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Abstract: Thoracic endovascular aortic repair (TEVAR) is a life-saving therapy for type B aortic
dissection (TBAD). However, surveillance computed tomography (CT) scans in post-TEVAR patients
are associated with high radiation dose, thus resulting in potential risk of radiation-induced malig-
nancy. In this study, we developed a patient-specific three-dimensional (3D) printed phantom with
stent grafts in situ, then scanned the phantom with different CT protocols to determine the optimal
scanning parameters for post-treatment patients. The CT scans were conducted with different kVp
and pitch values (80, 100, 120 kVp and pitch of 1.2, 1.5, 2.0, 2.5), resulting in a total of 12 datasets.
Signal-to-noise ratio (SNR) was measured to determine and compare the image quality between
different datasets. Results showed no significant differences in SNR between different kVp when
the pitch value was 1.2. At low pitch values, a decrease in kVp from 120 to 80 led to a significant
effective dose reduction by more than 20%. SNR decreased by 30% when pitch was increased from
1.2 to 2.5 at 80 kVp, and 20% at 120 kVp. In contrast, there was only a 3.9% decrease in SNR when
kVp was reduced from 120 to 80 at pitch 1.2, and 15.9% at pitch 2.5. High pitch with 100 kVp can
effectively reduce the dose while maintaining image quality.

Keywords: three-dimensional printing; type B aortic dissection; cardiovascular disease; endovascular
aortic repair (EVAR); computed tomography angiography (CTA); dose reduction

1. Introduction

Thoracic endovascular aortic repair (TEVAR) can be a life-saving therapy for treating
aortic disease. Compared to open surgical repair, TEVAR is a valid therapeutic option for
type B aortic dissection (TBAD) because of its lower mortality, morbidity, and paraplegia
rate in the past decade [1–3]. However, management algorithms remain controversial and
long-term follow up is required to determine outcomes and reintervention rates [4–7].

Computed tomography angiography (CTA) is currently the preferred imaging modal-
ity for diagnosis, treatment planning, and follow up for AD patients. With improved spatial
and temporal resolution available with modern computed tomography (CT) scanners, CTA
plays an important role in the diagnosis and follow up of aortic dissection (AD) [8,9].
However, the high radiation dose associated with CTA is still a concern for the well-being
of patients [10–12]. To monitor patients after TEVAR, the pursuit of high-resolution and
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higher-quality images may bring unnecessary radiation doses. Therefore, it is necessary to
reduce the radiation dose while maintaining the quality of CT images.

Finding a balance between image quality and radiation risk has always been a chal-
lenging issue in achieving optimal scanning protocols. A number of studies describe
different strategies to lower the radiation dose including the use of iterative reconstruction
(IR) for reducing image noise, use of low tube kilovoltage peak (kVp), and use of high-pitch
protocols with fast speed CT scanners [13–15]. Despite these studies providing promising
results, research is still limited with regard to the reduction of radiation dose for aortic
dissection patients who require repeat scanning for many years.

Compared with preoperative planning when detail is paramount, postoperative pa-
tients could receive a lower dose for routine follow-up examinations to reduce cumulative
radiation dose. Thus, the purpose of this study was to investigate the optimal CTA pro-
tocols for surveillance of TBAD patients after EVAR. We employed a patient-specific
three-dimensional (3D) printed TBAD model with a stent-graft TEVAR in situ.

Patient-specific 3D printed phantoms have been proven to be valuable in multiple
medical applications [16–21]. In our previous study, we described how we developed a
patient-specific 3D printed TBAD aortic model, and confirmed its accuracy in resembling
the mechanical and radiological properties of in vivo imaging under CT scanning modali-
ties [22]. In this study, we extended our application of a 3D printed aorta model to focus
on the study of optimal CT protocols by deploying a bespoke stent graft inside the true
lumen of the AD aorta model to simulate the TEVAR process, and then scanning the model
with different CT protocols.

2. Materials and Methods

Suitable patient data and materials were required for the preparation and implemen-
tation of the 3D printed aorta model used in the study. These components were identified
and then utilized as per the methods outlined in the following sections.

2.1. Selection of Sample Case and Segmentation

Contrast-enhanced CT (CECT) image data of 11 patients who had TBAD were de-
identified and retrieved from public hospital records between November 2015 and March
2016 after ethics approval (Curtin Human Research Ethics (HRE) Committee, approval
number: HRE2018-0087). One of the patient datasets (CECT performed on a 128-slice CT
with 120 kVp tube potential, 128 reference mAs, and 1.0 mm reconstructed slice thickness)
was selected due to high image quality and contrast medium being present in the false
lumen, allowing for identification of the aortic shape. The selected CT image dataset
was imported into 3D Slicer (Version 4.9.0, www.slicer.org accessed on 26 July 2021; MA,
USA) to proceed with segmentation. The chosen segment had a perfect description of
both lumens and intimal flap and the border of the aortic wall could be clearly identified
(Figure 1). After segmentation, a 3D outer surface reconstruction model was generated.
Post-processing of the 3D reconstruction model was necessary to ensure model integrity
and printing success including checking the thickness, filling of defects (for example, holes
inside the models, discontinuous surfaces), and surface smoothing. The 3D reconstruction
model was transferred into the stereolithography (STL) format for post cleaning and pre-
print checking. The final model was directly ordered from the online customer service of
3D Systems Inc. (Valencia, CA, USA).

www.slicer.org
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the need for imaging and contrast. This would enable good vision of intravascular struc-
tures and be useful in academic applications. However, a transparent elastomer printing 
material was not available from commercial companies, therefore, a translucent material 
was the next best option. After scanning samples of several available materials with the 
current clinical thoracic CTA protocol, one of the materials, Visijet CE-NT (3D systems 
Inc., Wilsonville, OR, USA), was selected as it had the same radiological properties to in 
vivo aorta [22]. The reason for choosing Visijet CE-NT is due to the following reasons: 
first, it is a rubber-like material suitable for printing aorta-like models. Second, it has a 
light yellow and translucent appearance allowing for visualization of the deployed stent 
grafts inside the aorta. Third, the Visijet CE-NT material has two different hardnesses, A30 
and A70, with A30 having a tensile strength between 0.2 and 0.4, which is close to elderly 
cardiovascular tissue properties. Finally, our recent study confirms that Visijet CE-NT A30 
is the most appropriate material for printing aorta models because its CT attenuation is 
similar to that of the contrast-enhanced CT images of aortic dissection [22]. 

2.3. Deployment of Stent Graft 
Three commercially available thoracic stent grafts (Medtronic) were deployed into 

the model after planning and sizing by an experienced vascular surgeon. The proximal 
piece deployed into the arch to cover the subclavian artery measured a length of 150 mm 
and diameter tapering from 42 to 38 mm, which was placed in the aortic arch. The second 
overlapping piece was 90 mm long by 31 mm in diameter. The final distal piece measured 
94 mm in length and 25 mm in diameter (Figure 2). 

Figure 1. A 3D printed model was produced by the following five steps: image acquisition, image segmentation, surface
mesh generation, stereolithographic (STL) post-processing, and printing.

2.2. Selection of 3D Printing Materials

The selection of a suitable printing material depends on three considerations: the me-
chanical properties, radiological properties, and transparency. To represent the mechanical
properties of the human aorta, the material of the model must have similar flexibility and
elasticity. The tensile strength in elderly patients with cardiovascular disease should be
around 0.39 MPa and have a modulus of elasticity of 0.628 [23]. The elongation at breaking
point of the aorta is around 82% to 140% and the hardness is between Shore A12 and A18
throughout the ascending, descending, and abdominal aorta [24].

Based on our previous study, we chose four different 3D printing materials that had
mechanical properties close to that of patients with aortic dissection [22]. In terms of
transparency, a completely transparent model would enhance stent graft deployment
without the need for imaging and contrast. This would enable good vision of intravascular
structures and be useful in academic applications. However, a transparent elastomer
printing material was not available from commercial companies, therefore, a translucent
material was the next best option. After scanning samples of several available materials
with the current clinical thoracic CTA protocol, one of the materials, Visijet CE-NT (3D
systems Inc., Wilsonville, OR, USA), was selected as it had the same radiological properties
to in vivo aorta [22]. The reason for choosing Visijet CE-NT is due to the following reasons:
first, it is a rubber-like material suitable for printing aorta-like models. Second, it has a
light yellow and translucent appearance allowing for visualization of the deployed stent
grafts inside the aorta. Third, the Visijet CE-NT material has two different hardnesses, A30
and A70, with A30 having a tensile strength between 0.2 and 0.4, which is close to elderly
cardiovascular tissue properties. Finally, our recent study confirms that Visijet CE-NT A30
is the most appropriate material for printing aorta models because its CT attenuation is
similar to that of the contrast-enhanced CT images of aortic dissection [22].

2.3. Deployment of Stent Graft

Three commercially available thoracic stent grafts (Medtronic) were deployed into
the model after planning and sizing by an experienced vascular surgeon. The proximal
piece deployed into the arch to cover the subclavian artery measured a length of 150 mm
and diameter tapering from 42 to 38 mm, which was placed in the aortic arch. The second
overlapping piece was 90 mm long by 31 mm in diameter. The final distal piece measured
94 mm in length and 25 mm in diameter (Figure 2).
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Figure 2. Stent graft deployed in the 3D printed model. (A) Deployed stent graft visible through model wall. (B) Axial view
from proximal arch. (C) Caudal view down arch vessels.

2.4. Aortic CTA Scanning Protocols

The 3D printed TBAD model was placed in a plastic container that was filled with
a contrast medium to simulate CECT examinations. Due to the flexibility of the model,
air bubbles inside the model were expelled by aspiration via a syringe (Figure 3). The
iohexol contrast medium OmnipaqueTM 350 (GE Healthcare Australia Pty Ltd., New South
Wales, Australia), which is routinely used in contrast-enhanced CT scans, was diluted to
7% with a resulting CT attenuation of 300 HU, similar to that of routine CECT. The model
was scanned by a 192-slice CT scanner (Siemens Force, Siemens Healthcare, Forchheim,
Germany). The CECT scans were conducted with different kVp and pitch values (80, 100,
120 kVp and pitch of 1.2, 1.5, 2.0, 2.5), resulting in a total of 12 datasets. A slice thickness
of 1.0 mm with a 0.5 mm reconstruction interval was applied to all images. An iterative
reconstruction technique was used (advanced modelled iterative reconstruction (ADMIRE)
algorithm with level 3, Siemens Healthcare) and a tissue convolution kernel of Bv40.

2.5. Quantitative Assessment of Image Quality

In order to determine the image quality in these CTA protocols, the image quality
was quantitatively evaluated by measuring the signal-to-noise ratio (SNR) of the proximal
and middle descending aorta. Regions of interest (ROI) were placed in the true and false
lumens with an area of 25 mm2 (containing at least 300 voxels) to measure SNR. Figure 4
shows the ROI measurement of SNR in the aorta of the model. To minimize the difference
between observers, the SNR measurement was repeated three times at each location, and
the average value was used to minimize the difference between observers, and the average
value between two observers was used as the final result.

2.6. Radiation Dose

The volume CT dose index (CTDI vol) and dose length product (DLP) were recorded
and compared between different CTA scanning protocols. The effective dose was calculated
using a tissue conversion coefficient of 0.014 mSv/mGy/cm, which is commonly used for
the calculation of chest CT dose [25].
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Figure 3. The CT scans were performed on the post stent graft deployed aorta model with different scanning protocols.
(A) The model placed in a customized acrylic box for scanning. (B) The process of using the syringe to extract the internal
air bubbles after pouring the contrast. (C) The final model ready to be scanned.
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2.7. Statistical Analysis

All data were imported into SPSS 26.0 (IBM Corporation, Armonk, NY, USA) for
statistical analysis. A paired sample t-test was used to determine whether there were any
significant differences in SNR measured with different CPA protocols. A P value of less
than 0.05 indicated a statistically significant difference.

3. Results

Different CTA imaging protocols were successfully tested on the 3D printed model.
All measurements were performed by two observers, with excellent correlation between
the observers. Table 1 shows the SNR measurements at images acquired with different CTA
protocols. SNR measurements did not vary significantly when the kVp value range was
close such as a comparison between 80 and 100 kVp or between 100 and 120 kVp (p > 0.05),
regardless of the pitch values. However, the measurements showed that at pitch 1.5, 2.0,
and 2.5, SNR at 120 kVp was significantly higher than 80 kVp (p < 0.05) in both true and
false lumens. SNR showed no significant differences between different kVp when the pitch
value was 1.2. At low pitch values such as 1.2 and 1.5, a decrease in kVp from 120 to 80 led
to a significant effective dose reduction by more than 20%.

Unlike kVp, a variation of pitch values can significantly affect SNR measurements.
When the kVp value is kept constant, SNR showed significant differences with different
pitch values. SNR measured significantly higher in images acquired with low pitch values
such as 1.2 and 1.5, compared to those acquired with the high 2.0 and 2.5 protocols (p < 0.05),
regardless of the location of measurements. SNR measurements showed that image quality
significantly dropped when the pitch value increased from 1.5 to 2.0 in all kinds of kVp
protocols (p < 0.05). SNR dropped 30% when pitch value was raised from 1.2 to 2.5 at
80 kVp, and 20% at 120 kVp. In contrast, SNR dropped only 3.9% when kVp was reduced
from 120 to 80 at pitch 1.2, and 15.9% at pitch 2.5.

Under low pitch protocols such as 1.2 and 1.5, there were no significant differences
in SNR measurements between the proximal and middle descending aorta. In contrast,
at high pitch value protocols such as 2.0 and 2.5, the proximal descending aorta tended
to have a higher image quality than the middle descending aorta, especially in the false
lumen. Figure 5 is an example showing the reformatted images of these CTA protocols.
When kVp decreased to 80, image noise was increased with the use of high pitch value
protocols such as 2.0 and 2.5, as shown in Figure 5. However, the shape of the stent graft
and the location of the intimal flap are clearly displayed in these images, despite the use of
low-dose protocols.
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Table 1. SNR measurements at images acquired with different CTA protocols. SNR, signal-to-noise ratio; CTDIvol, volume CT dose index; DLP, dose length product.

Tube Voltage 80 kVp 100 kVp 120 kVp

Pitch Value 1.2 1.5 2.0 2.5 1.2 1.5 2.0 2.5 1.2 1.5 2.0 2.5

True lumen of proximal
descending aorta 23.93 ± 9.34 20.30 ± 1.69 19.64 ± 1.03 13.70 ± 1.42 27.60 ± 1.47 22.19 ± 2.14 19.14 ± 3.75 12.60 ± 0.38 25.64 ± 4.69 25.10 ± 2.74 19.93 ± 0.67 19.23 ± 3.74

False lumen of proximal
descending aorta 24.70 ± 10.66 23.40 ± 0.90 20.86 ± 1.98 21.34 ± 2.08 24.18 ± 2.86 23.82 ± 0.64 16.63 ± 3.31 17.04 ± 1.24 26.18 ± 2.44 27.61 ± 3.93 22.06 ± 1.51 24.00 ± 2.94

True lumen of middle
descending aorta 25.29 ± 7.43 25.10 ± 3.58 18.66 ± 1.19 16.62 ± 1.28 25.65 ± 2.16 25.91 ± 0.29 14.74 ± 0.58 18.40 ± 1.92 23.68 ± 2.33 26.21 ± 0.26 20.61 ± 1.24 19.81 ± 1.04

False lumen of middle
descending aorta 18.12 ± 2.80 22.13 ± 1.54 10.11 ± 0.60 12.47 ± 0.54 20.86 ± 2.23 26.27 ± 3.77 15.62 ± 0.77 12.16 ± 1.16 20.15 ± 1.29 29.91 ± 4.84 14.03 ± 0.80 13.53 ± 0.51

CTDIvol (mGy) 0.07 0.08 0.06 0.06 0.1 0.1 0.08 0.07 0.11 0.1 0.08 0.07
DLP (mGy/cm) 2.8 2.9 2.2 2.1 3.9 3.8 2.7 2.4 4.1 3.8 2.8 2.5

Effective dose (mSv) 0.04 0.04 0.03 0.03 0.05 0.05 0.04 0.03 0.06 0.05 0.04 0.04
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Figure 5. Sagittal reformatted images of the CTA protocols. When kVp decreased to 80, image noise
increased with the use of high pitch value protocols such as 2.0 and 2.5. CTA: computed tomography
angiography, kVp: kilovoltage peak.

4. Discussion

In this study, we simulated a postprocedural surveillance CT scan of a patient with
TBAD with different scanning protocols on a 3D printed aortic model. Quantitative
assessment of image quality showed no significant differences between different kVp
when the pitch value was 1.2. More than 20% dose reduction was achieved with the use
of low kVp such as 80. Compared to the change in kVp, image quality had significant
differences between low and high pitch values, although there was no significant impact
on the visualization of the stent graft and other structures. Thus, a low-dose aortic CTA is
suggested for the follow-up of patients after EVAR.

For patients with aortic dissection, follow-up CT is mandatory and continues for
many years [8,11,26]. Various dose-reduction strategies continue to develop with the
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advancement of CT imaging technology, striving to reduce the risk of patients being
exposed to excessive radiation while maintaining image quality including low kVp, use
of IR algorithms, tube current modulation, high-pitch protocol, and use of dual energy
CT [10,15,25]. Low-dose CTA using low kVp and high-pitch protocols has been proven
to achieve diagnostic image quality compared to the standard aortic CTA protocol while
significantly reducing radiation dose [10,13,27]. However, the image quality research for
post TEVAR follow-up patients is still limited [28,29]. This study adds valuable information
to the current literature by exploring a variety of CTA protocols and supporting the value
of patient-specific 3D printed phantoms.

A CT protocol with high-pitch is available with fast speed CT scanners and will
decrease radiation dose significantly when the pitch is increased. However, pitch value
also significantly affects image quality with compromising spatial resolution; higher pitch
leads to an increase in image noise, which could possibly affect the diagnostic quality. This
has been confirmed by our study as image noise was significantly raised when the pitch
was increased (Figure 5). Despite this potential limitation, some other studies have still
shown the possibility of using high-pitch CTA protocols in the diagnosis of aortic dissection
without losing image quality [10]. Shen et al. claimed that the use of a proper iterative
reconstruction algorithm is able to maintain image quality while reducing the dose by using
a low kVp, high pitch scanning protocol [13]. Freyhardt et al. also investigated low-kV CT
protocols with IR, allowing for CTA of the entire aorta with excellent image quality and
diagnostic confidence with a dose reduction of up to 80% compared to 120 kV [27]. In our
study, we showed the influence of pitch value on image quality, which is more obvious
than adjusting kVp, especially at low kVp.

The novelty of this study lies in the use of a personalized 3D printed aortic model
to simulate TEVAR of TBAD. Use of 3D printed models to study optimal CT scanning
protocols has been supported in previous studies including the assessment of coronary
artery plaques [30], coronary stenting [31] and detection of pulmonary embolism [32,33].
In order to evaluate the impact of different protocols on radiation dose and image quality,
CT scans have to be conducted multiple times with different scanning parameters. How-
ever, it would be unethical to scan the same patient multiple times and performing this
experiment with different patients would lose accuracy due to different body types. With
the development of 3D printing technology and the advancement of its application in the
medical field, patient-specific 3D printed models could potentially become the new option
for these kinds of experiment [16,18,34].

Previous literature has discussed the use of 3D printed models to plan stent graft
treatment in patients. Tong et al. deployed stent grafts in short 3D printed aortic models
with thoracoabdominal aortic disease. They used these models to guide pre-fenestration of
the stent grafts before re-deploying them in patients, believing that 3D printing technology
could potentially improve both the accuracy and efficiency of the TEVAR procedure [35].
Li et al. also used 3D printed models to guide total endovascular repair for a patient who
had a stent graft incorrectly deployed in the false lumen [36]. Zhang et al. performed pre-
fenestration on a stent graft in a 3D printed model. They thought stent graft pre-fenestration
guided by the 3D printed aortic model provided a new solution for aortic dissection
treatment planning and claimed that this could improve accuracy of the fenestration
location [37]. Although these previous studies of stent graft deployment inside 3D models
are of interest, most did not specify the materials they used to make the models, or
attempted to use materials that have mechanical and radiological properties close to the
real human aorta. In our study, we provide a new possibility for the medical application of
3D printing by using 3D printing materials with accuracy in vivo representation to obtain
more realistic experimental data.

We recognize that there are some limitations to our experiment. First, despite a realistic
3D printed model being used for studying different CTA protocols, the model was not
placed in an environment that simulated normal surrounding anatomic regions such as the
lungs, ribs, spinal column, or heart. Therefore, the radiation dose associated with these
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protocols were lower than the actual values reported by other studies. In addition, the
3D printed aorta model was placed in a customized box and immersed inside a dilute
contrast medium instead of the perfusion of contrast medium into the lumen. Furthermore,
the contrast was not flowing. Future research could focus on improving this aspect of the
model. Connecting the 3D printed aortic model to a pulsatile flow circuit with a cardiac
pump or printing a controllable syringe pump could be a solution as this will allow for
accurate measurement under more dynamic conditions. This can be addressed by further
studies when our printing capabilities meet these requirements. Despite this limitation, the
current measurements are still acceptable and consistent with what has been reported in
the literature regarding measurements of dimensional accuracy based on 3D printed static
cardiovascular models [21]. Second, no contrast-to-noise ratio (CNR) was measured. In
this study, only SNR was measured to determine image quality because the model was
immersed in the contrast medium. A more robust conclusion could be reached with the
measurement of both SNR and CNR when the 3D printed models are placed in a realistic
chest phantom in future studies. Third, the measurement of SNR and effective dose could
be different in patients. Although we selected a 3D printing material that had mechanical
and radiological properties approximating those in the human, due to the limited choice of
commercial 3D printing materials, we could not exactly match the human aorta.

Different slice thicknesses, use of IR strengths, and image post-processing algorithms
to suppress the artifacts from stents could also affect the SNR measurements. Additionally,
we did not undertake a qualitative assessment of image quality in this study. In future
research, the application value of 3D printed models could be verified through scoring by
clinical imaging professionals.

5. Conclusions

In this study, we demonstrated the use of a 3D printed full-sized aortic dissection
model to investigate the possibility of lower radiation dose for the surveillance of TBAD
post TEVAR using CT with different scanning parameters. Low-dose CT with acceptable
image quality can be achieved by lowering the tube voltage. Compared to adjusting
kVp, increasing the pitch can effectively reduce the radiation dose, but will also reduce
the overall image quality. High pitch with medium kVp can effectively reduce the dose
while maintaining image quality. The contribution of 3D printing to medical applications
was also explored in this study. However, since the model was not placed in a realistic
chest cavity environment, the radiation dose reports in this study were lower than the
actual values. Improvements in materials and design could add further details and will be
explored in future studies.
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