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Abstract: Aggregation always occurs in industrial processes with fractal-like particles, especially
in dense systems (the volume fraction, φ > 1%). However, the classic aggregation theory, estab-
lished by Smoluchowski in 1917, cannot sufficiently simulate the particle dynamics in dense systems,
particularly those of generat ed fractal-like particles. In this article, the Langevin dynamic was
applied to study the collision rate of aggregations as well as the structure of aggregates affected
by different volume fractions. It is shown that the collision rate of highly concentrated particles is
progressively higher than that of a dilute concentration, and the SPSD (self-preserving size distribu-
tion) is approached (σg,n ≥ 1.5). With the increase in volume fraction, φ, the SPSD broadens, and
the geometric standard is 1.54, 1.98, and 2.73 at φ = 0.1, 0.2, and 0.3. When the volume fraction,
φ, is higher, the radius of gyration is smaller with the same cluster size (number-based), which
means the particle agglomerations are in a tighter coagulation. The fractal-like property Df is in the
range of 1.60–2.0 in a high-concentration system. Knowing the details of the collision progress in
a high-concentration system can be useful for calculating the dynamics of coagulating fractal-like
particles in the industrial process.

Keywords: collision; Brownian motion; aggregation; molecular dynamics

1. Introduction

The coagulation of nanoparticles in the air or industrial processes is an inevitable
outcome; in such a process, the total particle number decreases but the mean size of the
particles increases [1–3]. In 1927, Smoluchowski established a governing equation for
describing the coagulation process, which was later called the Smoluchowski equation (SE)
or coagulation equation [4]. SE is suitable for a system where one spherical particle forms
once two particles collide and the volume fraction of the system, φ, is limited (φ < 0.01) [5].
The basis of this SE is Einstein’s theory of particle diffusion in the flow field, which focuses
on many assumptions and restrictive conditions in the process of Stokes’s steady-state
force on particles and Van’t Hoff’s calculation of osmotic pressure. However, when the
multiphase system is far away from the dilute phase conditions (φ < 0.01), the distance
between adjacent particles will decrease accordingly. When the distance between particles
reaches the magnitude of the particle-free path, the correlation between particles cannot be
ignored—that is, the SE is no longer applicable [6].

The coagulation of nanoparticles in dense conditions happens in many industrial
processes. For dealing with the ultrafine particles emitted from exhaust pipes [7], dust
particle agglomerations formed of clusters [8], emulsions [9], and particle coagulations, the
aerosol process has been described by the Smoluchowski theory of Brownian aggregation,
which refers to the random motion in a fluid [10]. It is believed that the process of particle
collision mostly depends on the grain size, the concentration of particles, and the transport
coefficients in the mechanism.
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Early examples of research into Brownian aggregation include research on the effect
of bulk stress [11]; fluid shear involving polymerization [10]; the influence of transport
on the coagulation rate, such as diffusion consistency [7] and fluid viscosity shear [12];
transition regime; and the mass transfer function of the Knudsen number [13]. Such
approaches, however, have failed to address the dense particulate system (effect fraction
φ > 0.01). Simultaneously, a high solid concentration is common in industrial production—
for instance, flame, plasma, and laser material synthetic technology works on high particle
concentrations [14], the aerosol of aggregating clusters [15], and TiO2 aerosol agglomerate
at high solid concentrations [16].

The research results of Heine and Pratsinis [15] confirmed that the classical Smolu-
chowski theory is limited to cases where the particle volume concentration is less than
0.1%. When the particle volume concentration is higher than this value, the collision
frequency between particles is higher than the predicted value given by the Smoluchowski
theory, and the collision frequency of the particles in the system is a function of the volume
rate of the particles in the system. The larger the particle volume ratio is, the higher the
collision frequency of the system particles is and the greater the deviation between the
real situation and the predicted value of the classical Smoluchowski theory is. Based on
the numerical simulation results of Langevin dynamics (LD), Heine and Pratsinis [15] and
Trzeciak et al. [6] give fitting expressions for the collision frequency between particles in
the dense phase state. However, although the expressions they gave are quite different
in form, they do not deviate from the framework of classical Smoluchowski theory. They
are all modified expressions of the classical theory, and the fitting expressions cannot be
interpreted in a strictly physical meaning. It should be pointed out that Trzeciak et al.
(2006) studied monodisperse systems, while Heine and Pratsnis studied polydisperse
systems, but the LD simulation gave very similar results. Both Heine and Pratsinis [15] and
Trzeciak et al. [6] deal with spherical particles. While in real coagulation systems, particles
are normally displayed as fractal-like agglomerates or aggregates, the collision rate and
dynamics of aggregates are absolutely different from those of spherical particles. Thus, it
is necessary to study collisions among particles due to coagulation when these particles
appear in aggregate form.

Although several methods currently exist for the measurement of collision in an
aggregation, numerical simulation is currently the most popular method for investigating
the particle aggregation process [11]. The Monte Carlo method [17,18] and the Moment
Method [19–24] are currently the most useful methods for investigating particle dynamics.
Whilst it is quite complicated to predict the trajectory tracking in the motion process of every
particle with the growth of particles for aggregation, the molecular dynamics method is
calculated by following the movement of particles on the molecular scale [25]. The solvent
molecules are not explicitly included in the simulation but contribute to the dynamics of
Brownian particles collectively as a random force. This reduces the dimensionality of the
problem, making the Langevin Dynamic (L-D) less computationally intensive than the
corresponding numerical simulations [26].

Here, in this article, the collision of particles affected by the volume fraction is in-
vestigated. The evolution of the population of clusters is studied in different particle
volume fractions (φ = 0.05, 0.1, 0.2, 0.3). The nature of agglomerate particle dynamics is
described using monomers in implicit solvent. Emphasis is placed on the attainment of
self-preserving size distributions (SPSDs). The characterization of fractal-like structures
dominated by Brownian coagulation is then discussed. The relationship of the radius of
gyration and the fractal dimension (D f ) is investigated in the different volume fractions.
Finally, a summary of the fractal aggregates distribution range and fractal-like structures in
the nanoscales is given in detailed aggregates.
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2. Materials and Methods

We consider particles as exclusively spheres; sphere–sphere collisions have occurred
in the random motion. The force of particle j acting on particle i is defined by the Langevin
Dynamic equation.

→
Fi =

(
Fc + Ff + Fr

)
Fij, (1)

where
→
Fi is the conservative force of atom i given by atom j computed; Ff is the friction

term proportional to the particle’s velocity; Fr is the force due to implicit solvent atoms
bumping into the particle, which represents the randomicity of Brownian motion; Fij is
the unit vector of direction of ri to rj. Equation (1) is the motion of the particles in the
simulating procedure and the MD simulation.

Ff = − f vi, (2)

f = −mγ, (3)

Fr = α

√
2kBTγ

∆t
, (4)

where vi is the velocity of particle i; m is the mass of the particle; kB is the Boltzmann
constant; T is the temperature; ∆t is the timestep size; α is a Gaussian random number; γ is
the friction rate between nanoparticles and implicit solvent fluid; f is the friction constant,
which equals the mass of the particle multiplied by the friction rate [26].

The force corresponding to the potential function is:

Fc = −∇u
(
aij
)
, (5)

u
(
aij
)
= 4ε

( σ

aij

)12

−
(

σ

aij

)6
aij < rc. (6)

The Lennard-Jones (L-J) potential equation describes both the attractive force and
repulsive force [27,28], where the former part of Equation (6) expresses the repulsive effect
while the latter expresses the attraction.

The aggregation in the L-D simulation is completed with the collision of pair particles
(or multiple), occurring once two (or multiple) particles contact or overlap (Figure 1). In
the initial state, all nanoparticles in the fluid environment are in a simple cubic distribution,
and the distances between the particles are equal. It is not necessary to consider the effects
of gravity coagulation and shear coagulation due to the small size of the nanoparticles [29].
In order to facilitate the calculation, all particles in the simulation system are divided into
neighbor lists. A concentric circle in the cutoff distance, rc, is constructed to calculate the
interaction force between particles.
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The simulation boundary condition is periodic and the neighbor list store with rc. The
statistic of collision in unit time ∆t of particle I could be described by:

βc(Collision)⇐⇒ aij ≤ rmin, (7)

where aij is the collision diameter with particle i and particle j; rmin = dp. The particles
were sampled under the steady state. In order to make the list effective in continuous
time steps and increase the fault tolerance rate, bin skin is added out of the cutoff distance,
which is generally set to 0.3 or 0.4. All particles in the neighbor list should be calculated at
collision (Figure 1). Each particle is regarded as the center particle, i, and the surrounding
particles are regarded as the collision particle, j. It is supposed that each particle has an
effective cross-section when the collision particle contacts with the center particle, which
is determined by the effect diameter aij = dp (Figure 1). For analysis, the number of
aggregations is counted once particles, excepting the center particle, are in the effective
cross-section. The center particle is also in the flow state. As depicted in Figure 1, the
random movement of particle j with radius rj enters the range of influencing spheres.

In this article, the definition for dilution and dense condition from the reference [2] is
accepted, such that the volume fraction φ < 0.01 is a dilute concentration while φ > 0.01 is
a high concentration. The volume fraction at the dilute concentration in classic coagulation
theory is:

φ =
π ∑n

i=1 di
3

6LxLyLz
, (8)

where LxLyLz is the domain volume. The primary particles turn into the new cluster with
the center of mass, radius of gyration, and velocity due to the collision and growth of
particles. The fractal agglomerates are formed when agglomerates account for more than
15% of the system concentration. Because of the sharp decrease in the concentration of the
number of particles, the probability of Brownian collisions is very low, which is consistent
with the self-preserving size distributions [16].

With the collision of Brownian motion, the monomers polymerize into aggregation
with short living for the hard model. The clusters, composed of monomers, are identified
by the position statistics of each primary particle (Figure 2). Accounting for the size of
non-spherical aggregates on a long time length, the diameter of the aggregate is shown
in Figure 2, in which particle rotation during collision is neglected. The cluster consists
of many monomers with different degrees of overlap, and the circle of the clusters could
roughly indicate the size of it (Figure 2). The growth of the aggregate structure via particle–
particle collisions is formed by the coagulation of primary diameter dp. In particular, fractal
aggregates are investigated by the radius of gyration [30–33]:

np = kg

(
dg

dp

)D f

. (9)
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Here, for fractal-like aggregates, np is the number of particles in the aggregates; the kg
is the fractal per factor (also described as the structure coefficient), which is always roughly
1.5 for ng > 10, and this increases with the overlapping of primary monomers; D f is the
fractal dimension, which is typically assumed to be D f ≈ 1.8 [28]. The ability to track
the individual particle position is permitted to calculate the radius of gyration without
assuming the values kg and D f . The dg is the diameter of gyration, which consists of ni
primary particles at the position of (x1, · · · · · · , xn), and is given by:

d2
g =

4
∑i mi

∑
i

mi

(
|xi − o|2 + Rg,i

2
)

, (10)

Rg =

√
1
n

n

∑
i=1
‖xi − o‖2, (11)

where o denotes the center of mass. One monomer acting on another only in a single point
is assumed, while several aggregates have a certain degree of overlapping. Additionally,
the fractal dimension could be described among the radius of gyration:

np = kg

(
Rg

ap

)D f

, (12)

where ap is the initial radius of particles.

3. Results and Discussion

In all cases, particles are placed by sample cubic unit cell in the periodic boundary
conditions. Note that the employed box size LxLyLz changes to accommodate different
volume fractions φ, as in Equation (7), whilst keeping a constant number of particles
(n = 1). In particular, the domain box size is 2.79641e + 07 nm3, 1.39919e + 07 nm3,
6.99583e + 06 nm3, or 4.66159e + 06 nm3 when the volume fraction φ is equal to 0.05, 0.1,
0.2, or 0.3, respectively. The particles are initially monodispersed, dp = 3 nm in diameter,
with a density of 2.2 g/cm3. The particles are randomly placed in a box without overlapping
and touching. They will grow by Brownian motion and aggregate in the implicit solvent at
T = 300 K. The temperature of LD simulation is modified by modifying the force without
performing time integration. Therefore, specific time integration (NVE ensemble) must be
used to fix the velocity and position of particles.

3.1. Splitting Time Step

The length of the operator splitting time step size affects the accuracy and stability of
the coupling between the gas phase and particle population balance [34]. If the running
step is too long, the balance of the system could be broken and lead to a sinking term in
the particle phase [35]. Due to the principle of molecular dynamics simulation, fs(10−12 s)
is generally selected as the timestep scale and it is converted to units of ns(10−9 s) to
fit the overall scale of nanoparticles. The small timestep could increase the calculation
cost; moreover, the timestep should be small enough so that the force on a particle can be
assumed to be constant during the timestep [36]. Thus, choosing an appropriate time step
is necessary to investigate convergence behavior.

In order to ensure the practical significance of the sampling results, a sufficiently
substantial number of particles was used to operate with multi-running for convergence.
The number of particles before collision (n) is 100,000 and the total time length (L) is 60 ns.
The cluster is in a self-preserving distribution based on Brownian collision, while the
particle population is balanced [37], which is reasonably used as an examination standard
for the convergence of the system in different timestep sizes.

Figure 3 describes the cluster concentration based on the different time step sizes
in the same simulation range (L = 60 ns). It can be seen that the convergence is finally
completed within 45 ns in addition to the disturbance of the end acquisition time, which
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is the error of the acquisition method for molecular dynamics. When the timestep size ∆t
is 0.001, the growth trend of the curve line is smoother, and it takes longer for it to reach
convergence. Compared to the stable stage with other timesteps, the smaller the timestep
size is, the less disturbance there is with the sampling.
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Figure 3. Aggregates concentration with time range (L = 60 ns).

The average value of the cluster distribution with different timesteps is taken as a
stable value ξ(t) to solve the error er(t) of random operation with different timesteps:

er(t) =
|u(t)− ξ(t)|

ξ(t)
, (13)

where u(t) represents the cluster distribution at each timestep. The results of errors are
shown in Figure 3. It is found that the convergence of different timesteps is roughly the
same under the long range of simulation time. The smaller timestep has been tending to
lower error in the stable range. Figure 4 is the CPU calculating time with various timestep
scales, which indicates more simulation time in a smaller timestep. The CPU total running
time is in the controllable range even if the timestep is 0.001 ns. As discussed above, it is a
better choice if the timestep of simulation is 0.001 ns and the whole time range L is 60 ns.
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3.2. Particle Collisions at Different Volume Fractions

The number of particle clusters with the occurrence of collisions is shown in Figure 5.
N0 is the initial number of particles (N0 = 100,000); Ni represents the population of particle
clusters, and the initial monomers are regarded as one cluster (Ni ≤ N0). In addition,
highly concentrated fractal-like aggregates undergoing coagulation develops SPSDs only
temporarily, and they approach gelation at an effective agglomerate concentration of about
0.15 [10]. All the clusters are monomers before the collision. In Figure 5a, the scaled number
concentration of clusters is Ni/N0 = 1 when the time is at 0 ns. The number of clusters
decreases rapidly in an earlier period, but finally it stabilizes with the evolution of time.
Figure 5a also shows the larger volume fraction in the initial condition, the faster decay rate
of the aggregate number. In the figure, the evolution of particle numbers with time is also
displayed by implementing classical steady-state Smoluchowski model using Brownian
Dynamics Simulations (BDS) in the volume fraction, φ = 0.005, 0.0005 [36]. It is clear that
the decay of particle numbers in the BDS is much slower than that in the present simulation,
which indicates that the collision rate in dense conditions is much larger than that in the
dilute condition. Figure 5b shows all the aggregates concentrations in the cases that are
more than 15% so that all the systems can be developed into SPSDs.

Appl. Sci. 2021, 11, 6815 7 of 12 
 

3.2. Particle Collisions at Different Volume Fractions 
The number of particle clusters with the occurrence of collisions is shown in Figure 5. N0 

is the initial number of particles (N0 = 100,000); Ni represents the population of particle clusters, 
and the initial monomers are regarded as one cluster (Ni ≤ N0). In addition, highly concen-
trated fractal-like aggregates undergoing coagulation develops SPSDs only temporarily, 
and they approach gelation at an effective agglomerate concentration of about 0.15 [10]. 
All the clusters are monomers before the collision. In Figure 5a, the scaled number con-
centration of clusters is ⁄ = 1 when the time is at 0 ns. The number of clusters de-
creases rapidly in an earlier period, but finally it stabilizes with the evolution of time. 
Figure 5a also shows the larger volume fraction in the initial condition, the faster decay 
rate of the aggregate number. In the figure, the evolution of particle numbers with time is 
also displayed by implementing classical steady-state Smoluchowski model using Brown-
ian Dynamics Simulations (BDS) in the volume fraction, = 0.005, 0.0005 [36]. It is clear 
that the decay of particle numbers in the BDS is much slower than that in the present 
simulation, which indicates that the collision rate in dense conditions is much larger than 
that in the dilute condition. Figure 5b shows all the aggregates concentrations in the cases 
that are more than 15% so that all the systems can be developed into SPSDs. 

  
(a) (b) 

Figure 5. Agglomeration concentration with the change in particle numbers: (a) the evolution of particle numbers with 
time; (b) the effective agglomerate concentration in the system. 

Figure 6 shows the static structural “snapshot” of aggregate systems at the same time 
point, t = 100 ns, from the different volume fractions ( = 0.05, 0.1, 0.2, 0.3). For the conven-
ience of the visualization and analysis of the simulation data, the calculated data in the pre-
sent study are rendered according to cluster size (number based) by OVITO [38]. In order 
to note the form of aggregates clearly, the clusters with only one monomer are restricted to 
transparent states. Among all the investigated cases, the system with initial volume fraction = 0.05, has the least probability of occurrence of aggregates; in contrast, the system with 
the initial volume fraction = 0.3 has the greatest probability. From the static structural 
“snapshot” shown in Figure 6, it can also be found that at the larger volume fractions, the 
aggregates are composed of more monomers and the fractal-like form is more obvious. 
This is consistent with the finding that the coagulation kinetic in the dense condition is 
faster than those at dilute concentrations [10]. 

 φ = 0.05
 φ = 0.1
 φ = 0.2
 φ = 0.3

0 10 20 30 40 50 60
0.6

0.7

0.8

0.9

1.0

 φ = 0.005 (Kelkar et al, 2013)
 φ = 0.0005 (Kelkar et al,2013)pa

rti
cl

e 
nu

m
be

r d
en

sit
y,

 N
i/N

0

time, t (ns)

0 10 20 30 40 50 60

0.6

0.7

0.8

0.9

1.0

0.05 0.1 0.2 0.3
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

ag
gr

eg
at

e 
co

nc
en

tra
tio

n,
 n

/N
i

volume fraction, φ

Figure 5. Agglomeration concentration with the change in particle numbers: (a) the evolution of particle numbers with
time; (b) the effective agglomerate concentration in the system.
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Figure 6 shows the static structural “snapshot” of aggregate systems at the same time
point, t = 100 ns, from the different volume fractions (φ = 0.05, 0.1, 0.2, 0.3). For the
convenience of the visualization and analysis of the simulation data, the calculated data in
the present study are rendered according to cluster size (number based) by OVITO [38].
In order to note the form of aggregates clearly, the clusters with only one monomer are
restricted to transparent states. Among all the investigated cases, the system with initial
volume fraction φ = 0.05, has the least probability of occurrence of aggregates; in contrast,
the system with the initial volume fraction φ = 0.3 has the greatest probability. From
the static structural “snapshot” shown in Figure 6, it can also be found that at the larger
volume fractions, the aggregates are composed of more monomers and the fractal-like
form is more obvious. This is consistent with the finding that the coagulation kinetic in the
dense condition is faster than those at dilute concentrations [10].
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Figure 6. Collision results of primary particles from different volume fraction.

Figure 7a is the normalized particle number size distributions at the same time
t = 100 ns, generated from various solid volume fractions. In the figure, di represents
the number-based size of aggregates i, and the monomer seems as di = 1; dave is the number
based geometric mean diameter. The distribution is closer to dilute concentration when
the volume fraction is 0.05. As compared to the dilute particle system, the system with a
higher volume fraction shows a wider distribution of numbers. It implies that under dense
conditions, particles have more probability to collide, as shown in Equation (7).

Figure 7b is the number-based average geometric standard deviations as the function
of different volume fractions, σg as the function of different volume fractions, φ. As a
comparison, the calculation data from Heine and Pratsinis [10] is displayed. When φ < 0.1,
the present LD simulation and Heine and Pratsinis’s work match for the geometric standard
deviations (σn = 1.52). The present LD simulation agrees well with Heine and Pratsinis’
data under the dilute condition; with an increase in the volume fraction, the deviation
between the two works increases. This is because in Heine and Pratsinis’s work [10], the
complete coalescence process for spherical particles is considered, while in the present
work the aggregate process for fractal-like particles is considered. By comparing the two
works, it can be concluded that the number distribution for the aggregate process has a
broader distribution than that for spherical particle coagulation.
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3.3. Cluster Analysis of Collision Particles

The relationship between the radius of gyration and the cluster size of aggregates at
different volume fractions is studied (Figure 8). When the volume fraction, φ, is higher,
the radius of gyration is smaller with the same cluster size (number-based), which means
the aggregates are in a tighter structure. When the monomers in aggregations are less
than two, the radius of gyration of clusters is less than the initial radius (rp = 1.5) in all
the volume fractions. An increasing particle concentration results in clusters with larger
collision diameters and a higher degree of aggregate, which is consistent with Grass [39].
Assuming the kg = 1, with fractal dimensions D f = 1.8 and D f = 3 according to Equation
(12), the radius of gyration as the function of cluster sizes is displayed in the green and
purple scatters. The results of different volume fractions are between 1.8 to 2.0 when
the agglomerations appear in a fractal-like structure. Agglomerates containing about 10
to 30 primary particles on average attain their asymptotic fractal dimension, Df, of 1.91
or 1.78 by ballistic or diffusion-limited cluster–cluster agglomeration, corresponding to
coagulation in the free molecular or continuum regimes, respectively [40]. The transition of
Df from three (initial monomers) to its asymptotic 1.78 or 1.91 occurs as particle coalescence
upon collision slows down by increasing particle size. The aggregates have not rigorously
attained a fractal-like structure when the volume fraction φ = 0.05 because such structures
have not reached sufficiently large sizes.
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The particle j coordination number in the range of dij of particle i with different vol-
ume fractions is shown in Figure 9. Here, Z(x) indicates the average number of contacts
per monomer, and Nd is the count that indicates the number of monomers whose coordi-
nation number is Z(x). When the volume fractions are more than 0.1, the distributions of
coordination numbers are similar, but the coordination numbers are more aggregated with
single connected particles (value 1). The aggregation of monomers formed with a larger
geometric diameter and wider distribution as the increase in the volume fraction, which
means that the polydisperse of coagulation is higher with the denser system. Teichmann
and Van also found that the coordination number (i.e., the average number of contacts per
monomer) increases with the compression of aggregates [41].
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Figure 10 shows the power-law relationship between the radius of gyrations and
the number of monomers in each aggregate under stable conditions. The slope of the
straight line is the fractal dimension of the cluster, and the length of the straight line is
the size distribution width of the cluster [40]. With an increase in the volume fraction,
the aggregates cluster tends to be a fractal-like structure and the fractal dimension in the
range of 1.614–2.060. The aggregate structure and Df both depend on the ratio of collision
time. Under the restrictive condition, tc > ∆t, monomers evolve into fractal-like aggregates
immediately upon collision. Lower Df exhibits an increased cross surface area, which
leads to a faster collision among aggregates and monomers. Hence, the aggregate system
achieves its SPSD faster with a decreasing Df [42]. For agglomerates, the primary particles
stick upon inter-particle collision, forming fractal-like agglomerates with Df = 1.9 [42–44].
When the volume fractions are higher, the Df of aggregates formed by collision is closer
to 1.9.
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4. Conclusions

The effect of the particle volume fraction on particle collision and growth by Brownian
coalescence in the dense system was investigated using LD simulation. Self-preserving par-
ticle size distributions (SPSDs) were obtained at all investigated particle volume fractions
φ from 0.05 to 0.3. With the increase in φ, the SPSD broadens, and the geometric standard
deviation becomes 1.54, 1.98, and 2.73 at φ = 0.1, 0.2, 0.3.

Aggregates formed by particle collision have significant differences for the volume
fraction φ = 0.05, 0.1, 0.2, 0.3 with the same initial particle size dp = 3 nm. When the
volume fraction φ is higher, the radius of gyration is smaller with the same cluster size
(number-based), which means that the particle agglomerations are in a tighter coagulation.
With the increase in the volume fraction, the aggerates tend to be fractal agglomeration
and the fractal dimension in the range of 1.614–2.060. When the volume fraction is high,
the agglomeration from the collision develops fractal-like structures.

A summary of the fractal aggregate distribution range and fractal-like structures in
the nanoscales is given, which could be applied to progress design for multi-collision
nanoclusters. Finally, the detailed size distributions can be readily used with the dynamics
of industrial progress design, air pollution, and meteorology.
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