudspeaker. An excitation signal with a length of
3 s was used for RIRs and computing was performed using MATLAB software. A length
of 6 s was used for the hall due to its large volume. The measurement equipment used in
the experiment had a flat response curve for a frequency range of 100 to 16,000 Hz. The
volume of the signals was controlled by two INTERM L-2400 power amplifiers connected
to a spoken connector cable. Professional software was used to record the noise level before
taking the measurements.

3.2. Noise Subtraction Procedure for RIR

The main aim in applying the spectral subtraction method in de-noising noisy RIRs
can be stated as an optimization problem. The noise is minimized while maintaining
the quality of the reverberation decay. In the GBSS, both spectral over-subtraction and
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floor factors were fixed to constant values. Based on these studies [13,27,28], the spectral
floor parameter β was in the range between 0.1 to 0.001 and depended on the average
posterior SNR and the over-subtraction factor α with a desired α0 in the range of 1 to
6 was first implemented in the three rooms to de-noise the RIRs filtered in each octave
bands. The goal was to determine the best optimal sets of parameters to reduce the noise
levels of the RIRs and extend the reverberation decay range of the EDCs for RTs calculation.
Because of the musical noise contributing to the fluctuations of the EDCs, noise subtraction
processing should be done carefully. The estimation of the acoustic parameters using
spectral subtraction was carried out in MATLAB, and the de-noising process was evaluated
as follows. The input RIR was divided into small frames to make it stationary or quasi-
stationary over the frames to estimate the segmental SNR for determining the subtraction
factors. A Hamming window with a frame size of 256 samples and a 50% overlap was
applied to each frame before being enhanced individually. The initial noise spectrum was
detected at the tail period of silence to keep the same noise estimation rule with the noise
truncation method [20]. The two factors were primarily applied separately in the noise
subtracting processing, ranging from 125 to 4000 Hz. This means to change a parameter
while the other one is fixed.

The de-noising processing was analyzed and evaluated in the following way to ensure
the accuracy of the achieved factors. The de-noised results of the three RIRs convoluted
with different noise levels and two RIRs measured with ambient noise were compared
with the corresponding reference results and the results of the compensation method (that
is, subtraction–truncation–correction method) [13]. The ultimate purpose was to achieve
the dynamic ranges of the EDCs using various factors of the GBSS method. The dynamic
range was determined by the difference in the decay level estimated from a cross-point, A,
located at the EDCs of the noisy RIRs, and cross-point B positioned at the de-noised EDCs
which are presented in Figure 1. Because the improved dynamic range is affected by the
difference in the decay levels between points A and B, it is vital to set optimal thresholds
to limit the absolute value of the deviation between the EDCs and the reference EDCs to
determine the point. The thresholds ranged from 0.05 dB to 2 dB in most cases; however,
an excessively large value may lead to a significant error when the noise levels are high.
As a result, the values of 0.1 dB and 0.05 dB were set to calculate the dynamic ranges of
the reference EDCs and the de-noised EDCs with different SNRs to ensure the computed
errors of the parameters EDT and the RTs were below 1%. The noise subtraction process
needs to be done carefully according to the above process. If too much noise is subtracted,
it may lead to RIR distortion, causing bias in the EDC in a range. On the other hand, the
improved dynamic range may be limited when estimating RTs. Therefore, the generated
EDCs were also used as a visual inspection of the change in the EDC dynamic range to
determine the best optimal set of GBSS parameters to give the most significant increase in
the dynamic range and noise reduction effects.

Once the promising sets of factors were obtained, the RIRs measured in two normal
rooms were implemented to verify the feasibility and accuracy of the algorithm. In the
GBSS method, parameters RTs and EDT estimated from the reference EDCs were taken as a
reference to control the subtraction factors. The EDT was applied to supervise the musical
noise effects in the first part of the EDCs. The decay range for the RT estimation started at
−5 dB, while the lower limit decay level was determined by the decay level of cross-point
B. Finally, the RTs calculated from the de-noised EDCs in the decay ranges were compared
with the reference EDCs and the compensated EDCs.
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Figure 1. Dynamic range improvement of the EDC between cross-point A at a noisy RIR and
cross-point B at RIR after the GBSS.

4. Results Analysis and Discussion

This section presents the RIR de-noising performance of the GBSS and compares it
with the reference RIRs and the compensation method. The estimated RTs and EDT are
used to evaluate the feasibility of the algorithm. The advantage of the algorithm was
the two factors in Equation (4), which provide flexibility for the GBSS in reducing noise
levels to significantly improve the dynamic range of the EDCs. Here, β values from 0.1 to
0.001 (step 0.01) were applied depending on the estimated posterior SNR. The α was set as
Equation (5) with α0 ranging from 1 to 6 (step 0.25) [32]. The illustration of the de-noising
effects by using the two parameters within the range was analyzed separately. Furthermore,
the inadequacy of de-noising RIRs through the use of α0 smaller than 3 and β higher than
0.1 will also be discussed. Finally, the RIRs measured in the meeting room convoluted with
the pink noise level at −55 dB, filtered in the octave band at 1 kHz, were used to present
the de-noising results.

4.1. Performance of the GBSS Algorithm Factors

The varying β decided by the SNR ranged from 0.1 to 0.001, with a fixed α0, controlling
the remaining noise levels, and the musical noise effects on the noisy RIR are given in
Figure 2. Observing the EDCs given in Figure 2a, the EDC obtained using a value larger
than 0.1 has a particular impact on the reverberation decay part of the EDC, which offers
a significant dynamic range improvement of approximately 7 dB, and the noise floor
reduction was about 5.6 dB. With β = 0.05, the obtained dynamic range of the EDC was
1.5 dB larger than that of the de-noising effects using β 0.1. A decrease in β to 0.001 yielded
the best de-noising results, providing a dynamic range improvement of up to 10.15 dB. In
this case, the reverberation decay range for the RT estimation was extended to −15 dB,
and the noise level reduction was approximately 9 dB. On the other hand, the late part
of the EDC was not as smooth as the EDC of β = 0.5, which can be seen from the decay
range from −35 dB to −40 dB. Compared to β = 0.001, the narrowband spectral peaks of
the original RIR were converted to broadband noise using a larger β, as can be seen from
the spectrum using the FFT in Figure 2b. In this case, the musical noise was not perceptible,
but the remaining noise levels were higher (Figure 2c). On the other hand, when β > 0.05,
there was an increase in the other artifacts of residual noise levels, which did not belong
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to the original RIR. Musical noise leads to high fluctuations in the remaining noise parts
of the RIR using β = 0.001 (Figure 2d), contributing to the roughness of the EDCs, which
is only prominent in the noise segments, but has less impact on the reverberation decay
part. Furthermore, the noise attenuation effects were remarkable with a small β, and the
musical noise effects could be decreased using a larger α [28]. Consequently, the GBSS
algorithm with α0 > 3 provided similar noise attenuation rules and musical noise effects in
de-noising processing. Regarding the best dynamic range improvement of the EDCs, as
well as the noise levels reduction effects on the RIRs with different noise types and levels
filtered in the octave bands, the experimental results showed that varying α worked wells
when β = 0.05 for SNR < 0 dB, while β = 0.001 works best for SNR ≥ 0 dB.
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Figure 2. Comparison of the noisy RIRs and de-noised RIR at 1 kHz by varying the noise spectral
floor β for a fixed value of α0. (a) The EDCs of the RIRs. (b) Power spectrum of the RIRs obtained
using the FFT. (c,d) RIRs in the time domain.

It is well-known that, with a fixed value, α0, more noise attenuation increases with a
decreasing value of β. On the other hand, with a fixed β (suggested above), a change in
the α0 values also significantly impact the noise reduction effects and the dynamic range
improvement. For example, the over-subtraction factor α0 = 3 with a fixed β leads to an
approximately 10.15 dB dynamic range improvement. In contrast, the best de-noising
results mentioned above are achieved when the α0 = 4. Therefore, determining the optimal
sets of the two factors will improve EDC dynamic range more, which is essential for
de-nosing RIRs, particularly when the noise levels are high.
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Figure 3 shows the noise attenuation effects of different values of α0 with a fixed β

value of 0.001. The remaining noise levels decreased with larger α0 values, causing the
later parts of the EDCs to decrease. The GBSS with α0 = 1 produced a slight improvement
in the EDC dynamic range (e.g., up to 3 dB), while α0 = 2 provided a similar result of
approximately 4 dB to the EDCs. A change in the over-subtraction factor with an α0 value
larger than 3 led to an improvement of approximately 8 dB in the dynamic range, and the
estimation decay range was extended to −12 dB. However, when the noise levels were
higher than −60 dB, the estimation decay range failed to extend to −10 dB using a α0 lower
than 3. In this case, the over-subtraction factor, α0, lower than 3 will not be applied to
explore the de-noising effects on the RIRs regarding the dynamic range improvement.
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subtraction α0 for a fixed value of β. (a,b) Generated EDCs of the RIRs. (c,d) De-noised RIRs with α0

4 and 6 in the time domain.

The application of α0 = 4 yielded the best dynamic range improvement of the EDCs.
In this case, the decay curve was almost identical to the reference EDC above −23 dB. At
the same time, the de-noised RIR showed similar energy levels to the reference RIR above
0.4 s, which can be seen in Figure 3c. With a larger α0, the deviation on the reverberation
decay was enhanced, which can be noticed from the energy–time curves given in Figure 3d.
Using α0 = 6 could remove more noise compared with α0 = 4. On the contrary, a larger loss
of the original signal occurred close to the end of the reverberation decay part, around 0.4 s,
contributing to a severe deviation in the decay curve. With α0 = 6, the RT estimated in the
range from 0 to −19 dB showed the same result as the noiseless decay curve. However, the
reverberation decay curve goes below the reference decay curve in the decay range from
−19 dB to −29 dB. In this case, it resulted in the degradation of the reverberation decay
and caused a smaller estimated dynamic range than the value achieved by α0 = 4.
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It follows that the over-subtraction factor had a significant effect on the EDC dynamic
range improvement when factor α0 increased to 3. Nevertheless, the increased decay range
was smaller than the best-achieved results using the value of α0. The case presented here
used a value of 4 for de-nosing the RIR. The value in this regard was called the optimal factor
regarding the achieved best dynamic range improvement. However, further subtracting
of noise from noisy RIRs, up to a certain point, with values higher than the optimal α0
contributed to the signals distortion starting from the point, causing the decreasing of the
dynamic range and a deviation in the reverberation decay rates. The estimated time is
equal to the knee of the original noisy RIR [13]. Therefore, it is crucial to find the point or
the decay level corresponding to the optimal level of α0 to avoid the distortion of the EDCs
generated using a higher α0.

4.2. Performance of the Optimal Factors

Based on the above, the de-noised results showed the possibility of achieving the
largest dynamic range improvement when reducing the noises in the RIR up to the trun-
cation time (the knee). The knee is the time point where the reverberation decay of the
impulse response intersects with the noise levels, which can be detected by the nonlinear
model [13]. At the same time, the decay level of the knee located at the truncated EDCs,
calculated from the original RIR implemented by the subtraction–truncation–correction
method, was also for the noiseless EDCs. In the process, the estimated noise level was
subtracted from the RIR before backward integration, where the correction term for the
truncation was calculated using the parameters obtained from the nonlinear model. There-
fore, the noise levels convoluting the RIRs used in Section 4.1 were increased to −45 dB to
better observe the remaining noise levels around the knee and verify the method validity
as applied for severe background noise levels.

The EDCs of the de-noised RIRs with different values, α0, compared to the EDCs of
the noisy RIRs and the reference RIRs in the time domain, are given in Figure 4. Observing
the RIRs in the time domain, the noises were remarkably reduced for the applied GBSS
algorithm with α0 higher than 3. The higher the α0, the lower the remaining noise level.
However, compared with the reference RIRs, the three values gave different performances
in terms of the energy levels around the knee (about 0.28 s), leading to the variable
performance to the generated EDCs. Observing the EDCs presented in Figure 4a, compared
to the other two values, a value of 3 resulted in the worst dynamic range improvement. The
amplitudes of the de-noised RIRs presented in Figure 4b were higher than the reference
RIR at the knee. In such cases, much of the noise was removed, but not completely. Further
increasing the α0 value to 4.25 resulted in a decrease in the amplitudes at the knee until
the energy levels were almost equal to the reference RIR around the knee (seen Figure 4c),
yielding the largest dynamic range improvement (about−13 dB). At the same time, the EDC
was overlapped with the reference before a cross point at the decay level −15 dB. In this
regard, the cross point was called the critical point for the largest dynamic range obtained
using the optimal over-subtraction factor α0. For a higher value of 6, though the noise
levels were obviously reduced, the amplitudes around the knee decreased significantly, as
shown in Figure 4d. Relative energy loss occurred at the original noisy signal around the
knee, causing the corresponding EDC to be divided from the reference EDC to drop below
the decay curve in the range of −15 dB to −24 dB. As a result, the estimated decay level at
the corresponding cross point is smaller than the reference results. Most important is that
the reverberation decay rate was degraded more severely than the reference one.
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It was observed that the processing of RIR de-noising showed a strong dependence
on the over-subtraction factors of α0 of the GBSS algorithm. The performance showed that
changing α0 led to different cross points with the reference EDCs, and de-noised EDCs had
a tremendous relationship with the reduced noise levels in noisy RIRs. On the other hand,
the cross point located at the de-noise EDCs did not extend to the critical point until the
noise levels around the knee were removed. On the other hand, the reverberation decay
part of the signal would be lost using an α0 value higher than the optimum, leading to
a decay rate distortion at the knee and causing more significant deviations of the EDCs
relative to the reference EDCs. Furthermore, the optimal factors providing the best results
regarding the dynamic range improvements were variable for different noise levels. For
example, for the applied optimal factor, α0 4, the dynamic range improvement was larger
than 20 dB when the noise level was lower than −60 dB while a 15-dB improvement was
achieved using α0 4.25 at a noise level of −45 dB.

4.3. Over-Subtraction Factor for the Octave Band RIRs and Different Noises

Because the most promising factors of the GBSS applied to RIRs with different noise
levels are changed, and the dynamic range obtained was varied, it was essential to find
the rule to choose the factors for different situations. Hence, the three measured RIRs
with low noise levels, mentioned in Section 3.1, filtered in octave bands, convoluted
with white noise and pink noise, with noise levels ranging from −65 dB to −40 dB,
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were used to determine the optimal factors. Based on the study above, removing the
noise levels around the knee estimated from RIR contributed to the largest dynamic range
improvement. In this case, the factors set in the GBSS were the most promising. The acoustic
parameters calculated from the EDCs of the filtered RIRs in the octave bands were used to
verify the results and guarantee the accuracy of the applied optimal factors, leading to no
distortion of the EDCs during the noise subtraction process using the GBSS. Considering
the optimal factors determined using the knees obtained with the compensation method,
the corresponding RTs were compared with the reference RTs. The RTs calculated at the
critical point positioned on the de-noised EDCs were compared with the values of the
compensation method and the reference results to ensure that the achieved decay levels at
the critical points were the best. At the same time, EDT, T15, and T20 were used to verify
the GBSS algorithm and it was compared with the reference results, as listed in Table 2.

Table 2. Comparison of RTs and EDT between the de-noised RIRs and the reference RIRs.

Octave
Band Reverberation Reference

Noise Level (−60 dB) Noise Level (−50 dB)

Pink
Noise

White
Noise

Pink
Noise

White
Noise

125 Hz
EDT(s) 0.728 0.73 0.727 0.73 0.722
T15(s) 0.727 0.73 0.727 0.73 0.72
T20(s) 0.727 0.73 0.727

250 Hz
EDT(s) 0.677 0.677 0.676 0.676 0.676
T15(s) 0.739 0.739 0.738 0.74 0.74
T20(s) 0.672 0.673 0.672

500 Hz
EDT(s) 0.691 0.691 0.69 0.69 0.69
T15(s) 0.6 0.6 0.6 0.6 0.6
T20(s) 0.626 0.627 0.624

1000 Hz
EDT(s) 0.609 0.61 0.61 0.61 0.61
T15(s) 0.704 0.7 0.7 0.7 0.7
T20(s) 0.717 0.71 0.71

2000 Hz
EDT(s) 0.529 0.53 0.53 0.53 0.53
T15(s) 0.611 0.61 0.61 0.61 0.61
T20(s) 0.707 0.7 0.7

4000 Hz
EDT(s) 0.436 0.434 0.436 0.437 0.437
T15(s) 0.535 0.533 0.534 0.535 0.533
T20(s) 0.614 0.61 0.613

The EDCs generated from the RIRs of the meeting room filtered in the octave bands
with noise levels of −60 dB are presented in Figure 5; the noise level estimated from the
RIRs in each frequency band for the convoluted white noise remained the same as the
noise levels of the pink noise. In this case, the knees located at the EDCs obtained using
the S–T–C method were similar in each frequency band. In addition, the largest difference
of the knee estimated at the EDCs for the pink noise and the white noise was 0.02 s in the
octave band at 2000 Hz, causing an approximately 1.5 dB difference in the dynamic EDC
ranges. However, the EDCs have a slight, but visible, deviation from the reference EDCs at
the knees, and the maximum difference of the decay level was 2 dB.

Figure 6 illustrates a comparison of the GBSS with the reference and compensation
methods for RT estimation at critical points of white and pink noise. Compared to the
reference results, the maximum deviation of the RTs for the GBSS algorithm was 0.13 s
at 2000 Hz, and the dynamic range improvement of white noise compared to pink noise
was about 2 dB. The compensation method generally produced similar results to the GBSS
algorithm. This is why the knee can be used as the endpoint for the EDCs obtained using
the compensation method, but is not adopted as the endpoint for EDCs with the GBSS
algorithm. On the other hand, the EDCs are coincidental with the reference EDCs above
the critical points positioned above the knees. At the same time, there was no apparent
deviation of the three EDCs at the critical points.
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The ranges from −5 dB to the decay levels estimated at the critical points were used
to estimate the RTs presented in Table 2. T20 was considered for comparison at a noise
level of −60 dB because the decay levels estimated at the critical points from the EDCs
with two noises were independently in the range of −26 dB to −35 dB. In contrast, T15
was used when the noise level was −50 dB. The maximum differences of EDT and T20
was 0.006 s and 0.007 s, respectively. The deviation between the de-noised EDCs and
the reference EDCs was approximately 0.01 dB. The critical points depended strictly on
the over-subtraction factor to decide the improved decay levels of the dynamic range,
and the accuracy of the produced reverberation decay rates. Over-subtraction factor α

for the segment SNR achieved the best dynamic range improvement with the best α0
value, connecting the estimated SNR at the filtered RIRs with the octave band, as shown in
Figure 7a,b. The estimated SNRs and the optimal factors applied to the situation presented
in Table 2 gave the same results. The values were 3.75 for frequency bands lower than
500 Hz when the estimated SNRs were higher than 30 and 4 for the frequency band higher
than 500 Hz when the estimated SNRs were higher than 25. Consequently, the similar
results of the two noises showed that the GBSS algorithm does not depend on the noise
type. In applying optimal factors, the processing of the noise subtraction to achieve the
best dynamic range, leading to no or minimal degradation of the reverberation decay, is
reliable for implementing the RIRs.
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Figure 7. Results of the optimal α0 for different SNRs of three filtered RIRs in octave bands with
two types of noise and various noise levels (−65 dB to −40 dB estimated in broadband RIRs).
(a,b) Optimal α0 for RIRs with noise levels −60 dB and corresponding SNRs. (c) Relationship of the
optimal α0 and SNR. (d) Dynamic range improvement.
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An extension analysis was applied to three broadband-measured RIRs with two types
of added noise (pink and white noises) at noise levels ranging from −40 dB to −65 dB.
Figure 7c shows that the optimal factors of α0 in the range of 3.75 to 5 depended on the SNR
estimated in the octave bands. The higher the SNR, the lower the over-subtraction factor
of α0. The optimal α0 for an SNR higher than 30 was 3.75, 4 for an SNR higher than 24,
and 4.25 for an SNR in the range from 10 to 24. Figure 7d shows the mean dynamic range
improvements achieved in the octave bands by applying the most reliable optimal factor of
α0, ranging from 3.75 to 4.25 for an SNR higher than 10. The dynamic range improvement
achieved for noise levels lower than −60 dB was around 15 dB to 20 dB. The dynamic
range decreased slightly with an increasing noise level, up to −40 dB, contributing to about
a 13 dB improvement in the mean dynamic range. In most cases, the reverberation decay
range could be extended to −10 dB. The deviation of the improvement was less than 2 dB,
and the mean value and deviation of the noise level reduction were approximately 9 dB
and 2.5 dB, respectively.

When the SNR is lower than 10, the applied optimal factors of α0 were higher than
4.5, and the noise levels estimated at the frequency bands were lower than 40 dB. In this
case, the mean improved dynamic range of the EDC ranged from 3 dB to 8 dB, causing the
decay range for calculating the RT to be less than 10 dB. When the noise levels were higher
than −40 dB, leading to similar poor results in the mean dynamic range improvement,
approximately 5 dB, most of the SNRs estimated in the octave band were lower than 10.
The application of the GBSS algorithm did not lead to a significant change in the dynamic
range improvement when the SNRs in the octave bands were lower than 10.

The application of the GBSS algorithm did not lead to a significant change in dynamic
range improvement when the SNRs of the octave bands were lower than 10. The optimal
factors do depend on the SNRs instead of on the steady noise types and levels. The recom-
mended spectral flooring parameter and over-subtraction factor α with different desired
α0 of the GBSS algorithm contributed to significant effects on both the dynamic range
improvement and the noise floor reduction when the SNRs were estimated at frequency
bands higher than 10. When de-noising the measured RIRs with real ambient noise, the
α0 used could be smaller than the optimal factor. A threshold of 0.25 is recommended for
lowering the risk of signal over-subtraction regarding the difference in the dynamic range
being smaller than 1 dB.

Applying the GBSS algorithm assumes that noise affects the entire spectrum of the
signal equally. Over-subtraction factor α subtracts an overestimation of noise over the
whole range. Although the noise affects the RIRs uniformly across the entire spectrum, the
energy distribution in the frequency bands varies, leading to significantly different esti-
mated SNRs of the RIRs filtered in the octave band. Thus, the factors of α0 are significantly
influenced by the SNRs in each frequency band and are estimated from the filtered noisy
RIR. Hence, setting the optimal factors of the α0 variable depends on the estimated SNR of
the original RIR filtered in frequency bands instead of applying the same constant value of
α0 for every frequency band.

4.4. GBSS Method in Measured RIRs with Natural Ambient Noise

In the preceding sections, with the fixed spectral flooring parameter, the optimal factor
α0, leading to the best dynamic range improvement, depended on the estimated SNRs
of the filtered RIRs in the frequency bands presented in Figure 7c. The optimal spectral
flooring parameter, β, depended on the averaged posterior SNR of the input signal [21,24].
Extensive experiments at noise levels higher than −40 dB were performed to set β = 0.001
at SNR >= 0 while β = 0.05 at SNR < 0. The best de-noising results were obtained using the
optimal sets of factors that were conducted in two normal rooms with real ambient noise.
In this part, the reference RIRs represent the measured RIRs with a noise level of −60 dB,
while the noisy RIRs mean the RIRs were noise levels of −40 dB and −46 dB, separately.
A detailed comparison of the GBSS algorithm with the noise compensation method and
reference RIRs in terms of the EDCs, EDT, and RTs of the measured RIRs filtered in the
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octave bands showed that the optimal factors could be valid for actual applications. The
generated EDCs at 250 Hz and 2 kHz were taken as examples to compare the results of the
EDCs given in Figure 8. The optimal factors of α0 applied for the two rooms in the octave
bands were different. The value used in room A was 4.25 because of the estimated SNRs
of the filtered RIRs in octave bands ranged from 12 to 18, and a factor of was 4 was used
for room B because the estimated SNRs of the filtered RIRs in the octave bands ranged
from 24.5 to 28. The de-noised EDCs were almost identical to the reference EDCs and the
compensated EDCs were above the critical point and are indicated by the dash–dotted
vertical line. The reverberation decay ranges were obviously extended using the optimal
factors. The mean dynamic range improvements for rooms A and B were 12 dB and 14.4 dB,
respectively. The mean noise levels reductions for rooms A and B were approximately
7.8 dB and 8.5 dB, respectively.
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Figure 8. Effects of the GBSS algorithm and compensation method of the measured RIRs filtered in
octave bands (250 Hz and 2 kHz): (a,b) comparison results for room A; (c,d) comparison results for
room B.

Table 3 lists the parameters of the EDT and RTs estimated at critical points using
the optimal factors for the two rooms, compared with the reference results. The overall
differences of the RTs estimated at the critical points, and the EDT of the frequency bands
estimated at the de-noised EDCs, were small compared to the reference RIRs and the
compensation method. The fluctuations caused by the GBSS algorithm had slight effects
on the EDCs, leading to minor deviations in the early reverberation decays. The maximum
relative errors of the EDTs for rooms A and B were 0.89% at an octave band of 500 Hz and
1.3% at an octave band of 1000 Hz, respectively. The corresponding time deviations were
0.011 s and 0.007 s, respectively. The maximum relative errors of the RT were 1.09% for
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room A at an octave band of 1000 Hz and 0.89% for room B at an octave band of 500 Hz. The
corresponding time deviations were 0.015 s and 0.007 s, respectively. A comparison with
the noise compensation method showed that the GBSS algorithm produced slightly better
results when the optimal factors were applied. The mean relative errors of the EDT and RTs
were 0.41% and 0.42% using the GBSS algorithm, respectively, whereas the corresponding
values were 0.59% and 0.48% using the noise compensation method.

Table 3. Comparison of RTs and EDT between the de-noised RIRs and the compensated RIRs.

Frequency
/Hz Parameter

Room A Room B

Reference After GBSS Compensation Reference After GBSS Compensation

125 Hz
EDT 0.859 0.86 0.854 0.754 0.749 0.748
RT 1.048 1.059 1.04 0.848 0.848 0.84

250 Hz
EDT 1.026 1.023 1.022 0.639 0.638 0.637
RT 1.31 1.309 1.311 0.836 0.84 0.837

500 Hz
EDT 1.24 1.229 1.22 0.594 0.592 0.592
RT 1.18 1.182 1.17 0.785 0.792 0.787

1000 Hz
EDT 1.408 1.404 1.4 0.54 0.533 0.533
RT 1.467 1.451 1.465 0.657 0.661 0.657

2000 Hz
EDT 1.447 1.442 1.44 0.44 0.44 0.44
RT 1.427 1.426 1.419 0.541 0.54 0.541

4000 Hz
EDT 1.314 1.311 1.309 0.371 0.37 0.37
RT 1.313 1.311 1.297 0.486 0.485 0.482

The relative errors of the RTs and EDT presented in Figure 9 showed that the optimal
factors of the GBSS algorithm had a significant impact on the RIR de-noising. Nevertheless,
the EDT calculated from the de-noised EDCs in the same octave bands were smaller than
the reference ones, which illustrated that the EDCs went below the reference EDCs, leading
to minimal degradation of the reverberation decay. The value of the factor was acceptable
because the decay rate was not degraded.
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The GBSS method with the optimal factors given in Figure 7c was valid for the
measured RIRs. Although the relative errors of the RTs and EDT estimated by the noise
compensation were within the limits and had a barely just noticeable difference [33], the
method was sensitive to the correction term, requiring sophisticated procedures for a
truncated time estimation [25]. Overall, the GBSS method is simple to implement with a
solid flexibility to adapt to random noise by adjusting the over-subtraction factors according
to the SNRs in the frequency bands instead of using a constant factor. The GBSS algorithm
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with these promising factors provides a good compromise between the noise reduction
and the distortion of the RIR for acoustic parameter estimation.

5. Conclusions

This study examined the possibility of implementing the GBSS algorithm in de-noising
RIRs to extend the reverberation decay range of the corresponding EDCs. Furthermore, a
detailed analysis of the optimal set factors of the spectral subtraction algorithm, including
the over-subtraction factor and the spectral flooring factor that could provide the most
significant dynamic range improvement in the EDCs, was performed.

In regards to the dynamic range improvement in EDCs without distorting the quality
of the RIRs, experiments were conducted in measured RIRs with artificial noise and natural
ambient noise. The optimal sets of factors for de-noising the RIRs filtered in the octave
bands by β 0.001 at SNR >= 0, and 0.05 at SNR < 0, while the over-subtraction factor α

was calculated from Equation (2). Furthermore, the factor α0 in Equation (2) depends on
the estimated SNR of the RIRs filtered in the octave band, given in Figure 7c. The results
showed that the improved dynamic range strictly depends on factor α0. If the α0 values
are lower than the optimum, a smaller dynamic range improvement compared to the best
results is provided; in this case, the level is acceptable because no degradation occurs to the
reverberation decay rate. On the other hand, if the value is too high, a loss of the original
signals that appears in the RIRs will distort the reverberation decay rates. Therefore, it
is essential to find the optimal α0 to prevent the signal over-subtraction in the de-noising
processing and minimize degradation on the reverberation decay.

The GBSS algorithm showed excellent significance in de-noising the RIRs when the
noise levels were lower than −40 dB. The optimal α0 was suggested in the range of 3.75 to
4.25 for different SNRs greater than 10. As a result, the mean dynamic ranges were
improved by approximately 13 dB and even by 20 dB. Moreover, the noise levels were
reduced by around 8 dB. When the estimated SNRs were lower than 10, the improved
dynamic range was less than 8 dB using the optimal α0 higher than 4.5, causing the EDC
estimation decay range to be less than 10 dB, which contributes fewer effects to de-noising
the RIRs regarding the dynamic range improvement. In applying the optimal sets of the
factors to real measured noisy RIRs, the estimated RTs and EDT gave a somewhat more
stable result in some cases compared to the compensation method.

Overall, the GBSS algorithm is simple to implement with substantial flexibility to
improve the dynamic range of EDCs automated by adjusting the over-subtraction factors
of α0, based on the different SNRs, instead of subtracting noise levels with a constant
estimated noise level for the entire RIRs. Moreover, the GBSS algorithm using optimal
factors has significant effects on de-noising the RIRs to extend the dynamic range of the
EDCs and decrease the estimation errors in RTs caused by the noise levels.

Further work on de-noising the RIRs addresses two aspects. First, because the GBSS
algorithm required noise to be stationary or a slowly varying process, a development of
the algorithm must be considered for real-world cases with non-stationary background
noise. Second, improving the algorithm to render musical noise perceptually inaudible by
taking into account the properties of human auditory systems should be studied.
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