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Abstract: This study investigated if non-thermal atmospheric pressure plasma (NTAPP) treatment of
root dentin surfaces promotes human dental pulp stem cell (hDPSCs) adhesion. Freshly extracted
human single-rooted teeth (n = 36) were decoronated and cut (first vertically, then horizontally)
into root dentin slices (3 mm thick). Primary hDPSCs cultures were seeded onto slices randomly
assigned to pretreatment groups (n = 9/group): NaOCl (1.5%), EDTA (17%) then NTAPP (Group I);
NaOCl then NTAPP (Group II); NaOCl then EDTA (Group III); and NaOCl alone (Group IV). Cell
viability and proliferation were measured using MTT assay with log-linear statistical analysis. Cell
attachment and spreading morphologies on dentin slices (n = 3/group) were examined through
scanning electron microscopy. Early cell adhesion events and subcellular activities were observed in
real time by live-cell imaging through holotomographic microscopy. Cell viability and proliferation
were significantly higher on NTAPP-treated dentin (p < 0.05), without interactions with EDTA
(p > 0.05). The attachment, spreading, extensions and multiple layers of hDPSCs were heightened on
NTAPP-treated dentin. Cell adhesion, spreading, and dentinal tubule penetration were hastened
on NTAPP-treated dentin surfaces in real-time, with elevated subcellular activities and intracellular
lipid droplet formation. NTAPP-treated root dentin surfaces support enhanced cellular responses,
potentially promoting pulp-dentin regeneration.

Keywords: dentin; human dental pulp stem cells; live-cell imaging; MTT assay; non-thermal
atmospheric pressure plasma; scanning electron microscopy

1. Introduction

Non-thermal atmospheric pressure plasma (NTAPP) involves partially ionized gas
containing electrically charged particles at atmospheric pressure. These include reactive
oxygen and nitrogen species that induce various physiological effects, with promising clin-
ical and preclinical applications in plasma medicine. Recent developments include direct
and indirect applications of NTAPP for microbial biofilm eradication, tissue disinfection,
wound healing, tissue rejuvenation, and surface modification of biological scaffolds. In den-
tistry, NTAPP has been studied for periodontal pocket decontamination, adhesion, caries
treatment, root canal disinfection, implant surface treatment, and tooth bleaching [1,2].
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In regenerative medicine, NTAPP may allow a versatile range of applications involv-
ing the manipulation of various cell types and processes, including stem cell attachment,
proliferation, differentiation, and even apoptosis [3]. Tan et al. reported evidence of NTAPP
improving stem cell attachment, proliferation, and differentiation [3]. It activated prolifer-
ation of various mesoderm-derived human stem cells [4], and enhanced proliferation of
adipose tissue-derived stem cells without affecting their stem cell properties [5]. Yet, direct
and indirect effects of NTAPP applications on human dental pulp stem cells (hDPSCs) have
not been elucidated. These well characterized cell population with mesenchymal marker
expression and potent multilineage differentiation are essential for tooth pulp-dentin
regeneration in dentistry [6–9].

Pulp-dentin regeneration is both conceptually and clinically based on a cell homing
approach to recruit endogenous stem cells into root canal system. It begins with cell
recruitment, attachment, proliferation, and differentiation on root dentin surfaces, for
which dentin conditioning is important. Conditioning with ethylenediaminetetraacetic acid
(EDTA) alters chemical composition, topography, and wettability of root dentin [10,11], and
thereby affects stem cell adhesion and proliferation on dentin surfaces [12–14]. Similarly,
NTAPP was found to enhance dentin wettability and surface energy, significantly improving
protein adsorption and cellular attachment [15]. However, the effects of NTAPP treatment
on root dentin as cellular niche in regenerative endodontics are not fully understood.

The purpose of this study was to investigate the effects of NTAPP treatment of human
root dentin surfaces in the recruitment, attachment and growth of hDPSCs. Cellular
attachment and growth of primary hDPSCs on NTAPP-treated root dentin surface was
quantitatively and qualitatively investigated, and initial recruitment and attachment events
were monitored in real-time to find out subcellular changes.

2. Materials and Methods
2.1. Primary Cell Cultures

hDPSCs were isolated from healthy human adult teeth. Following extraction, teeth
were cleaned and their crowns separated with sterile water-cooled high-speed diamond
burs. Pulp tissues were gently harvested by forceps and digested in 3 mg/mL collagenase
type I (Sigma, St. Louis, MO, USA) at 37 ◦C for 60 min. Tissue digests were passed through
a 70-µm cell strainer (Becton/Dickinson, Franklin Lakes, NJ, USA) to obtain single-cell
suspensions that were seeded in 60- or 100-mm culture dishes with a control medium con-
taining α-minimum essential medium (α-MEM; Life Technologies/GIBCO BRL, Gaithers-
burg, MD, USA) supplemented with 20% fetal bovine serum (FBS), 2 mM L-glutamine,
100 units/mL penicillin-G, 100 µg/mL streptomycin and 0.25 µg/mL fungizone (Gemini
Bio-Products, Inc., Woodland, CA, USA), and maintained in 5% CO2 at 37 ◦C. As colonies
formed, cells were initially passed (1:3 ratio) at 80% confluence, and then continuously
passed when confluent. These cells were passed, harvested, and stored in liquid nitrogen.

2.2. Root Dentin Slices

Human single-rooted freshly extracted teeth (n = 36) were cleaned by ultrasonic
scaler (SH-2140, Saehansonic, Seoul, Korea) and stored in 0.5% sodium azide. Following
decoronation, the roots were cut (first vertically then horizontally) and ground to achieve
a smooth surface to make standardized root dentin discs (7 × 3 × 3 mm3) slices of 3 mm
thickness. The dentin slices were autoclaved at 121 ◦C for 15 min. Sterility was confirmed
by anaerobic incubation at 37 ◦C overnight in BHI, trypticase soy, or MRS culture broth,
followed by plating onto agar plates containing these respective culture media maintained
anaerobically at 37 ◦C overnight. Dentin slices were randomly assigned (n = 9/group)
for conditioning as follows: Group I, NaOCl (1.5%, 10 mL/5 min), then EDTA (17%,
10 mL/5 min), followed by NTAPP; Group II, NaOCl, then NTAPP; Group III, NaOCl, then
EDTA; Group IV, NaOCl alone (control).
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2.3. Non-Thermal Atmospheric Pressure Plasma (NTAPP) Treatment

Figure 1 shows schematic diagram of the experimental setup with air plasma jet
system and a typical optical emission spectrum. The applied power for generating plasma
was lowered to 5 W at 50 kHz. The amount of precursor monomers was set at 100 standard
cubic centimeters, the flow rate of air as the working gas was set at 15 L/min and the
treatment time was fixed at 1 min [16].
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Figure 1. Schematic diagram of experimental setup with air plasma jet system (left) and the optical emission spectrum. (right).
The spectrum is dominated by emissions from the second positive system (SPS) of molecular nitrogen (N2 at 315–400 nm),
the first negative system (FNS) of N2

+ (391–427 nm), and atomic oxygen (777 and 844 nm).

2.4. Cell Viability and Proliferation

hDPSCs viability and proliferation on dentin were measured by MTT assay (re-
duction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to a purple for-
mazan product). hDPSCs at passage 4 were seeded onto dentin slices from each group
(5.0 × 102 cells/slice) and incubated at 37 ◦C in 5% CO2 for 2 days. Absorbance was mea-
sured at 550 nm in a UV–vis spectrophotometer multiplate reader (VersaMax, Molecular
Device, San Jose, CA, USA) with a reference wavelength of 690 nm.

2.5. Cellular Attachment and Spreading

hDPSCs attachment and spreading on dentin surfaces were examined by scanning electron
microscopy (SEM). hDPSCs at passage 4 were seeded onto dentin slices (5.0 × 102 cells/slice)
from each group (n = 3/group) and incubated at 37 ◦C in 5% CO2 for 2 days. Dentin
slices were washed thrice with PBS, fixed in 2% glutaraldehyde for 5 min. dehydrated in
a gradient of ethanol and dried with hexamethyldisilane. Surfaces were gold coated and
examined by SEM (Hitachi, Tokyo, Japan).

2.6. Cell Adhesion, Morphology and Intracellular Structures in Real-Time

hDPSCs adhesion, morphology and subcellular structure were observed in real-time
through live-cell imaging with holotomographic microscopy (HTM) as previously re-
ported [17]. For cellular morphology, hDPSCs at passage 4 were seeded onto NTAPP-
treated dish (FluoroDish, World Precision Instrument, Sarasota, FL, USA) and incubated
for 24 h. For cellular adhesion, hDPSCs at passage 4 were seeded (5.0 × 102 cells/slice)
on dentin that had either been treated with NaOCl and EDTA alone (controls), or with
NaOCl and EDTA followed by NTAPP (plasma-treated). HTM was performed with 3D
Cell Explorer-fluo (Nanolive, Ecublens, Switzerland) using 60× air objective (NA = 0.8),
wavelength (λ) of 520 nm (class 1 low power laser, sample exposure 0.2 mW/mm2), and
USB 3.0 CMOS Sony IMX174 sensor, with quantum efficiency (typical) 70% (at 545 nm),
dark noise (typical) 6.6 e-, dynamic range (typical) 73.7 dB, field of view 90 × 90 × 30 µm,
axial resolution 400 nm, and maximum temporal resolution 0.5 3D RI volume per second.
Physiological conditions for live cell imaging were attained with a top-stage incubator (Oko-
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lab, Pozzuoli, Italy), and temperature (37 ◦C), humidity and CO2 (5%) were maintained
throughout image acquisitions.

An export was performed within the STEVE software, which controls the HTM
microscope, to transform RI volumes into .tiff format. By doing so, RI volumes can be
read by the FIJI program. The exported 3D .tiff files must be in float format to keep the
explicit RI for each voxel value. The 3D RI volumes in .tiff format were then processed in
batch within FIJI for performance purposes. Then 3D RI volumes were transformed into
2D RI maps using maximum intensity projections and were also saved as .tiff files. The
resulting series of 2D frames could then be processed using CP3, which does not support
full 3D data analysis yet. The CP3 pipeline was designed to load each 2D RI map, segment
the contained objects using the primary objects detection module, and extract area, shape,
and intensity features using the measurements modules. A critical point for proper object
detection was to use a manual threshold value. The object size limits that we entered
were designed to encompass the full spectrum of potential lipid droplet diameters from
1 to 5 pixels. The segmented objects were finally used to extract the area and the mean
RI value of each lipid droplet in each frame of the time-lapse experiment. The data were
exported as a .csv file, in which we used the extracted count, spherical volume, and surface
area of lipid droplets [18].

Real-time changes of hDPSCs behaviors around NTAPP-treated dentin were observed.
Dentin slice was trimmed to thickness of 0.05 mm for visualization under Nanolive. Pre-
treated dentin slices with 1.5% NaOCl and 17% EDTA as aforementioned served as control.
Cellular attraction and attachment images were acquired at 2 h interval until 8 h after
thawing.

2.7. Statistical Analysis

Differences in MTT assay results among the groups were examined using log-linear
model analysis. Lipid droplet data were assessed for Gaussian distribution by the Shapiro-
Wilk test, and paired t-test was performed. Statistical analysis was performed using
statistical program SPSS 21.0 (SPSS, Chicago, IL, USA). Data are expressed as mean and
standard deviations. Differences were considered to be statistically significant at p < 0.05.

3. Results
3.1. hDPSCs Attachment, Spread, and Proliferation

hDPSCs displayed fibroblast-like morphologies in 7-day cultures, and reached 95% con-
fluence during first passage, showing epithelioid and polygonal shapes and forming
colonies. Relative numbers of viable cells attached to dentin differed significantly between
treatment groups (p < 0.05) (Figure 2). There was significantly more viability on NTAPP-
treated dentin than controls (NaOCl), and EDTA pretreatment before NTAPP showed
significantly more than other surfaces (p < 0.05). There was no interaction between NTAPP
and EDTA treatments (p > 0.05).
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3.2. Treatments Altered Dentin Surface and hDPSCs Response

Dentin surfaces appeared different between treatment groups (Figure 3). Intertubular
dentin appeared sleek and dentinal tubule orifices were intact on NTAPP-treated dentin
(Group I and II). Smear layers were absent on EDTA-treated dentin (Groups I and III).
Irregular scaly surfaces and eroded tubule orifices appeared on dentin treated with NaOCl
alone (Group IV).
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Figure 3. hDPSCs attachment and spreading on dentin slices observed through scanning electron
microscopy (left, ×500; right, ×2000). (A) Group I (NaOCl + EDTA + NTAPP): Numerous hDPSCs
had attached and spread out onto dentin surfaces in multiple layers, entangled by long cytoplasmic
processes. (B) Group II (NaOCl + NTAPP): hDPSCs had formed multilayer structures on dentin.
(C) Group III (NaOCl + EDTA): Fewer hDPSCs had spread out onto dentin without multilayers.
(D) Group IV (control, NaOCl only): Few isolated hDPSCs had attached to dentin.
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hDPSCs attached and spread out on all dentin surfaces (Figure 3), with differences
in densities between treatments that reflected differences in viability (Figure 2). There
was more attachment, spreading, longer cytoplasmic processes and higher densities from
multiple layers that had merged to form clusters on NTAPP-treated dentin. Instead,
markedly fewer isolated cells, much less spreading and shorter processes were seen on
dentin controls (NaOCl-only).

3.3. NTAPP-Treatment Altered Cell Morphologies and Intracellular Structures

hDPSCs attached and spread out onto NTAPP-treated and untreated dishes (Figure 4A).
They showed well spread fibroblast-like morphologies with intracellular organelles, in-
cluding nucleus with nucleoli, lipid droplets, and vesicles. Adherent cell morphologies
with newly formed lipid droplets adjacent to the endoplasmic reticulum were prominent
in cells seeded on NTAPP-treated dish (p < 0.05) (Figure 4B).
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3.4. NTAPP-Treated Dentin Enhanced Cellular Attachment in Real Time

hDPSCs attached and spread onto dentin surfaces progressively in real time over 8 h
(Figure 5). Cells spread onto NTAPP-treated and untreated dentin slices with exposed
tubular structures and complex surface topographies. They exhibited heightened mobility
around NTAPP-treated dentin compared to naïve slices. hDPSCs around dentin slices
occupied NTAPP-treated surfaces within 2 h, and naïve dentin over 4–6 h. Cells on NTAPP-
treated dentin had stabilized and extended their cellular processes into dentinal tubules
at 8 h, whereas cells on naïve dentin at 8 h appeared like cells on NTAPP-treated slices at
4–6 h.
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Figure 5. Live-cell imaging of hDPSCs attachment on root dentin. Holotomographic microscopy time series of NTAPP-
treated (upper) and untreated controls (lower). Cells initiated attachment on NTAPP-treated dentin at 2 h, and on untreated
controls at 4 to 6 h. hDPSCs on NTAPP-treated dentin had spread out over 4 to 6 h, and sprouted cellular processes into
dentinal tubules at 8 h. Whereas, cells on untreated dentin were not spread until 6 to 8 h.

4. Discussion

Favorable effects of NTAPP on wound healing, immune responses, and stem cells
involving increased expression of growth factors and cytokines have been reported in prior
studies [19–21]. Similarly, this study demonstrated that NTAPP treatments of root dentin
surfaces enhanced hDPSCs responses through cell adhesion, spreading and proliferation,
which may benefit regeneration in endodontics. Pulp-dentin regeneration appears to be
dependent on release of cell signaling molecules from reservoirs in root dentin [22,23].
Their stimulation of stem cell attachment and spreading on dentin surfaces constitutes the
initial phase of cellular function [15]. These bioactive factors may be released by dissolution,
as EDTA pretreatments reportedly enhanced pulp stem cell migration, whereas water had
no effects, and NaOCl restrained migration [24]. Similarly, Pang et al. (8) showed increased
cell density on EDTA-conditioned dentin than on untreated dentin. However, EDTA had no
significant effect on hDPSCs counts in this study, and only NTAPP significantly increased
cell viability. EDTA’s effects may have been hidden by the impact of NTAPP treatment.
Pre-rinsing dentin with NaOCl before EDTA was shown to reduce growth factor release,
whereas chlorhexidine before EDTA increased their amounts [25].

Enhanced hDPSCs attachment on NTAPP-treated root dentin may have been due
to improved hydrophilicity. NTAPP reportedly improved dentin wettability [26], and
30s of NTAPP brush treatment made human dentin super hydrophilic [27]. Their XPS
analyses showed the oxygen/carbon ratio increased dramatically after NTAPP brush,
suggesting that new oxygen-containing polar moieties had formed [27]. Similarly, Koban
et al. demonstrated improved human dentin wettability from NTAPP, which supported
enhanced human osteoblast spreading [28]. Likely, NTAPP generates reactive spots or
species through C-C and C-H bonds splitting from vigorous atom/ion bombardment of
dentin surfaces, which increases their hydrophilicity. The resultant increased adsorption
of cell adhesion proteins such as fibronectin enhances cellular attachment, spreading and
proliferation. These indirect effects of NTAPP on the natural niche of stem cells could also
be applied to synthetic biomaterials to promote cellular responses. For example, Yang et al.
reported that NTAPP changed nanoscale topography and elasticity of polymeric substrates,
which enhanced human mesenchymal stem cell adhesion and spreading [29].
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Cell orientation, organization, morphology and function are strongly influenced by
their underlying substrate [30], and the recruitment of odontoblast precursors to dentin
surfaces, and their extension of cellular processes into dentinal tubules is particularly
important in regenerative endodontics. In this study, hDPSCs seen through SEM had
attached and spread out in the direction of dentinal tubules exposed by EDTA and NTAPP
treatments. They sprouted microvilli on dentin, with cellular extensions and filopodia often
penetrating NTAPP-treated dentinal tubules. Additionally, hDPSCs observed in real-time
by HTM live-cell imaging were attracted and attached to NTAPP-treated dentin surfaces
faster than controls. Cells with enhanced attachment to NTAPP-treated dentin may have
preferential expression of focal adhesion kinase (FAK) and faster progression through the
cell cycle [3].

Enhanced subcellular activities were clearly visible in hDPSCs attached to NTAPP-
treated surfaces. This is in accordance with previous research showing that cold at-
mospheric plasma could support optimal pluripotent stem cell attachment by turning
polystyrene cell culture dishes from hydrophobic to hydrophilic state [31]. It is also spec-
ulated that polystyrene surface had been changed in topography and elasticity at the
nanoscale level, enhancing adhesion and spreading of cells through promoted focal adhe-
sions [29]. In this study, image-based analysis of label-free live hDPSCs on NTAPP-treated
dishes showed significantly higher lipid droplets than controls. It is worth emphasizing
that this study demonstrated lipid droplets through live-cell imaging in real-time without
labeling. Previously, intracellular lipid droplet formation was visualized by fluorescence
microscopy using dyes, which are phototoxic, and require reduced acquisition length
and frequency to limit perturbations. Lipid droplets play a key role in physiological pro-
cesses involving gene expression and cellular signaling, which may influence metabolism
and differentiation. Therefore, further lipidomic analyses of hDPSCs and related NTAPP
applications are warranted [32].

There are limitations in this study. In addition to current findings focused on these
initial hDPSCs behaviors, in depth investigations on cell cycle analysis and secretion pro-
files are necessary to investigate odontogenic, osteogenic, chondrogenic, neurogenic, or
angiogenic differentiation of dentin-attached hDPSCs. Furthermore, elucidating the under-
lying mechanism of NTAPP-induced tissue-specific differentiation of stem cells including
adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, and hDPSCs
will require reactive oxygen and nitrogen species analysis. For instance, NTAPP on human
adipose tissue-derived stem cells generated nitric oxide (NO), which increased cytokine
and growth factor expression, and downregulated intrinsic apoptotic pathways [5,19]. NO
at a low concentration increased pluripotent genes (Oct4, Sox2, Nanog) expression, and at
high concentrations promoted human embryonic stem cell differentiation independently of
its second messenger role [33]. Exogenous NO promoted DPSC differentiation into odonto-
blasts and induced tertiary dentin formation in rats [34]. Therefore, NTAPP’s effects on
differentiation could be expanded to guide endocrine/paracrine conditioned cells toward
various osteogenic/chondrogenic lineages [35,36]. Long term observation using HTM will
be required to trace these subcellular changes during differentiation.

As these NTAPP-induced cell- and dentin- changes may concurrently direct array of
lineages in pulp-dentin regenerations, cell- and dentin-specific applications for NTAPP
will need to be thoroughly characterized and standardized, so that they can be customized
for clinically applications in regenerative endodontics.

5. Conclusions

NTAPP-treated root dentin surfaces support enhanced hDPSCs attachment, spreading,
subcellular activity and proliferation, which may promote pulp-dentin regeneration in
clinical applications.
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