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Abstract: The deviations of straight-going traffic at irregular signalized intersections lead to obvious
expansion characteristics of e-bikes. This situation increases the possibility of collisions between
motor vehicles and e-bikes. In order to study the change of expansion degree of straight-going e-bike
at irregular signalized intersections, the video trajectory extraction technology is used to obtain
relevant data of e-bikes during green light release periods at irregular signalized intersections. In
addition, we combined the flow and spacing characteristics of e-bikes and used a clustering method to
analyze the release stage and release groups. Therefore, the Group 1 of e-bikes in the early green light
release was determined to be the main research object of expansion degree. According to the static and
dynamic factors, a prediction model for the expansion degree of straight-going e-bikes at irregular
signalized intersections was established based on the beetle antennae search–back propagation (BAS-
BP) neural network model. Finally, the evaluation indexes were compared and analyzed before and
after the beetle antennae search (BAS) algorithm optimization. The results showed that the BAS-BP
neural network prediction model was better than that of the back propagation (BP) neural network.
The results could provide a theoretical reference for improving the efficiency of mixed traffic flow at
irregular signalized intersections.

Keywords: traffic safety; e-bike; irregular signalized intersection; expansion degree; BAS-BP neural
network

1. Introduction

In recent years, there have been an increasing number of e-bikes on the urban roads. As
of 2019, the global market value of e-bikes reached 57.5 billion yuan (7.475 billion euros) and
is expected to grow to 73.9 billion yuan (9.607 billion euros) in 2026. Among them, China has
more than 300 million e-bikes, ranking first in the world [1]. Due to the popularity of e-bikes,
traffic problems in cities are complex and the operation efficiency and safety of intersections
are facing challenges. In Poland, an adaptive signal control method was adopted to adjust
the length of vehicle queue [2]. In China, the number of public transportation vehicles per
10,000 persons in the city is positively associated with commuting by non-motor transport
(by walking or cycling) [3]. Moreover, contraflow left-turn lane (which dynamically uses
a portion of the opposing through lanes as additional left-turn lanes) was used to meet
the demand of left-turns [4]. However, most of the optimization strategies are only for
motor vehicle flow. The purpose of intersection signal control is to separate the traffic
conflicts in the time distribution, but it cannot completely solve the traffic conflicts in the
space distribution. Tang et al. [5] showed that the rate of accidents involving e-bikes at
intersections has been increasing year by year, especially in developing countries.

E-bike accidents are generally attributed to two causes. Firstly, at signalized intersec-
tions, e-bike riders exhibit dangerous riding behavior, leading to a much higher violation
rate of e-bikes than that of traditional bikes [6]. Secondly, due to the swinging, grouping,
and transcendence characteristics of e-bikes [7], the expansion effect is significant when
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crossing an intersection. E-bikes occupy the driving space of motor vehicles at intersections
and therefore significantly disturb the normal running of motor vehicles. Moreover, there
are many factors that affect the expansion effect of e-bikes. Wei et al. [8] reported that the
higher the speed of an e-bike, the greater the transverse distance required. In addition,
Tibor et al. [9] found that e-bikes had twice the risk of being involved in traffic accidents in
intersections as compared with conventional bikes. According to [10], the number of e-bike
accidents in Jiangsu Province accounted for about 70% of the total traffic accidents from
January to June in 2016, especially near irregular intersections. Compared with typical
signalized intersections, the traffic flow directions of irregular signalized intersections
are irregular [11]. The vehicle driving trajectory is different from that of regular signal-
ized intersections [12]. Therefore, the uncertainty of the expansion effect of e-bikes is
more obvious. The expansion effect of e-bikes is the most important release characteristic.
Qu et al. [13] studied the factors that influence the expansion effect of straight-going e-bikes
at typical intersections and determined the influence degree of different factors on the
expansion effect. Chen et al. [14] found that the number and direction of e-bikes arriving
during a red light had a significant impact on the dispersion width of left-turn e-bikes. In
addition, in intersections, the impact of e-bikes on motor vehicles has also been reflected in
the expansion effect of e-bikes. Li et al. [15] reported that e-bike riders usually set out in
advance and occupy adjacent roads. These violations have affected the normal passage of
motor vehicles. Considering this, most researchers have established simulation models to
evaluate the influence of the expansion effect of e-bikes on motor vehicles. For example,
a mixed traffic flow signal timing model that considers the advance release of e-bikes
has been established. The analysis of Gao et al. [16] showed that when the proportion of
e-bikes was 40–60%, the influence of e-bikes on the expansion of motor vehicles could be
considered to be in the signal control timing. The cellular automata model, social force
model, and particle dispersion model have often been used for the simulation of motor
vehicles and e-bikes [17–19]. The influence of e-bikes on motor vehicle traffic has been
evaluated by simulating the running track of e-bikes and the interaction characteristics
with motor vehicles at a typical signalized intersection.

However, scenarios of irregular signalized intersections have not been considered in
previous studies. Since the intersection angle of an irregular signalized intersection is a
non-right-angle, the trajectory of traffic flow in each direction deviates and the expansion
effect of e-bikes is particularly prominent. The main purpose of this study is to study
the expansion effect of straight-going e-bikes at irregular signalized intersections. The
specific focus of this study is the flow and spacing of e-bikes during the green light release
period at irregular signalized intersections. Furthermore, the concept of expansion degree
is introduced based on a clustering method. Finally, the beetle antennae search–back
propagation (BAS-BP) neural network model is established to predict the expansion degree
of e-bikes going straight at irregular signalized intersections. This study can provide
theoretical guidance for the channelization design of irregular signalized intersections and
e-bike control.

2. Experimental Design and Data Analysis
2.1. Data Collection

We select the intersection at Nanjing Longpan Road and Bancang Street and the
intersection at Shanghai Road and Huaqiao Road as the research object. Two irregular
signalized intersections that are selected have a heavy flow of straight-going e-bikes and a
right-turn lane. A Da-Jiang Innovation (DJI) Phantom 4 is used to shoot video at an altitude
of about 50 m above the intersection. Relevant parameters of the unmanned aerial vehicle
(UAV) are shown in Table 1.
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Table 1. The specific parameters of the DJI Phantom 4.

Equipment Name Specific Technical Parameters

Aircraft

Hover precision Vertical: ±0.1–±0.5 m
Level: ±0.3–±1.5 m

Maximum speed of rise 6 m/s
Maximum rate of descent 4 m/s

Maximum horizontal flight speed 20 m/s
Satellite positioning module GPS/GLONASS

Camera
Pixel 1/2.3 of an inch CMOS, 12.4 million effective pixels

Shot FOV94◦ 20 mm (35 mm format equivalent) f/2.8
Focal point infinity

Cloud platform Controllable rotation range Pitch angle −90◦–+30◦

Stable system 3-axis (pitch, roll, and yaw)

Other parameters

Operating temperature −10 ◦C–40 ◦C
Operating frequency 2.4 GHz ISM

Cell voltage 15.2 V

System version requirements for mobile devices iOS 8.0 and above
Android 4.1.2 and above

The survey time is the morning and evening peak hours from 22 December 2020 to 29
and 30 March 2021. The total duration of the survey is 6 h. A total of 97 cycles of green
light data are obtained. The geometrical characteristic parameters of the intersections are
shown in Figure 1 and Table 2.
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Figure 1. A diagram of the intersection: (a) the intersection at Longpan Road and Bancang Street;
(b) the intersection at Shanghai Road and Huaqiao Road.

Table 2. Survey site-related characteristic parameters.

Intersection Driving
Directions Survey Time The Green

Light Time
Angle of

Declination
Space

Situation

Across
the Street

from

The intersection of
Longpan Road and

Bancang Street

Northwest to
southeast

22 December 2020,
7:30–8:30, 17:30–18:30 38 s 19◦ None 137 m

Southwest to
northeast

29 March 2021,
7:30–8:30, 17:30–18:30 35 s 8◦ Treelawn 65 m

The intersection of
Shanghai Road and

Huaqiao Road
Southwest to east 30 March 2021,

7:30–8:30, 17:30–18:30 35 s 27◦ Rail fence 79 m

Note: Deflection angle refers to the angle that the driving direction of the intersection deviates from the driving track of straight-going
vehicles at the conventional intersection.
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The expansion degree of e-bikes is mainly shown in the lateral offset distance when
the vehicle passes an intersection [13]. To facilitate the description of this characteristic, the
maximum width of the in-line deviation from the driving direction of an e-bike during
green light release was taken as the expansion degree of the e-bike. It is positive when it is
toward the motor vehicle space, and negative when it is on the other side.

Next, the video is imported into the Tracker and the coordinate system is set. The
X-axis is the middle line of the e-bike from the stop line to the exit road. The Y-axis
is perpendicular to the X-axis. The origin is the position of the stop point. Therefore,
the change in position parallel to the X-axis represents the straight-line travel distance
of the e-bike from the stop line to the exit road. The change of position parallel to the
Y-axis represents the distance of the e-bike from the center of the road (expansion). The
tracker software is used to collect the position coordinate information of each e-bike at
every moment (1 s) during the green light release period. A total of 2386 e-bike tracks are
collected. Taking the intersection of Longpan Road and Bancang Street as an example, the
coordinate system is shown in Figure 2.
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Figure 2. Schematic diagram of the expansion degree of a straight-going e-bike at an irregular
signal intersection.

2.2. Determination of the Release Stage

Through field observations, it is found that the discharge of e-bikes during the green
light release period presents a relatively obvious stage characteristic. Among different
release stages, there is a stage in which the degree of expansion changes rapidly (i.e., not
every release stage has a significant degree of expansion), which has a great influence on
motor vehicle flow. At the same time, in each release stage, the release group of e-bike also
presents different changes. Some release groups are always in a large state of expansion
when they pass through irregular signalized intersections, while some release groups of
e-bikes are almost travelling along the median line. In order to determine the release
stage and group with the obvious expansion degree of straight-going e-bikes at irregular
signalized intersection, the flow and spacing changes of e-bikes are selected as indicators
for comprehensive analysis.

The green cycle duration of the three entry lanes at the irregular signalized intersec-
tions is 35, 35, and 38 s, respectively, and 5 s is used as the time interval. The flow of e-bikes
in each time interval during the green light release period of three straight entry lanes is
sequentially counted as shown in Figure 3.



Appl. Sci. 2021, 11, 6852 5 of 14Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 14 
 

   
(a) (b) (c) 

Figure 3. Straight flow profile of entrance road: (a) Longpan Road and Bancang Street intersection of the northwest en-
trance road; (b) Longpan Road and Bancang Street intersection of the southwest entrance road; (c) Shanghai Road and 
Huaqiao Road intersection of the southwest entrance road. 

The flow of e-bikes gradually decreases with an increase in time during the seven 
time intervals of the green light release period. After 15 s, the flow tends to be stable in 
the time interval. The flow data remained between 2 and 4 veh/s. The flow data of 0–5 s 
and 5–10 s are distributed at a higher position than those of other time intervals. Its me-
dian value is around 10 veh/s and can reach as high as 14 veh/s. According to the statistics, 
the flow and the total flow of the three inlet channels in the time period of 0–15 s are more 
than 70% of all the flow. It can be seen that the discharge of e-bikes during the green light 
period is mainly concentrated in the first 15 s. 

The K-means clustering method is used to further analyze the spacing variation of 
straight-going e-bikes during the green light release period. The position of the e-bike is 
drawn in the coordinate system at a time interval of 1 s. The establishment standard of the 
coordinate system can be seen in Figure 2. Each dot represents an e-bike. The clustering 
coefficients are k = 2, 3, and 4. The change of the spacing of the e-bikes in different clusters 
at each moment was analyzed, and the stage of straight-going e-bike was the most obvious 
when k = 3. Therefore, straight-going e-bikes are divided into three subgroups to deter-
mine the release group with the most obvious expansion degree. We take the spacing 
change of the green light release period of the northwest entrance road at the intersection 
of Longpan Road and Bancang Street as an example, as shown in Figure 4. 

      

      

Figure 3. Straight flow profile of entrance road: (a) Longpan Road and Bancang Street intersection of the northwest entrance
road; (b) Longpan Road and Bancang Street intersection of the southwest entrance road; (c) Shanghai Road and Huaqiao
Road intersection of the southwest entrance road.

The flow of e-bikes gradually decreases with an increase in time during the seven time
intervals of the green light release period. After 15 s, the flow tends to be stable in the time
interval. The flow data remained between 2 and 4 veh/s. The flow data of 0–5 s and 5–10 s
are distributed at a higher position than those of other time intervals. Its median value is
around 10 veh/s and can reach as high as 14 veh/s. According to the statistics, the flow
and the total flow of the three inlet channels in the time period of 0–15 s are more than 70%
of all the flow. It can be seen that the discharge of e-bikes during the green light period is
mainly concentrated in the first 15 s.

The K-means clustering method is used to further analyze the spacing variation of
straight-going e-bikes during the green light release period. The position of the e-bike is
drawn in the coordinate system at a time interval of 1 s. The establishment standard of the
coordinate system can be seen in Figure 2. Each dot represents an e-bike. The clustering
coefficients are k = 2, 3, and 4. The change of the spacing of the e-bikes in different clusters
at each moment was analyzed, and the stage of straight-going e-bike was the most obvious
when k = 3. Therefore, straight-going e-bikes are divided into three subgroups to determine
the release group with the most obvious expansion degree. We take the spacing change of
the green light release period of the northwest entrance road at the intersection of Longpan
Road and Bancang Street as an example, as shown in Figure 4.
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Bancang Street.

From Figure 4, in 0–4 s, the flow of e-bikes is minimal during the green light release
period of the northwest entrance road at the intersection of Longpan Road and Bancang
Street. In combination with actual video observations, it may be caused by two factors. On
the one hand, some e-bike riders illegally pass beyond the stop line. This will cause them to
start moving forward through the intersection when the green lights start. This represents
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a minority of e-bike riders. On the other hand, illegal riders who stop outside the stop line
take up the space freed up by queuing vehicles. E-bikes take time to start up. Therefore,
only when the front waiting for the e-bike has been passed can the rear line of e-bike pass.
In 5–14 s, the flow of the e-bike starts to increase. This is due to the mass of e-bikes in front
of the stop line constantly moving forward through the intersection. After 15 s, although
the flow of e-bikes gradually increases, the total flow of e-bikes decreases significantly as
compared with that of 0–14 s. According to the observation, this is because the first batch
of e-bikes that start earlier pass through the intersection in about 15 s. Therefore, this part
of the e-bike has been cleared out of the coordinate axis. After the 15 s, e-bikes mainly pass
through the intersection in the form of individuals. This conclusion is consistent with the
above analysis results that the discharge of e-bikes during the green light period is mainly
concentrated in the first 15 s. The time cut-off point of the comprehensive analysis is 14 s.
The moment when the flow of e-bikes dropped is used as a node to distinguish the phase
of the flow of e-bikes. Thus, the flow of e-bikes can be divided into two stages during the
green light release period. Zero to fourteen seconds is the initial stage of release. In this
stage, e-bikes show group release and the overall expansion degree is obvious.

Furthermore, the release group category of straight-going e-bike is analyzed. Cluster-
ing results show that the position of e-bike in Group 1 has a wide range of expansion in the
green light release period and is relatively scattered. This is because Group 1 is released at
the early stage, and it quickly occupies the intersection space with the advantage of quick
start. The variation range of the expansion degree of Group 2 is relatively concentrated
and presents a stable distribution state. Group 2 follows Group 1 closely and is subject to
changes in the position of Group 1. In addition, behind Group 2 is Group 3, which is in the
state of “front and back attack”. Therefore, the expansion degree of Group 2 changes in a
small and stable range. The expansion degree of Group 3 shows a smaller change in the
form of contraction because Group 3 is mainly composed of individual e-bikes users who
do not need to wait for the signal light to pass the intersection directly. At this time, the
motor vehicle flow continues to move forward, which limits the change of the expansion
degree of Group 3.

Therefore, taking the northwest entrance road of the intersection of Longpan Road
and Bancang Street as an example, the Group 1 of e-bikes in the green light release period of
0–14 s at the intersection is selected as the research object to analyze the expansion degree.
Using the same method, it can be determined that 0–15 s and 0–17 s are relatively obvious
overall expansion degrees of e-bikes at the southwest entrance road of the Longpan Road
and Bancang Street intersection and the southwest entrance road of the Shanghai Road and
Huaqiao Road intersection. The Group 1 of e-bikes is also taken as the research object with
a total of 377 sets of data.

3. Degree of Expansion of E-Bike

The beetle antennae search (BAS) algorithm was first proposed in 2017 [20]. It is a
new algorithm for multi-objective function optimization based on the longicorn foraging
principle, and it can be used to optimize the weight and threshold of a BP neural network
to realize the automatic optimization process [21]. Compared with the traditional back
propagation (BP) neural network, the BAS-BP neural network optimizes weights and
thresholds in the input layer, output layer, and hidden layer structure, which overcomes
the problems of poor stability and easily falls into the local optimum of the BP neural
network [22]. The diagram of the longicorn beetle and the optimization structure of the
BAS-BP neural network were shown in Figures 5 and 6, respectively. The main steps of the
algorithm are as follows:
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Figure 5. The diagram of the longicorn beetle. (Source: the Baidu website).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 14 
 

 
Figure 5. The diagram of the longicorn beetle. (Source: the Baidu website). 

The weights and thresholds of 
initial BP neural network

Update the left and right 
antennas position of longicorn

Update longicorn position

Calculate the fitness function 
value

the value of the 
best fitness function

Update the step size 
and distance

Obtain the optimal weights and 
thresholds

YES

NO

 
(a) (b) 

Figure 6. Schematic diagram of the optimization structure of the BAS-BP neural network: (a) BAS algorithm optimization; 
(b) neural network structure. 

3.1. Model Establishment 
Step one: The foraging behavior of longhorn beetles is extended to D dimensional 

space. It can correspond to a D dimensional optimization problem. D represents the num-
ber of initial weights and thresholds. The calculation formula of spatial dimension D is 
shown in Equation (1). We assume that the centroid coordinate of longicorn beetle is x; 
the left and right antennae of longicorn beetle are xl and xr, respectively; and the distance 
between the two antennae is l. 𝐷 =  𝑚 · 𝑞 +  𝑞 · 𝑛 +  𝑞 +  𝑛 (1)

where 𝑚 stands for number of neurons in the input layer, 𝑞 represents the number of 
hidden layer neurons, and 𝑛 represents the number of neurons in the output layer. 

Step two: The direction of the longicorn beetle is random after each step forwards. 
The direction of its left and right antennae is also random. The D dimensional unit random 
vector is established to represent the direction of antennae of longicorn beetle. 

( ),1
( ,1)

rands D
b

rands D
=

 

 (2)

where 𝑟𝑎𝑛𝑑𝑠 stands for random functions, 𝐷 represents the spatial dimension of the left 
and right antennae, and its calculation method is shown in Equation (1). The number “1” 
means to generate a random vector. 

Input layer Hidden layer

BAS algorithm 
optimization

Weights and thresholds

Output layer

i

m

k

q

j

n

x1 

xi 

xm

wki wjk

y1

yj

yn

1 11

Figure 6. Schematic diagram of the optimization structure of the BAS-BP neural network: (a) BAS algorithm optimization;
(b) neural network structure.

3.1. Model Establishment

Step one: The foraging behavior of longhorn beetles is extended to D dimensional
space. It can correspond to a D dimensional optimization problem. D represents the
number of initial weights and thresholds. The calculation formula of spatial dimension D
is shown in Equation (1). We assume that the centroid coordinate of longicorn beetle is x;
the left and right antennae of longicorn beetle are xl and xr, respectively; and the distance
between the two antennae is l.

D = m·q + q·n + q + n (1)

where m stands for number of neurons in the input layer, q represents the number of hidden
layer neurons, and n represents the number of neurons in the output layer.

Step two: The direction of the longicorn beetle is random after each step forwards.
The direction of its left and right antennae is also random. The D dimensional unit random
vector is established to represent the direction of antennae of longicorn beetle.

→
b =

rands(D, 1)
‖ rands(D, 1) ‖ (2)

where rands stands for random functions, D represents the spatial dimension of the left
and right antennae, and its calculation method is shown in Equation (1). The number “1”
means to generate a random vector.
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Step three: Set up left and right antennae spatial coordinates as follows: xrt = xt + l0·
→
b /2

xlt = xt − l0·
→
b /2

(t = 0, 1, . . . , i) (3)

where xrt is the right antennae coordinate of the tth iteration, xlt is the left antennae
coordinate of the tth iteration, xt is the centroid coordinate for the tth iteration, and l0 is the
distance between the two antennae.

Step four: The left and right moves are judged by a fitness function. The mean square
error (MSE) of test data is used as the fitness evaluation function to promote a spatial search.
It is shown in Equation (4). MSElt represents the fitness function value obtained after the
algorithm running when the initial weight and threshold value of the solution t are xlt and
MSErt represents the fitness function value obtained after the algorithm running when the
initial weight and threshold value of the solution t are xrt. MSElt and MSErt are used to
represent the fitness function of the left and right antennae of the longhorn beetle for the
tth iteration, respectively, to judge the moving position of the longhorn beetle. When the
iteration of the algorithm stops, the position where the fitness function value is the smallest
is the optimal solution:

MSE =
1
N

N

∑
i=1

(yt
sim − yt)

2 (4)

where N is the number of samples in the training set, yt
sim is the output value of the tth

sample model, and yt is the actual value of the tth sample.
Step five: Iterate to update the position of longicorn beetles. If MSElt < MSErt,

longhorn would move to the left of the specified step length. If MSElt > MSErt, longhorn
would move to the right of the specified step length. Therefore, it can be uniformly defined
by the sign function in Equation (5)

xt+1 = xt − δt·
→
b ·sign(MSErt −MSElt) (5)

where δt is the step size factor at the tth iteration and its calculation method is shown in
Equation (6)

δt+1 = δt·β, t = 0, 1, 2, . . . , i (6)

where β is a value in the range [0, 1] and close to 1. In this paper, β = 0.95. Additionally, the
linear decreasing weight strategy is used to determine the initial step size, and the initial
step size is 2.

The step size factor is used to control the searching ability of longhorn beetle. There-
fore, the initial step size is selected as large as possible to ensure that the current search
area is covered. The calculation formula for step size factor is shown in Equation (6).

Step six: Save the initial centroid coordinates and fitness function values as Xbest and
Fbest, respectively. Xbest and Fbest represent the positions of the best longicorn centroid
and the value of the best fitness function. Then, calculate the fitness function value of the
current centroid coordinate. If the fitness function value is less than Fbest, then update Fbest
and Xbest. The algorithm runs until the number of iterations is reached. The value of Xbest
is substituted into the BP neural network model as the optimal weight and threshold value.
In the paper, the number of iterations is set as i = 100.

The influencing factors of the expansion degree of e-bikes include static factors (re-
lated attributes of the intersection) and dynamic factors (motor vehicle flow, e-bike flow,
speed) [23,24]. Through actual observation, the deviation angle of the intersection with an
irregular signal, machine separation setting, and crossing distance are selected as static
factors. In addition, the average speed, flow rate, and motor vehicle flow rate of e-bikes are
used as dynamic factors to analyze the expansion degree of e-bikes.

On the basis of the influence of dynamic and static factors on the expansion degree of
e-bikes, we select six indexes as input variables: the deviation angle of irregular signalized
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intersection, crossing distance, machine separation setting, flow rate of straight-ahead motor
vehicles, flow rate of straight-ahead e-bikes, and average speed. Machine non-separation
is set as dummy variable, 0 represents inorganic non-separation, 1 represents green belt
separation, and 2 represents fence separation. Expansion is taken as the output variable.

The number of hidden layer neurons has a significant influence on the performance
of the neural network [25]. When the hidden layer neuron is more than 2, the nonlinear
function can be fitted. The relationship between the six variables and the degree of ex-
pansion is nonlinear, and the number of neurons in the hidden layer affects the imitative
effect. Theoretically, the more neurons in the hidden layer, the stronger the ability to fit the
function. However, excessive number of hidden layer neurons will cause the problem of
overfitting in practice. Empirical Equation (7) is used to calculate the reasonable range of
the number of neurons in the hidden layer. In the neural network model, the neuron of
input layer is 6 and the neuron of output layer is 1. The values of hidden layer neurons
ranged from 4 to 12 by Equation (7) (the empirical formula for the number of neurons in
the hidden layer, where a is the regulation parameter). The RMSE value under the number
of each neuron is compared successively, and the optimal number of hidden layer neurons
is finally selected as 5. The neural network structure is shown in Figure 7.

h =
√

m + n + a (7)

Here, h represents the number of hidden layer neurons, m represents the number of
input layer neurons, n represents the number of neurons in the output layer, and a is a
regulation constant between 1 and 10.
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The structure of the neural network model is 6-5-1, and the dimension D of search
space of the BAS algorithm is 41 (the number of weights is equal to 35 and the number of
thresholds is equal to 6). The optimal weights of connected neurons are obtained by BAS
algorithm, and 10-times-repeated tests are used to ensure the stability of the model.

3.2. Model Evaluation

Two indexes of RMSE and mean relative error (MRE) are selected as the evaluation
indexes of the performance of the prediction model. MRE is the ratio of the absolute error
of prediction to the true value. The smaller MRE is, the better the model performance is.
RMSE can reflect the absolute deviation between the predicted value and the target value
and is used to evaluate the degree of change of the model [26]. The calculation formulas
are as follows.

MRE =

∣∣y′i − yi|
yi

(i = 1, 2, . . . , N) (8)
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RMSE =

√
1
n

n

∑
i=1

(y′i − yi)2 (9)

where yi is the true value and y′i is the predicted value.

3.3. Results and Discussion

In order to ensure the validity of the model, 377 sets of data are divided into training
sets and test sets according to the ratio 7:3 by the set aside method. The code for the BP
neural network and the BAS-BP neural network is written and operates by Matlab (version
R2014a). The results of 10 repeated runs are used to improve the prediction accuracy. The
fitting results of the training and test sets of the BP neural network model and the BAS-BP
neural network model are shown in Figures 8 and 9, respectively.
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According to the running results, the overall trend of the model prediction curve
optimized by the BAS algorithm is closer to the real value. Compared with the BP neural
network, the difference between the predicted value and the true value of the BAS algorithm
optimizes the prediction model curve. Additionally, it has a smaller fluctuation rang. The
overall effect is good.

From Table 3, the average relative errors of the training sets of the BP neural network
model and the BAS-BP neural network model are 0.95 and 0.76, respectively. The average
relative errors of the test sets are 0.94 and 0.75, respectively. RMSE values of the training set
are 5.27 and 4.22, respectively. RMSE values of the test sets are 5.60 and 4.38, respectively.
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Table 3. Evaluation results of the model.

Times

MRE RMSE

Training Set Testing Set Training Set Testing Set

BP BAS-BP BP BAS-BP BP BAS-BP BP BAS-BP

1 0.92 0.81 0.91 0.78 5.06 4.35 4.79 4.33
2 0.89 0.73 0.82 0.6 4.73 4.22 5.74 4.43
3 1.04 0.81 0.74 0.78 5.33 4.35 5.09 4.33
4 1.15 0.74 0.99 0.75 6.12 4.28 6.39 4.42
5 0.83 0.77 0.94 0.79 4.89 4.3 5.28 4.36
6 0.98 0.73 0.96 0.81 5.82 4.12 6.04 4.78
7 0.89 0.76 1.05 0.81 5.05 4.41 5.85 4.16
8 0.96 0.8 0.99 0.74 5.26 4.43 5.97 4.49
9 0.91 0.72 1.05 0.75 5.1 3.92 5.48 4.09
10 0.89 0.71 0.91 0.73 5.29 3.82 5.39 4.4

AVE. 0.95 0.76 0.94 0.75 5.27 4.22 5.60 4.38

At the same time, according to the variation of fitness curve, the BAS-BP neural net-
work converge faster and reach the MSE optimum at about the 20th iteration. Therefore,
as compared with the BP neural network expansion prediction model, the BAS-BP neural
network performs better in MRE, RMSE. It shows that the BAS-BP model has good appli-
cability for predicting the expansion degree of e-bikes at irregular signalized intersections.
When the expansion degree of straight-going e-bikes at irregular signalized intersections is
predicted to be large, traffic organizing strategy (such as advance release of e-bikes) can
be optimized. Additionally, channelization layout (such as physical isolation of motor
vehicles and e-bikes) can be adjusted. All these measures can reduce the impact of e-bike
expansion degree on motor traffic flow.

4. Conclusions

In this paper, the expansion degree variation of straight-going e-bikes at irregular
signalized intersections was studied. Firstly, the flow characteristics of straight-going e-
bikes during a green light release period were analyzed. Then, K-means clustering method
was used to analyze the spacing variation of the straight-going e-bike. The release stage
and release group were determined according to the characteristics of flow and spacing.
Finally, a prediction model for the expansion degree of straight-going e-bikes at irregular
signalized intersections was proposed based on the BAS-BP neural network. RMSE and
MRE were selected to compare the performance of the prediction model before and after
BAS algorithm optimization. Conclusions were drawn as follows.

(1) The straight-going e-bike at irregular signalized intersections could be divided
into two release stages and three release groups during the green light release period. At
the initial stage of release, the flow rate of the e-bike was higher and the expansion degree
varies widely. Additionally, the expansion degree of Group 1 changed obviously.

(2) In terms of predicting the expansion degree of straight-going e-bikes at irregular
signalized intersections, the prediction model of BAS-BP neural network was obviously
better than that of BP neural network. MRE of BAS-BP neural network prediction model
and BP neural network prediction model were 0.75 and 0.94, respectively. The accuracy of
MRE was improved by about 25.3%. RMSE of BAS-BP neural network prediction model
and BP neural network prediction model were 4.38 and 5.60, respectively. The accuracy of
RMSE was improved by about 27.9%.

The expansion degree of straight-going e-bikes at irregular signalized intersections
was the research object of this paper. However, the expansion degree of left-turn and
right-turn e-bikes at irregular signalized intersections could be studied in the future.
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