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Abstract: The dramatic global climate change has driven governments to drastically tackle pollutant
emissions. In the transportation field, one of the technological responses has been powertrain
electrification for passengers’ cars. Nevertheless, the large amount of possible powertrain designs
does not help the development of an exhaustive sizing process. In this research, a multi-objective
particle swarm optimization algorithm is proposed to find the optimal layout of a parallel P2 hybrid
electric vehicle powertrain with the aim of maximizing fuel economy capability and minimizing
production cost. A dynamic programming-based algorithm is used to ensure the optimal vehicle-
level energy management. The results show that diverse powertrain layouts may be suggested when
different weights are assigned to the sizing targets related to fuel economy and production cost,
respectively. Particularly, upsizing the power sources and increasing the number of gears might be
advised to enhance HEV fuel economy capability through the efficient exploitation of the internal
combustion engine (ICE) operation. On the other hand, reduction of the HEV production cost could
be achieved by downsizing the power sources and limiting the number of gears with respect to
conventional ICE-powered vehicles thanks to the interaction between ICE and electric motor.

Keywords: hybrid electric vehicle (HEV); design; optimal layout; multi-objective particle swarm
optimization (PSO)

1. Introduction

The impellent need to decrease greenhouse gases (GHGs) emissions is driving car
manufacturers towards different propulsion systems. In the last decade, the internal
combustion engine (ICE) has often been coupled with electrical components in order to
reduce its fuel consumption and, consequently, its pollution. In this context, hybrid electric
vehicles (HEVs) are being developed by most car manufacturers owing to their interesting
trade-off between fuel efficiency, drivability, and CO2 emissions [1]. Nevertheless, the pres-
ence of different power sources along with the additional components for implementing
the electric drive do impact the design process of HEVs. To find a globally optimal and
universally accepted development method still represents an open question [2].

A lot of research has recently been conducted worldwide to address this problem.
Fuel economy (FE) variability (i.e., the variation in fuel economy due to different driving
styles, traffic conditions, and so on) has been studied and addressed in [3], hence providing
a design method capable of reducing the variability in FE by up to 34% with respect to
a standard process. A clutch-less multimode parallel HEV (CMP-HEV) has been firstly
introduced in [4] and then its design parameters have been studied in [5], providing
interesting FE and acceleration performance analyses. The battery degradation and its
effect on fuel economy and total cost of ownership (TCO) have been considered in [6] for
the design methodology of a heavy-duty HEV.
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Evolutionary algorithms (EAs) have been exploited for sizing HEVs thanks to their
capability of thoroughly exploring the design space. As an example, a heavy-duty series
HEV is sized using chaos-enhanced accelerated particle swarm optimization (CA PSO)
in [7], outperforming the standard PSO and providing an interesting design method. In [8],
a light-duty parallel HEV is designed using three different derivative-free optimization
algorithms (i.e., divided rectangles, simulated annealing, and genetic algorithm) and a
hybrid method, obtaining improvements in fuel consumption when comparing the results
with the initial HEV layout.

Nevertheless, to the best of the authors’ knowledge, the previous works in the litera-
ture have not always completely assessed the light-duty HEV design problem. Indeed, they
often focused specifically on achieving high fuel economy without accurately addressing
the production costs and/or they did not exhaustively explore the whole design space.
Moreover, not many studies take into account a lower number of gears than the standard
(i.e., five or six gears for passenger cars).

In a recent study of the authors [9], a comparison of different numbers of gears in
a parallel HEV has been brought up, based upon economic considerations taking into
account both the lifetime operative cost and transmission cost. The cooperation of the
electric machine (EM) with the ICE was demonstrated to be capable of balancing a lower
number of gears compared with a conventional vehicle (i.e., propelled by the ICE alone)
while assessing the fuel economy.

Starting from the reviewed studies, the objective here is to provide an exhaustive
methodology to assess the performances of an HEV by means of various analyses. Eval-
uation metrics include not only vehicle performance such as acceleration capability and
estimated fuel consumption, but also the production cost of chassis, battery, ICE, EM, and
transmission, thus addressing the optimal HEV powertrain design problem considering
different targets. To this end, a multi-objective PSO algorithm is used at the vehicle design
level for efficiently sizing the different components in the HEV powertrain architecture.
Then, dynamic programming (DP) is used at the powertrain control level for the optimal
choice of driving mode, gear selection, and power split between ICE and EM, retaining
both a standard drive cycle and different real-world driving missions. This particular
optimization strategy and the interaction between the two HEV powertrain objectives (i.e.,
component design and powertrain control) can be referred to as bi-nested [10], and in this
context, the DP has already been used to reach an optimal solution for different control
problems [11,12].

The remainder of this article outlines firstly the methodology for assessing the drivabil-
ity, the acceleration performance, and the fuel economy. This is followed by an explanation
of the implemented PSO workflow and its objectives. Then, the results obtained are shown
and discussed. Finally, the conclusions of this study are provided.

2. HEV Modelling and Control

In this section, firstly, the HEV modelling and architecture will be presented with all
the main equations used in the study of the vehicle behavior. Then, the DP algorithm used
at the control level will be shown.

2.1. HEV Architecture and Model

The HEV architecture chosen for this study is a full HEV parallel P2, having the EM
located after the ICE right before the automated manual transmission. The parallel P2
HEV exhibits an interesting trade-off between energy consumption and ease of production
owing to a limited difference with respect to a conventional ICE-powered vehicle [13]. This
HEV architecture enables three ways of providing torque to the wheels: (1) pure electric
mode and (2) pure thermal mode, i.e., when either the EM or the ICE solely deliver the
total amount of power requested, respectively; (3) torque split mode, which is when both
of the power sources contribute to providing the torque. A particular torque split mode
relates to battery charging for which the ICE provides extra power compared with the
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value required to overcome the total requirement of the wheels in order to supply charging
power to the battery. All the main components of this HEV powertrain architecture are
illustrated in Figure 1. A gear ratio between the ICE and the transmission allows increasing
the torque delivered by the former. A clutch is embedded that is disengaged when driving
in pure electric mode. Moreover, the main data used for virtually simulating a compact
size HEV are found in Table 1.
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Table 1. Hybrid electric vehicle (HEV) data.

Parameter Value Parameter Value

Curb weight 1162 kg C 0.41 N/(m/s)2

rwheel 0.28 m Battery Pack Energy 2.1 kWh
A 104.49 N ICEmaxpow,base 90 kW
B 2.43 N/(m/s) EMmaxpow,base 30 kW

It is worth mentioning that, concerning the vehicle mass, a variation ∆m has been
considered as a function of ICE size, EM size, and the number of gears. Therefore, starting
from the baseline value (i.e., a five-speed transmission, a 90 kW ICE, and a 30 kW EM),
∆m has either been subtracted or added depending on the sizes of components for the
candidate HEV powertrain design. The formulas used for this purpose are found below
and have been extracted from [14]:

∆mi = ∆mtransm,i + ∆mICE,i + ∆mEM,i, (1)

∆mtransm,i = (5− zi)· 0.12 · ICEmaxpow.base, (2)

∆mICE, i = 1.75 ·
(

ICEmaxpow,base − ICEmaxpow,i

)
, (3)

∆mEM,i = 0.53 ·
(

EMmaxpow,base − EMmaxpow,i

)
, (4)

where zi, ICEmaxpow,i, and EMmaxpow,i are the number of gears, the ICE, and the EM peak
powers of the i-th HEV candidate, respectively; ∆mtransm, i, ∆mICE, i, and ∆mEM,i are instead
the variation of mass due to the diverse number of gears and the different sizes of ICE and
EM, respectively.

Concerning the modelling of the vehicle, a quasi-static approach was chosen that
neglects transients to lower the computational cost. This method exploits the vehicle speed
profile over time to compute the power request at the input shaft of the transmission.
Equations (5) and (6) are used at each timestep for the aforementioned purpose:

Twheel =
(

A + B v + Cv2 + m a + m g sin(α)
)
·rdyn, (5)
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Tinp =
Twheel(

τdi f f · τgear

)
· ηgearsign (Twheel)

, (6)

where Twheel and Tinp are the torques required at the wheel and at the input shaft of the
transmission, respectively. v is the target velocity of the vehicle and m is the vehicle mass,
while a, g, and α are the target acceleration, the gravity acceleration, and the road slope,
respectively. A, B, and C are the coast down coefficients; τdi f f and τgear are the gear ratios
of the differential and of the engaged gear; while ηgear is the transmission efficiency, which
here is set to 90%. Once the torque required at the input shaft of the transmission is known,
it is crucial to split this demand between the ICE and the EM as follows:

Tdel = TICE · τICE ·γ + TEM·(1− γ) (7)

where Tdel is the torque delivered at the transmission input shaft by the two power sources,
while τICE is the gear ratios between ICE and the transmission. γ is the split term, for
which values of 0 and 1 relate to pure electric mode and pure thermal mode, respectively.
A value of γ lower than 1 denotes power assist torque split mode, while battery charging
is performed when γ is greater than 1 and, in this case, the EM performs as an alternator.
Using the knowledge of torque provided by the ICE and its rotational speed, the instanta-
neous fuel consumption can be found through the brake specific fuel consumption (BSFC)
map. Regarding the electrical energy consumption, the battery power demand is computed
first in Equation (8), then the instantaneous variation in state of charge (SOC) is calculated
in Equation (9) as follows:

Pbatt = (ωEM·TEM) + LEM + Paux (8)

.
SOC =

Voc −
√

V2
oc − 4RinPbatt

2RinQbatt∆t
(9)

where ωEM is the rotational speed of the electric machine; LEM represents the electrical
power loss and it is derived empirically from the characteristic tables as a function of the
torque and speed of the EM. Paux represents the auxiliaries power request, set to 200 W
for this study. Concerning the variation in SOC, it is computed in Equation (9) using the
equivalent open circuit approach, where Voc, Rin, and Qbatt are the open circuit voltage,
the internal resistance, and the battery capacity (expressed in A/s), respectively; ∆t is the
simulation timestep.

2.2. HEV Control Level: DP

When it comes to the HEV control level, a DP-based algorithm was chosen as the
strategy to compute the optimal torque split and gear engaged of each HEV candidate
through the different drive cycles. This optimizer runs the drive mission backwards and,
at every time step,

• It sweeps all the discretized control values;
• Then, it computes the state values for all the combinations of controls using the vehicle

modeling equations given in the section above;
• Finally, it calculates a user-defined cost function that depends on the abovementioned values.

Then, the objective of this algorithm is to find the optimal time trajectories for gear
number and torque split that minimize the cost function while complying with the imposed
constraints [15,16]. In (10), the state space X, the control space U, and the cost function JDP
used for this study are found.

X =


ICEstate

SOC
ngear

 , U =

{
ngear

γ

}
,JDP =

∫ tend

0

(
FC + α1·µgearshi f t + α2·µICE,on/o f f

)
dt (10)
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X is composed of three variables, i.e., the binary ICE activation state (either on or
off), the discretized battery SOC, and the gear engaged. U embeds again the gear engaged
and the torque split term γ introduced in Equation (7). Lastly, JDP is the cost function to
be minimized throughout the overall driving mission up to its final time instant tend. JDP
not only holds the instantaneous fuel consumption FC as obtained by interpolating in the
ICE BSFC map, but it also considers two penalty terms aimed at improving drivability
and comfort. These two terms are composed of the flags µgearshi f t and µICE,on/o f f that are
triggered when gear-shifting and ICE activation are encountered, respectively. α1 and α2
are constant weight factors for the respective penalty terms. Thus, the control strategy
defined by the DP will not only be optimized for the fuel consumption, but it also will
reduce both the number of gear shifts and ICE activations, in order to improve passengers’
comfort. Finally, as already mentioned, the DP-based optimizer accounts for operational
constraints and accepts only the control trajectories for which

• The ICE, the EM, and the battery operate within the corresponding operating limits;
• The actual vehicle velocity matches the trajectory imposed by the drive cycle;
• Final and initial battery SOC values are similar in simulating charge-sustaining

HEV operation.

3. HEV Powertrain Bi-Nested Design Methodology

In this chapter, the focus is dedicated to the PSO and its cost function used for sizing
the HEV. In the different subsections, there will be an explanation of the preliminary tests
that each candidate has to pass before assessing its fuel economy and how the two main
costs are computed.

3.1. HEV Design Level: PSO

Evolutionary algorithms (EAs) have been demonstrated to be capable of efficiently
exploring the solution space of different optimization problems in several heterogeneous
fields. For this reason, a PSO algorithm was chosen for the proposed research work as
the HEV powertrain design optimizer. Skillfully sweeping the design parameters of the
HEV and efficiently searching for an optimal layout is enabled in this way [17]. Among the
different EAs, PSO was particularly selected owing to the reduced number of parameters
to be tuned, which in turn fosters the possibility of finding the global optimal solution for
the considered HEV design problem. Regarding the virtual environment, the PSO-based
script was implemented in MATLAB® [18] together with the model of the HEV described
by the data and formulas mentioned in the previous section. In this algorithm, each HEV
design candidate is represented by an individual of the swarm population and has two
main properties: a position and a velocity. Concerning the former, it embeds the sizing
parameters, which can be found hereby in Table 2, whereas the velocity of the individual
depends on the personal and global best positions, i.e., the positions in which the optimal
cost function was found for both the single individual and the whole swarm. Regarding
the parameters found in Table 2 below, the first two parameters EMsize and ICEsize are the
sizes of the two power sources, EM and ICE, respectively; z represents the number of gears
in the gearbox; τg,1 and τg,end are the first and last gear ratios, respectively; and τICEtoTransm
and τdi f f are the ratios of the gear between the ICE and the transmission and the one at the
differential. It is also worth mentioning that if a one-speed transmission is chosen by the
PSO, τg,end is discarded, whereas if more than two gears are simulated, the “progressive
gear step” method is applied to compute the intermediate ratios [19].
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Table 2. Particle swarm optimization (PSO) design parameters and their ranges.

Parameter Lower Bound Upper Bound

EM size multiplier coefficient, EMsize 2 30
ICE size multiplier coefficient, ICEsize 45 180

Number of gears, z 1 6
First gear ratio, τg,1 2.5 5.0

Last gear ratio, τg,end 0.2 3.0
ICE to transmission ratio, τICEtoTransm 1.0 5.0

Differential ratio, τdi f f 1.0 4.0

For the sake of clarity, in Figure 2, the complete design workflow is found. More
in detail, the swarm population is made of 100 individuals. Once the HEV design cost
function has been assessed for each of them, an iteration of the algorithm ends and the
positions of the individuals are updated according to their speeds. This mechanism allows
the swarm to learn and to evolve intelligently owing to the formulation of the individual
velocity. The excessive computational time deriving from the utilization of the DP led to
the adoption of two stop criteria in the PSO algorithm. The optimization loop ends after
20 generations or if a steady-state solution has been found, i.e., when the best solution has
not updated in the last five PSO iterations. In doing so, either an exhaustive part of the
design space has been analyzed or an interesting design has been found.
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Finally, the core of the study lies in the cost function implemented in the PSO, which
is carefully designed to represent the different aspects to be optimized. It is basically made
of two parts, i.e., the operative cost throughout the vehicle lifetime (set to 200,000 km here)
and the HEV production cost. The objective is to obtain the least of the two combined
costs, thus the considered optimization problem is a minimization one in which the best
solution corresponds to the one with the lowest value among all of them. In this context, a
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remarkably large value of the cost function, representative of infinite, has been assigned
to the unfeasible individuals (i.e., HEV candidate). The formula of the cost function to be
minimized using PSO is expressed in Equation (11) as follows:

JPSO = woper · costoper + wprod · costprod (11)

where costoper and costprod are the HEV operative and production related costs, respectively.
The procedures to calculate both of these HEV cost contributions will be discussed in detail
in the following three sub-sections. woper and wprod are weights applied to the respective
HEV cost terms. In order to provide a broader view of the HEV design possibilities, the
HEV design process using PSO illustrated in Figure 2 is repeated here four times by varying
values of woper and wprod in order to identify four different HEV powertrain layouts: (1) a
totally fuel economy-oriented (TFO) HEV, (2) a mostly fuel economy-oriented (MFO) HEV,
(3) a mostly production cost-oriented (MPO) HEV, and (4) a totally production cost-oriented
(TPO) HEV. It is also worth mentioning that, even in design layouts predominantly oriented
to fuel economy only or production cost only (i.e., TFO and TPO), the respective HEV
cost term that is not optimized does provide a small percentage in the objective function,
i.e., the corresponding weight is not null, yet close to zero. Furthermore, with the two
contributions of the cost function being crucial for the understanding of the research, they
will be thoroughly discussed in the following subsections, preceded by the explanation of
the preliminary tests performed.

3.2. Preliminary Tests

Before simulating the driving missions to estimate the average fuel economy of an
HEV individual, this has to overgo a few preliminary tests that assess the HEV drivability.
To this end, the four tasks that need fulfillment by the HEV powertrain design candidate are
presented in Table 3. These are taken from [20] while adapting the requirements to a class A
passenger car. Tests are performed to prove the capability of the vehicle to overcome steep
roads at different velocities and to ensure the capability of charge-sustaining the battery
even at a high vehicle speed. Moreover, the time required to complete a 0–100 km/h
maneuver is performed using a vehicle model implemented in SIMULINK® to assess
the acceleration performance of each design candidate. More in detail, this latter test is
performed at wide open throttle (i.e., providing maximum power from both ICE and EM)
and the gear-shift is carefully implemented in order to deliver the highest overall propelling
torque at each timestep. Only the HEV candidates successfully passing all four drivability
tasks and achieving a 0–100 km/h time lower than 15 s are then evaluated in terms of fuel
economy capability.

Table 3. Task required to be completed by the HEV in the drivability test.

Task # Road Slope [%] Task Explained

1 30 Perform a standing start
2 0 Maintain 150 km/h vehicle speed
3 7 Maintain 80 km/h vehicle speed
4 0 Charge-sustain the battery at 130 km/h

3.3. Production Cost

Concerning the production cost, it is strictly correlated to the sizes of the power sources
and the transmission characteristics. The following equations were extracted from [14] to
calculate the different factors contributing to the cost of production of an HEV:

costprod = ICEcost + EMcost + Transmcost + Battcost + . . .. . . + costbase + penaltyCO2 (12)

ICEcost = 12.83 · ICEmaxpow + 566 (13)

EMcost = 19.71 · EMmaxpow + 417.5 (14)
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Transmcost = [3.11 + 1.24 · (z− 1)] · ICEmaxpow (15)

where the power values are expressed in kW, the results are in dollars (later converted
into euro using a converter factor taken from the European Central Bank [21]), and all
the coefficients shown are meant for a compact size vehicle. Concerning the terminology,
ICEcost, EMcost, and Transmcost are the production costs related to the ICE, the EM, and the
transmission; Battcost and costbase are two constant terms (i.e., 615 $ and 10,325 $, which
corresponds to almost 9000 €) and they account for the battery cost and a base price owing
to chassis, wheels, other components, and accessories, which comes from [14]. Furthermore,
penaltyCO2 is a penalty added to the production cost related to the CO2 emission; this was
computed only if the HEV candidate exceeds the threshold of 95 gCO2/km imposed by
the European Union for the 2020–21 target [22]. The amount of this penalty is set to 95 € for
each gCO2/km of target exceedance and, even though it is applied to a fleet in general, for
the proposed study, it was considered for the single HEV candidate. Besides, in order to
assess the emissions of each vehicle, a worldwide harmonised light vehicles test procedure
(WLTP) was selected. Using the information related to the fuel consumption of the HEV
in this mission as provided by DP, it is possible to estimate the CO2 emissions of the
design candidate. In the case in which this value is lower than 95 gCO2/km, no penalty is
considered and the production cost is simply Equation (12) without the last term. On the
other hand, an additional vehicle cost contribution is included, being proportional to the
estimated CO2 emissions in the case wherein these are found to exceed European Union
regulatory limits.

3.4. Operative Cost

Regarding the operative cost, it is correlated here with the average fuel consumption
of the HEV candidate, which is assessed through different driving missions. For the
purpose of this study, the considered missions are all real-world ones obtained using a
global positioning System (GPS) in the city of Turin, Italy, and surrounding areas in the
Piedmont region. More specifically, the three different missions are named ‘urban cycle’,
‘uphill cycle’, and ‘highway cycle’, and they are intended to represent diverse driving
environments (i.e., urban, highway, and uphill), hence enriching the exhaustiveness of the
fuel economy evaluation. ‘Uphill cycle’ contains not only information on vehicle velocity
and acceleration over time, but also the net road altitude, which is accounted in the resistive
force to be overcome by the vehicle. For the sake of clarity, in Figures 3–5, the vehicle
speed profiles over time for the three missions are shown, whereas in Table 4, the main
characteristics of each mission are reported. In particular, the trip duration and kilometrical
lengths are given along with the minimum and maximum values of the acceleration, the
highest velocity in the mission, and the variation in altitude shown only for the “uphill”
cycle (Figure 4). This last term is to be intended as the difference between the altitude at
the end of the mission and that at the starting point.
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Table 4. Real-world drive mission main characteristics.

Cycle Duration Length Accel. Range Max Speed Altitude
Variation

Urban 900 s 4.1 km [−1.7, 1.4] m/s2 66 km/h /
Uphill 931 s 17.8 km [−1.7, 1.3] m/s2 113 km/h 246 m

Highway 1240 s 22.9 km [−1.0, 0.8] m/s2 131 km/h /

In order to account for typical driving habits of a person when computing the average
fuel economy, the following computation was developed. The aim here is to focus on the
routine of a worker, hence working days are differentiated from weekends and holidays. In
the former, the person drives only in the urban environment for commuting, thus the first
cycle found in Table 4 accounts for 100% of fuel economy. On the other hand, regarding
weekend and holidays, an average of the simulated fuel economies obtained for the three
drive missions is used where higher weights are attributed to the “highway” and “uphill”
cycles. Moreover, to address the variation in FE due to the number of persons inside the
vehicle, it was added to the curb weight:

• The average mass of a person (i.e., 80 kg) when simulating the urban cycle (solo
driving to work);

• The average mass of four persons when simulating the remaining cycles, thus simulat-
ing a family trip.
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Lastly, considering 11 working months in a year and the remaining 1 as weekend or
holiday, the following final average FE was computed:

FEavg = 0.83·FEurb + 0.09·FEHW + 0.08·FEuphill (16)

where FEurb, FEHW , and FEuphill are the fuel economy values obtained by the HEV candi-
date in ‘urban cycle’, ‘highway cycle’, and ‘uphill cycle’, respectively. As can be seen from
Equation (16), the highest contribution is given by the urban cycle because of the fact that
11 months per year are spent mostly working (excluding the weekends), and thus driving
in a city environment.

4. Results

In this section, the results obtained for the four different HEV design targets imple-
mented in the PSO are found in a Pareto frontier. At first, a glimpse of how the HEV is
controlled is provided by showing the main variables over a given drive mission. Then,
a discussion about the results is provided to analyze the different optimal layouts of the
HEV computed by the design algorithm.

4.1. HEV Control Level Decisions: Example

In Figures 6 and 7, an example of the HEV control trajectories identified by DP during
the WLTP is shown considering two different vehicle layouts embedding a two-speed and
a four-speed gearbox, respectively. These two differ not only in the transmission, but also
in the powertrains: the sizes of the ICE and EM are 68 kW and 14 kW, respectively, in the
two-speed HEV and 99 kW and 29 kW, respectively, in the four-speed vehicle.
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Figure 6. Example of the DP control results for a two-speed HEV driving the worldwide harmonised
light vehicles test procedure (WLTP), equipped with a 68 kW ICE and a 14 kW EM.

More precisely, concerning the figures, on the top half of each, the SOC and the fuel
rate are reported, providing information on the battery and ICE usage, whereas on the
bottom, the speed profile of the drive cycle together with the engaged gear is shown.
Focusing on the activation time of the ICE, it is roughly 29% of the overall drive mission
when referring to the four-speed layout, against 27% with the two-speed HEV. Despite
the longer running time of the former, it operates the ICE at higher efficiency points,
obtaining an average fuel rate of 0.34 g/s in comparison with 0.38 g/s computed with
the two-speed HEV (i.e., 10% higher in the average value throughout the WLTP). Thus,
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it allows a lower amount of battery power to be recharged by the ICE to satisfy the SOC
constraints. More details about the operative points in the brake specific fuel consumption
map of the two ICEs mentioned above will be provided in Section 4.2. It might also be
noted that the instantaneous fuel rate of the two-speed HEV reaches lower peaks, yet this
is expected because the two ICEs are diverse in size. Moreover, a visible difference in SOC
trend is found, especially focusing on the behavior of the two HEVs from 1200 s until the
cycle ending. In this particular time window, the two-speed vehicle prefers to charge the
battery at first, then discharge it to approximately 40%, and then it uses the ICE to bring the
battery up to the initial SOC. Instead, with the four-speed vehicle, the battery is kept in a
thinner SOC window and there is neither substantial usage nor recharge in electric energy.

A laptop computer equipped with Intel Core i7-9850H (2.6 GHz) and 16 GB of RAM
was used to virtually simulate the vehicles. Regarding the two-speed HEV, it needed about
3 min for running the DP-based algorithm, whereas the four-speed took more than 16 min.
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Figure 7. Example of the DP control results for a four-speed HEV driving the WLTP, equipped with a
99 kW ICE and a 29 kW EM.

4.2. PSO Results

The optimal HEV layouts resulting from the PSO algorithm for the four different
design targets (i.e., TFO, MFO, MPO, TPO) are shown in Figure 8 as a Pareto frontier for
average fuel economy and HEV production cost. As already stated in Section 3.1, the
different HEV designs are oriented fully or mostly towards one of the two costs to be
optimized, i.e., the production or the operative ones. This is performed by varying the
value of wgasol in the PSO objective function considering four discretized values ranging
from 0.05 to 0.95 and repeating the entire HEV design workflow. Before presenting the
final results obtained, it may be helpful to point out that about 24 days (i.e., approximately
570 h of computation) were dedicated to the design of the four different HEV layouts. To
this end, the adoption of the PSO made possible an overall time reduction by guiding the
sizing “evolution”, still providing exhaustive outcomes.
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As seen in Figure 8, the two HEV layouts identified by PSO as TFO and TPO exhibit
considerably different results in terms of production and fuel-related costs. This confirms
the quality of PSO as design algorithm, which is able to intelligently optimize the different
sizing parameters. The sizing parameters for the different optimal HEV powertrain layouts
identified by the PSO are found in Table 5, along with additional information (i.e., HEV
production cost, HEV fuel related cost, average fuel economy, and CO2 penalty). In this
table, the first layout corresponds to the totally production cost-oriented objective function
(TPO), whereas the fourth is the totally fuel economy-oriented one (TFO). More in detail,
the TPO HEV layout resulted in 10,875 € in production cost and 9854 € for the lifetime
operative cost. On the opposite side, the TFO HEV layout obtained 11,736 € in cost due
to the production (which corresponds to 860 € more than the previous design), yet the
operative price dropped by about 500 €, resulting in 9345 €. Moreover, the two “middle”
designs resulted in similar costs and their absolute differences are approximately 160 €
regarding the production cost and about 90 € concerning the operative costs. No CO2
penalties were added to any optimal layout as all resulted in an emission value below
the threshold.

Table 5. Optimal HEV layouts’ parameters.

Parameters TPO MPO MFO TFO

ICE size [kW] 68 71 80 99
EM size [kW] 14 27 30 29

Number of Gears 2 3 3 4
First Gear Ratio 3.52 3.92 2.58 2.95
Last Gear Ratio 0.73 0.37 0.46 0.54

Final Drive Ratio 2.61 2.22 2.61 2.29
ICE-Transm Ratio 2.17 1.56 1.42 1.11

Prod. Cost [€] 10,875 11,210 11,371 11,736
Fuel Cost. [€] 9854 9556 9461 9345

Avg. FE [L/100km] 3.39 3.29 3.26 3.22
CO2 penalty / / / /

It might be worth reasoning on the choice of the PSO to the outcome of a four-speed
HEV for the totally fuel economy-oriented layout. In this scenario, it is crucial to remember
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that, even in the TFO HEV design case, a small percentage in the PSO objective function
is assigned to the non-optimized cost (i.e., the production cost in this framework), the
benefits in average fuel economy of having higher number of gears are shadowed by the
substantial increase in production cost.

As a general trend observed in Table 5, the more importance given to the lifetime
operative cost, the larger the size of both ICE and EM and the higher the number of gears
in the transmission. This behavior might be partially explained by the capability of these
HEV powertrain designs to shift the ICE operating points towards more efficient areas,
owing to both the higher number of gears (i.e., the larger flexibility on ICE speed) and the
higher torque deliverable by the EM, which in turn allows fine tuning the ICE torque to
reduce fuel consumption.

The explanation just provided for fuel economy enhancement due to larger ICE, EM,
and to higher number of gears is also supported by Figure 9, in which the WTLP operating
points of the ICE for the four different identified HEV powertrain layouts are shown. In
these graphs, the efficiency is given as brake specific fuel consumption (BSFC) and, as
usual, the torque is reported as function of speed. It is to be noted that, although the maps
look equal, the scale on the ordinate axis changes according to the ICE size.
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A marked shift of the operating points can be progressively observed going from
Figure 9a–d as the importance given to the operative cost is gradually increased. In
Figure 9a, the ICE operating points for the TPO HEV design are found to be spread over
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the BSFC map, even in low efficiency areas owing to small sizes in ICE and EM and to
the reduced number of gears in the transmission. Instead, in Figure 9d, the obtained
ICE operating points for the TFO HEV design are close to the most efficient BSFC zone,
thus allowing a substantial improvement in fuel economy at the expense of the overall
HEV production costs owing to larger ICE and EM sizes and a higher number of gears in
the transmission.

5. Conclusions

This paper proposes an comprehensive and reliable design process for addressing the
optimal P2 HEV layout of a class A vehicle for four different design targets. The sizing of
the parameters is carried out through an evolutionary algorithm called PSO, whereas the
energy management is provided according the DP process. Each HEV powertrain design
candidate (or individual) has to be tested in drivability and acceleration to firstly ensure its
driving feasibility. Then, its fuel economy capability is assessed using DP and considering
real-world driving missions and the typical yearly driving habits of a user. The results show
a large diversity in sizing parameters when different weights are assigned to conflicting
HEV design targets such as overall vehicle production and fuel economy capability. When
down-sizing ICE and EM and embedding a reduced number of gears in the AMT to limit
HEV production cost, larger fuel consumption is generally observed owing to the ICE
being constrained to operate in less efficient BSFC points. Nevertheless, a reduced number
of gears in the AMT compared with a conventional engine-powered vehicle is suggested
to be effective for an HEV thanks to the coordinated interaction between EM and ICE.
Indeed, the outcomes for the HEV under design suggest that more than four gears would
not be needed. This is mainly because of the fact that further enhancing the HEV fuel
economy capability would not be possible without largely increasing the overall vehicle
production cost. However, this statement should be related to the considered real-world
driving scenarios (i.e., urban uphill and highway) and it might need further verification if
different driving conditions were encountered by the HEV.

Related future work could consider using different HEV control strategies to lower the
computational cost derived from the usage of DP, thus enhancing the computational effi-
ciency for the HEV design parameters exploration. Equivalent consumption minimization
strategy (ECMS) [23], slope-weighted energy-based rapid control analysis (SERCA) [24], or
similar computationally-efficient HEV control strategies could find implementation in this
framework. Car manufacturers might exploit this reliable design process to address the
optimal HEV powertrain layout problem in this way. Besides, it might be interesting to
study how the variation in HEV powertrain architecture (e.g., P1, P2, P3, and P4) impacts
the HEV design outcomes, or to consider a different average fuel economy computation
involving different customer habits.
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