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Abstract: Nanostructured titania (TiO2) is the most widely applied semiconducting oxide for a
variety of purposes, and it is found in many commercial products. The vast majority of uses rely on
its photo-activity, which, upon light irradiation, results in excited states that can be used for diverse
applications. These range from catalysis, especially for energy or environmental remediation, to
medicine—in particular, to attain antimicrobial surfaces and coatings for titanium implants. Clearly,
the properties of titania are enhanced when working at the nanoscale, thanks to the increasingly active
surface area. Nanomorphology plays a key role in the determination of the materials’ final properties.
In particular, the nucleation and growth of nanosized titania onto carbon nanostructures as a support
is a hot topic of investigation, as the nanocarbons not only provide structural stability but also
display the ability of electronic communication with the titania, leading to enhanced photoelectronic
properties of the final materials. In this concise review, we present the latest progress pertinent to
the use of nanocarbons as templates to tailor nanostructured titania, and we briefly review the most
promising applications and future trends of this field.

Keywords: titania; anatase; rutile; carbon; nanotubes; nanoparticles; nanorods; nanosheets; graphene;
photocatalysis

1. Introduction
1.1. Titania Properties and Uses

Titanium dioxide or titania is certainly the most studied semiconducting oxide due
to its well-established photo-activity. Well-known features that render it so attractive are
its low cost, negligible toxicity, high stability, easy handling, and resistance to chemical
corrosion. This semiconductor has the known ability to absorb light in the ultraviolet (UV)
wavelength range and generate excited charges, electrons and holes, which separate in the
conduction and valence band, respectively, and are at the core of its photo-activity. This
key property of TiO2 has been widely investigated firstly in catalysis and later in medicine,
especially to attain antimicrobial coatings for medical implants [1]. The wide applications
of titania for air and water remediation, cultural heritage preservation, and self-healing, as
well as microbial inactivation and the mitigation of SARS-CoV-2 spreading onto surfaces,
have been recently reviewed [2] and are thus not discussed in detail in this review.

Despite the many advantages offered by titania, this material also suffers from some
drawbacks, such as a rapid recombination of the photo-excited charge carriers and the
relatively wide band gap (in the range of 3.2 eV) which implies a poor utilization of solar
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light due to the small percentage of UV radiation of sunlight reaching the Earth’s surface.
Remedies that have been developed to address these issues include the use of suitable
supports [3], doping with other elements [4], embedding in composites [5], and the devel-
opment of suitable nanostructures [6], also following green protocols [7]. These approaches
have indeed allowed the practical widespread use of TiO2—for instance, for biomass con-
version processes [8]—thanks to the improved hydrothermal stability of the catalyst [9].
In particular, the combination of titania with noble metals and carbon nanostructures has
allowed the development of high-performing gas sensors [10] and photocatalysts [11].
Dye-sensitizers combined with titania allow metal-free photocatalysts to be attained for
hydrogen production using visible light [12]. Hydrogen-peroxide production is another
area in which titania is highly promising [13], as well as solar cells [14].

The morphology and crystallinity of the titania phase are important parameters in
the determination of the resulting photo-electronic properties of the final material [15].
However, only a few studies compare the photo-activity of the three phases of titania (rutile,
brookite, and anatase; Figure 1) [16], while the majority of works focus on the generally
best-performing anatase phase [17]. Titania can be produced by several methods, with
sol-gel [18], hydrothermal [19], and solvothermal [20] processes being the most popular,
and in some cases also microwave-assisted methods [21]. However, other approaches are
also often used, such as anodic oxidation [22] and atomic layer deposition [23], and others
are under continuous development; for instance, the use of laser beams [24], molecular
layer deposition [25], and air-plasma spraying [26].
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1.2. Carbon Nanostructures Properties and Uses

Carbon nanostructures represent a large family of materials based on carbon char-
acterized by a diversity of morphologies and structures (Figure 2) [27]. Typically, they
present very interesting electronic and conductive properties that arise from the extended
conjugation of sp2 atoms, although exceptions exist. For instance, nanodiamonds contain
mainly sp3-hybridized carbon atoms, as the name suggests [28]. Nanocarbons have been
engineered to feature sp-hybridized carbon atoms as well, especially for energy conversion
and storage applications [29]. In particular, sp-hybridized one-dimensional “synthetic
carbon allotropes” are emerging as attractive molecular wires for advanced applications in
electronics and opto-electronics [30].
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Among the most studied carbon nano-allotropes are zero-dimensional fullerenes [33],
which can be considered as soccer-ball shaped structures, one-dimensional carbon nan-
otubes (CNTs), which have a tubular morphology [34], and two-dimensional graphene-
based materials [35], which generally consist of nanosheets. Other well-known examples
include nano-onions (CNOs) [36], which consist of concentric fullerenes, and nanohorns
(CNHs), which arise from clusters of nanocones [37]. In recent years, the class of carbon
dots has attracted attention thanks to their ultrasmall structure (<10 nm), which provides
them with characteristic luminescent properties [38].

Carbon nanostructures have found a wide variety of applications over the years thanks
to their electronic and thermal conductivity, low density, and high mechanical strength, as
well as the ability to undergo chemical functionalization to further tune their properties
as needed for the intended use [39]. They are being studied especially for energy [40] and
catalysis [41–43], including electro-catalysis [44,45] and nanozymes [46], as well as for the
development of advanced electronic applications [47], including supercapacitors [48,49]
and batteries [50], wearable electronics [51], electro-catalytic water-splitting [52], electro-
magnetic interference (EMI) shielding materials [53], molecular magnets [54], thermal-
energy harvesting [55], photo-detectors [56], and electrochemical sensors [57]. In particular,
in the area of sensing [58], recent developments have been made in the areas of nano-mass
and nano-force sensors [59], gas sensors [60], biosensors [61], temperature sensors [62], and
the growing field of touch or motion-driven sensors, or “haptics” [63]. Another area of
growing interest regards environmental remediation [64], including water purification [65]
and the detection of various pollutants, such as pesticides [66] and pharmaceuticals [67].
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In materials science, they are well-known as nano-fillers [68,69], but also used as flame-
retardants [70].

Finally, carbon nanomaterials can be applied for biomedical use [71–74], especially
in oncology [75,76], theranostics [77], drug delivery [78], antimicrobials [79,80], and DNA
analysis [81]. A biomedical area that is progressing at a fast pace is tissue engineering [82],
especially for nerve [83], cardiac [84], and bone [85] tissues. In bioelectronics, synaptic
transistors and neuromorphic computing [86] are progressing at a fast pace.

2. Carbon Nanostructures as Templates for Titania Nanomorphologies

The efficiency of titania photo-activity can be significantly improved through nanos-
tructuring and heterostructuring with carbon nanomaterials, allowing the enhanced use
of the solar spectrum and better charge separation [87]. The addition of carbon nanos-
tructures can lead to an increase of the adsorption capacity, of the absorption of visible
light, and of the lifetime of photogenerated electron–hole pairs. In particular, CNTs have
been widely used as supports for the growth of nanosized titania. The advantages of inter-
facing TiO2 with CNTs include not only improved structural stability, but also electronic
communication between the two phases, whereby charge carriers (electrons or holes) may
be transferred through the phase boundaries through several proposed mechanisms. For
instance, a general view is that CNTs can efficiently scavenge the titania photoexcited
electrons, thus retarding the electron–hole recombination rates and resulting in enhanced
photocatalytic activities [88]. It is worth noting, however, that alternative hypotheses
have been advanced; for example, on the basis of transient absorption experiments, where
the photogenerated holes are transferred from the TiO2 to the CNT [89], confirming the
complexity of the electron transfer dynamics, which for example could depend on the level
of functionalization (in particular, with oxygenated groups) of the CNT surface. Other
reports have suggested that CNTs can act as photosensitizers, with the electrons excited
and injected from the CNTs into the TiO2 conduction band, with subsequent electron
transfer from the titania valence band into the CNTs, thus yielding a charge separation
state (electron–hole) on the metal oxide. However, such sensitization effects assume a
semiconducting character of the CNT, which cannot always be taken for granted. In gen-
eral, the micro-structure of the CNT and its functional group distribution, doping, and
method of preparation deeply affect the photochemical response. Furthermore, Ti-C and
Ti-O-C bonds can be formed during calcination, thus resulting in a “doping” effect with
the formation of intragap states within the titania and a consequent improved absorption
of visible light [88].

The use of carbon nanomaterials to template titania with nanomorphological control
was reviewed in 2016 [90]; thus, we focus here on the progresses made over the last
five years. An overview of selected examples is provided in Table 1. A summary of
the physicochemical properties of carbon nanostructures after decoration with titania,
including the type of surface functionalization used to anchor the metal oxide, is provided
in Table 2.

Carbon nanodots are not present in the table since they are typically not used as
templates; rather, they are added onto preformed titania, for instance on anodized nan-
otube arrays for uses in photocatalysis [91] and sensing [92]. Readers with a particular
interest in graphene quantum dots incorporated in titania nanostructures are referred else-
where [93]. Furthermore, studies that used commercially available titania nanoparticles are
not included, since our focus is on the influence of carbon nanomaterials on their formation.



Appl. Sci. 2021, 11, 6814 5 of 28

Table 1. Overview of the use of different carbon nanomaterials as templates for nanostructured titania over the last
five years.

Carbon
Nanostructure

Titania
Precursor Titania Phase Preparation

Method
Titania

Morphology Application Ref.

Fullerenol Ti(OiPr)4 Amorphous ALD 1 Spherical Photocatalysis [94]

Nano-onions Ti(OiPr)4 Anatase Sol-gel Irregular Photocatalysis [95]

Nano-onions Ti(OiPr)4 Anatase Sol-gel Nanocrystals Battery anode [96]

Nano-onions Ti(OiPr)4 Anatase Hydrothermal Nanocrystals Supercapacitors [97]

Nanocones Ti(OBu)4 Anatase Sol-gel Nanocones@TiO2
2 Photocatalysis [98]

Nanohorns Ti(OBu)4 Amorphous Sol-gel Nanohorns@TiO2
2 Electrocatalysis [99]

Nanohorns Ti(OBu)4 Anatase Solvothermal Nanoflower Photocatalysis [100]

Nanohorns Ti(OiPr)4 Anatase Solvothermal Nanohorns Phosphoproteomics [101]

Nanodiamonds TiOSO4 Anatase Hydrothermal Irregular Photocatalysis [102]

Nanodiamonds TiOSO4 Anatase Hydrothermal Nanocrystals Photocatalysis [103]

Nanodiamonds (NH4)2TiF6 Anatase Hydrothermal Nanocrystals Photocatalysis [104]

Nanodiamonds Ti(OBu)4 Anatase/Brookite Hydrothermal Spherical Battery anode [105]

SWCNTs 3 Ti(OBu)4 Anatase/Rutile Sol-gel Nanocrystals Photocatalysis [106]

SWCNTs-C60
3,4 Ti(OiPr)4 n.a. Sol-gel CNT@C60@TiO2

2 Photocatalysis [107]

MWCNTs 5 Ti(OiPr)4 Anatase ALD 1 CNT@TiO2
2 Battery [108]

MWCNTs 5 Ti(OiPr)4 Anatase Sol-gel Nanocrystals Solar cells [109]

MWCNTs 5 Ti(OiPr)4 Anatase Sol-gel Spherical Photocatalysis [110]

MWCNTs 5 Ti(OiPr)4 Anatase Hydrothermal Spherical Nanofiller [111]

MWCNTs 5 Ti(OiPr)4 Anatase Hydrothermal Spherical Battery anode [112]

MWCNTs 5 Ti(OiPr)4 Rutile Hydrothermal Flowers Photocatalysis [113]

MWCNTs 5 Ti(OiPr)4 Rutile Hydrothermal Nanorods Photocatalysis [114]

MWCNTs 5 Ti(OiPr)4 Rutile Hydrothermal Nanorods Memory device [115]

MWCNTs 5 Ti(OiPr)4 Anatase Solvothermal CNT@TiO2
2 Electrocatalysis [116]

MWCNTs 5 Ti(OiPr)4 Anatase Solvothermal Spherical Battery anode [117]

MWCNTs 5 Ti(OiPr)4 Anatase Solvothermal Nanorods Phosphoproteomics [101]

MWCNTs 5 Ti(OiPr)4 Anatase/Rutile Electrospinning Nanofibers Solar cells [118]

MWCNTs 5 Ti(OBu)4 Anatase Sol-gel Spherical Battery anode [119]

MWCNTs 5 Ti(OBu)4 Anatase Sol-gel CNT@TiO2
2 Battery anode [120]

MWCNTs 5 Ti(OBu)4 Anatase Sol-gel CNT@TiO2
2 Photocatalysis [121]

MWCNTs 5 Ti(OBu)4 Anatase/Rutile Sol-gel CNT@TiO2
2 Microwave

absorber [122]

MWCNTs 5 Ti(OBu)4 Rutile Sol-gel CNT@TiO2
2 Solar cells [123]

MWCNTs 5 Ti(OBu)4 Anatase/Rutile Sol-gel Nanocrystals Photocatalysis [124]

MWCNTs 5 Ti(OBu)4 n.a. Sol-gel CNT@TiO2
2 Electronics [125]

MWCNTs 5 Ti(OBu)4 Anatase Hydrothermal Nanowires Battery anode [126]

MWCNTs 5 Ti(OBu)4 Anatase Hydrothermal Spherical Battery anode [127]

MWCNTs 5 Ti(OBu)4 Anatase Hydrothermal Nanosheets Photocatalysis [128]

MWCNTs 5 Ti(OBu)4 Rutile Hydrothermal Nanorods Photocatalysis [129]

MWCNTs 5 Ti(OBu)4 Anatase Solvothermal Flower Battery anode [130]
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Table 1. Cont.

Carbon
Nanostructure

Titania
Precursor Titania Phase Preparation

Method
Titania

Morphology Application Ref.

MWCNTs 5 Ti(OBu)4 Anatase/Brookite Solvothermal Nanosheets Battery anode [131]

MWCNTs 5 Ti(OBu)4 Anatase/Brookite Thermal Spherical Photocatalysis [132]

MWCNTs 5 Ti(OBu)4 Anatase Impregnation Nanotubes Battery cathode [133]

MWCNTs 5 Ti(OBu)4 Anatase Impregnation CNT@TiO2
2 Battery cathode [133]

MWCNTs 5 Ti(OEt)4 Anatase/Rutile Electrospinning CNT@TiO2
2 Photocatalysis [89]

MWCNTs 5 TiOSO4 Anatase/Rutile Solvothermal Nanosheets Photocatalysis [134]

MWCNTs 5 PTO 6 Anatase/Brookite Hydrothermal Nanohorns Battery anode [135]

MWCNTs 5 Ti foil Anatase Micro-arc
oxidation Nanoflakes Battery anode [136]

MWCNTs 5 TiCl4 Anatase Solvothermal CNT@TiO2
2 Photocatalysis [137]

MWCNTs 5 TiCl4 Anatase ALD 1 CNT@TiO2
2 Photocatalysis [138]

MWCNTs 5 TDMAT 7 Anatase ALD 1 Films Sensing [139]

MWCNTs 5 TDMAT 7 n.a. ALD 1 CNT@TiO2
2 Supercapacitors [140]

CNT fibers TDMAT 7 Anatase ALD 1 CNTbundle@TiO2
2 Photoelectrode [141]

CNT fibers TDMAT 7 Anatase ALD 1 CNTbundle@TiO2
2 Photoelectrode [142]

MWCNTs-GO 8 Ti(OiPr)4 n.a. Sol-gel Irregular Electrocatalysis [143]

MWCNTs-GO 8 Ti(OiPr)4 n.a. CVD 9 Irregular Electrocatalysis [143]

Graphene Ti(OiPr)4 Anatase Sol-gel Nanocrystals Photocatalysis [144]

Graphene Ti(OiPr)4 Anatase Hydrothermal GO@TiO2
2,8 Biosensing [145]

Graphene Ti(OBu)4 Anatase Hydrothermal Nanosheets Photocatalysis [146]

Graphene Ti(OBu)4 Anatase Hydrothermal Nanocrystals Photocatalysis [147]

Graphene Ti filament Anatase Sublimation Spherical Photocatalysis [148]

Graphene Ti Amorphous Electron beam Film Photocatalysis [149]

GO 8 Ti(OiPr)4 Anatase Solvothermal Nanocrystals Phosphoproteomics [101]

GO 8 Ti(OiPr)4 Anatase Laser scribing Nanocrystals Supercapacitors [150]

GO 8 Ti(OBu)4 Anatase Hydrothermal Nanocrystals Electrocatalysis [151]

GO 8 Ti(OBu)4 Anatase Hydrothermal Nanocrystals Battery anode [152]

GO 8 Ti(OBu)4 Anatase/Brookite Thermal Spherical Photocatalysis [132]

GO 8 TiCl4 Anatase Hydrothermal GO@TiO2
2,8 Photocatalysis [153]

GO 8 TiCl4 Rutile Hydrothermal Nanorods Nanofiller [154]

GO 8 Ti foil Anatase Anodization Nanotubes Supercapacitors [155]

rGO 10 Ti(OiPr)4 Anatase Sol-gel Nanoparticles Photocatalysis [156]

rGO 10 Ti(OiPr)4 Anatase Sol-
gel/thermal rGO@TiO2

2,10 Photocatalysis [157]

rGO 10 Ti(OiPr)4 Anatase Hydrothermal rGO@TiO2
2,10 Photocatalysis [158]

rGO 10 Ti(OiPr)4 Anatase Hydrothermal Nanocrystals Sensing [159]

rGO 10 Ti(OiPr)4 Anatase Hydrothermal Spherical Battery anode [112]

rGO 10 Ti(OiPr)4 Anatase Hydrothermal rGO@TiO2
2,10 Water purification [160]

rGO 10 Ti(OiPr)4 Anatase Solvothermal rGO@TiO2
2,10 Photocatalysis [161]

rGO 10 Ti(OBu)4 Anatase Sol-gel Nanoplatelets Photocatalysis [162]
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Table 1. Cont.

Carbon
Nanostructure

Titania
Precursor Titania Phase Preparation

Method
Titania

Morphology Application Ref.

rGO 10 Ti(OBu)4 Anatase Sol-gel rGO@TiO2
2,10 Photoelectrocatalysis [163]

rGO 10 Ti(OBu)4 Anatase/Rutile Sol-gel rGO@TiO2
2,10 Photocatalysis [164]

rGO 10 Ti(OBu)4 Rutile/Brookite Sol-gel Nanocrystals Photocatalysis [165]

rGO 10 Ti(OBu)4 Anatase Hydrothermal rGO@TiO2
2,10 Photocatalysis [166]

rGO 10 Ti(OBu)4 Anatase Hydrothermal rGO@TiO2
2,10 Photocatalysis [167]

rGO 10 Ti(OBu)4 Anatase Hydrothermal Spherical Photocatalysis [168]

rGO 10 Ti(OBu)4 Anatase Solvothermal Nanocrystals Lubrication [169]

rGO 10 Ti(OBu)4 Amorphous Solvothermal Nanorods Microwave
absorber [170]

rGO 10 Ti(OBu)4 Anatase Electrospinning rGO@TiO2
2,10 Photocatalysis [171]

rGO 10 TiCl4 Anatase Hydrothermal Irregular Photocatalysis [172]

rGO 10 TiCl3 Anatase Microwave Spherical Battery anode [173]

Nano-graphite Ti(OiPr)4 Anatase/Rutile ALD 1 graphite@TiO2
2 Photocatalysis [174]

1 ALD = atomic layer deposition. 2 @ denotes core@shell structure. 3 SWCNTs = single-walled carbon nanotubes. 4 C60 is a fullerene with
60 carbon atoms. 5 MWCNTs = multi-walled carbon nanotubes. 6 PTO = potassium titanium oxide oxalate. 7 TDMAT = tetrakis (dimethy-
lamino)titanium. 8 GO = graphene oxide. 9 CVD = chemical vapor deposition. 10 rGO = reduced graphene oxide. Ti(OiPr)4 = titanium
(IV) isopropoxide. ti(OBu)4 = titanium (IV) butoxide. TiOSO4 = titanium (IV) oxysulfate. (NH4)2TiF6 = ammonium hexafluorotitanate.
Ti(OEt)4 = Titanium (IV) ethoxide.

Table 2. Summary of the physicochemical properties of carbon nanostructures decorated with titania over the last five years.

Carbon
Nanostructure

(CN)

Nanocarbon
Surface

Functionalization

Distinctive
Raman

Peaks (cm−1)

Specific
Surface Area

(m2 g−1)

TiO2
Crystallite
Size (nm)

Ref.

Fullerenol OH 1465 (CN) n.a. n.a. [94]

Nano-onions Oxidation n.a. 263 n.a. [95]

Nano-onions n.a. 143, 195, 396, 518, 639 (A) 1 n.a. <10 [96]

Nano-onions n.a. 146, 370, 490, 610 (A) 1

1338, 1574 (CN)
101–148 9–10 [97]

Nanocones Oxidation Anatase, D and G bands (CN) 126 11 [98]

Nanohorns Oxidation D and G bands (CN) 148 n.a. [99]

Nanohorns n.a. 138, 386, 506, 629 (A) 1

1336, 1568 (CN)
n.a. 9 [100]

Nanohorns Oxidation, magnetization Anatase, D and G bands (CN) 38 n.a. [101]

Nanodiamonds Oxidation 148, 398, 516, 636 (A) 1

1324 (CN)
77 <5 [102]

Nanodiamonds Oxidation 152, 397, 516, 644 (A) 1

1324, 1400–1700 (CN)
232–252 4 [103]

Nanodiamonds Pristine/COOH/NH2/CH n.a. 60–102 9–10 [104]

Nanodiamonds Oxidation n.a. 153 4 [105]

SWCNTs 2 SDBS 3 (non-covalent)
Anatase, rutile

RBM, D, G bands (CN) 293 9 [106]
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Table 2. Cont.

Carbon
Nanostructure

(CN)

Nanocarbon
Surface

Functionalization

Distinctive
Raman

Peaks (cm−1)

Specific
Surface Area

(m2 g−1)

TiO2
Crystallite
Size (nm)

Ref.

SWCNTs-C60
2,4 Fullerodendron 425, 610 (titania)

1139, 1610 (CN) n.a. n.a. [107]

MWCNTs 5 Pristine/
oxidation/N-doping

143 (A) 1

D and G bands (CN)
n.a. 5–10 [108]

MWCNTs 5 Oxidation 145, 398, 517, 641 (A) 1

1351, 1582 (CN)
60–110 15–19 [109]

MWCNTs 5 Oxidation n.a. 104–190 9–17 [110]

MWCNTs 5 OH 1342, 1576 (CN) n.a. n.a. [111]

MWCNTs 5 SDS 6 (non-covalent) n.a. 50 14 [113]

MWCNTs 5 Oxidation 234, 432, 612 (R) 7

1358, 1580, 2711 (CN)
187–249 n.a. [114]

MWCNTs 5 SDS 6 (non-covalent) 448, 611 (R) 7

1355, 1600 (CN)
n.a. 6–7 [115]

MWCNTs 5 OH 161, 388, 516, 634 (A) 1

1338, 1578, 2673 (CN)
170 23 [117]

MWCNTs 5 Oxidation, magnetization Anatase, D and G band (CN) 30 n.a. [101]

MWCNTs 5 PVP 8-PAN 9 (non-covalent) 143 (A) 1, 245, 421, 602 (R) 7

1325, 1592 (CN)
276 n.a. [118]

MWCNTs 5 Ammonia treatment 153, 202, 394, 207, 512, 631 (A) 1

D and G bands (CN)
n.a. 6 [119]

MWCNTs 5 n.a. Anatase, D and G bands (CN) 221 2 [120]

MWCNTs 5 Benzoic acid 146, 198, 395, 513, 639 (A) 1

D, G, 2D bands (CN)
222–228 10 [121]

MWCNTs 5 Oxidation 153, 396, 513, 635 (A) 1

1329, 1597 (CN)
n.a. n.a. [122]

MWCNTs 5 N-doping, acid treatment n.a. 160–295 10 [123]

MWCNTs 5 Oxidation n.a. n.a. 15 [124]

MWCNTs 5 OH Anatase, D and G bands (CN) n.a. n.a. [126]

MWCNTs 5 n.a. 142, 446, 610 (R) 7

1365, 1591 (CN)
n.a. n.a. [129]

MWCNTs 5 Oxidation n.a. 71–266 n.a. [130]

MWCNTs 5 n.a. Anatase, 1342 and 1574 (CN) 62–115 8 [131]

MWCNTs 5 Oxidation 144, 515, 640 (A)
1356, 1591, 1754, 1775, 2704 (CN) 440 n.a. [132]

MWCNTs 5 Oxidation n.a. 137 5–6 [133]

MWCNTs 5 Oxidation, PVP 8
144, 197, 399, 515, 519, 639 (A) 1

447 and 612 (R) 7

1345 and 1594 (CN)
n.a. 12 [89]

MWCNTs 5 n.a. n.a. 244 5–10 [134]

MWCNTs 5 Oxidation 149, 199, 390, 512, 639 (A) 1

289 (B)10, 1346 and 1578 (CN)
80–102 n.a. [135]

MWCNTs 5 Oxidation 394, 515, 636 (A) 1

1352 and 1585 (CN)
n.a. n.a. [136]
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Table 2. Cont.

Carbon
Nanostructure

(CN)

Nanocarbon
Surface

Functionalization

Distinctive
Raman

Peaks (cm−1)

Specific
Surface Area

(m2 g−1)

TiO2
Crystallite
Size (nm)

Ref.

MWCNTs 5 OH 146, 396, 513, 637 (A) 1

1331 and 1581 (CN)
85–103 5–7 [137]

MWCNTs 5 Oxidation 146, 395, 515, 635 (A) 1

1347 and 1582 (CN)
n.a. n.a. [138]

MWCNTs 5 Carboxyl plasma polymer 144–149 (A) 1

1340, 1580, 2685 (CN)
n.a. n.a. [139]

CNT fibers Oxidation 147, 199, 395, 514, 636 (A) 1

1344, 1578, 1620, 2681 (CN)
n.a. < 10 [141]

MWCNTs-GO 10 N-doping 1350, 1580 (CN) 135–417 n.a. [143]

Graphene n.a. Anatase, D, G, 2D bands (CN) 88–136 9–12 [144]

Graphene Oxidation 159, 636 (A) 1

1333, 1698 (CN)
n.a. 2 [147]

GO 10 Magnetization Anatase, D and G bands (CN) 45 9–17 [101]

GO 10 n.a. 155 (A) 1, 1370 and 1600 (CN) n.a. 5 [150]

GO 10 N-doping 1340, 1590 (CN) n.a. 2 [151]

GO 10 Oxidation 145, 398, 517, 629 (A) 1

1331, 1599 (CN)
n.a. n.a. [152]

GO 10 n.a.
144, 515, 640 (A)

193, 244, 272, 321, 362, 434 (B) 11

1357, 1600, 1670 (CN)
459 n.a. [132]

GO 10 n.a. 397, 518 (A) 1

1350, 1570, 1620, 2600 (CN)
n.a. 1.5 [153]

GO 10 CS 12, PVA 13 (non-covalent) 444, 608 (R) 7

1351, 1601 (CN)
n.a. n.a. [154]

GO 10 Adenine 147, 159, 402, 513, 635 (A) 1

1354, 1576 (CN)
n.a. 32 [155]

rGO 14 Erbium (impregnation) 458, 463, 616, 633 (A) 1

1353, 1598 (CN)
53 10 [156]

rGO 14 n.a. 145, 398, 517, 640 (A) 1

1354, 1584 (CN)
78 n.a. [157]

rGO 14 n.a. 150, 394, 510, 629 (A) 1

D and G bands (CN)
119 15 [158]

rGO 14 n.a. 319 and 515 (A) 1

1330 and 1604 (CN)
104 5 [112]

rGO 14 ZnS 150–153, 199, 639 (A) 1

1350, 1597 (CN)
441–460 15–24 [161]

rGO 14 n.a. Anatase, 1359, 2578 (CN) 55 10 [162]

rGO 14 n.a. 144, 194, 395, 515, 636 (A) 1

1457, 1601 (CN)
n.a. 25 [163]

rGO 14 n.a. 145, 393, 638 (A) 1 445 (R) 7

1323, 1570 (CN)
n.a. 23–36 [164]

rGO 14 n.a. 126, 146 (B) 11 452 (R) 7 51 n.a. [165]

rGO 14 P-doped cellulose 600 (A) 1, 1350, 1580 (CN) 344 n.a. [166]

rGO 14 Sm2MoO6 1345, 1569 (CN) n.a. n.a. [167]

rGO 14 n.a. n.a. 102 20–30 [168]
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Table 2. Cont.

Carbon
Nanostructure

(CN)

Nanocarbon
Surface

Functionalization

Distinctive
Raman

Peaks (cm−1)

Specific
Surface Area

(m2 g−1)

TiO2
Crystallite
Size (nm)

Ref.

rGO 14 F-doping 146, 397, 516, 637 (A) 1

1354, 1596 (CN)
n.a. 15 [169]

rGO 14 n.a. 1343, 1590 (CN) 95 20 [172]
1 A = anatase. 2 SWCNTs = single-walled carbon nanotubes. 3 SDBS = sodium dodecylbenzene sulfonate. 4 C60 is a fullerene with 60
carbon atoms. 5 MWCNTs = multi-walled carbon nanotubes. 6 SDS = sodium dodecyl sulfate. 7 R = rutile. 8 PyPBI = pyridine-based
polybenzimidazole. 8 PVP = polyvinylpirrolidone. 9 PAN = polyacrylonitrile. 10 GO = graphene oxide. 11 B = brookite. 12 CS = chitosan. 13

PVA = polyvinyl alcohol. 14 rGO = reduced graphene oxide.

2.1. Fullerenes

Fullerenes have been intensively studied for photocatalytic applications, as well as
in combination with other semiconductors as photocatalyst enhancers [175]. The use of
fullerenes as nano-templates for titania nucleation and growth was mainly developed in
previous years [88], despite a modern renaissance of their use in solar cells [176].

Zinc-functionalized fullerene was recently combined with nanostructured titania for
water remediation; however, the two nanomaterials were formed separately and only later
combined to make nanostructured composites [177]. The interface between fullerenes and
titania has been deeply investigated. It was recently found that defect states in the band
gap of titania are quenched by C70 while an interfacial state appears, showing a barrier-free
extraction of charges (Figure 3) for the next generation of organic solar cells [178]. However,
in studies such as this one, fullerenes are added onto preformed titania.
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In an interesting study, fullerenol was used as a template for titania to exploit the
buckyball’s hydroxyl groups as nucleation sites for the generation of titania nanoparticles
by atomic layer deposition using titanium tetraisopropoxide as a precursor [94]. Given
the low temperatures used in the process, the resulting titania was amorphous, yet it
surprisingly demonstrated photocatalytic activity that was ascribed to the presence of
fullerene in the composite material [94].



Appl. Sci. 2021, 11, 6814 11 of 28

2.2. Nano-Onions

Carbon nano-onions consist of concentric fullerenes and have been used usually to
template nanostructured titania by means of sol-gel methods. X-ray diffraction analyses
confirmed that the nanocarbons were anchored onto anatase, whose microscopy images
suggested a certain level of control against the particle agglomeration exerted by the nano-
onions, relative to a reference without the template, despite the limited morphological
control over the titania particles. The nano-onions enhanced the specific surface area,
average pore size, and pore volume of the composite leading to the adsorption of pollutants,
as well as its visible-light absorption, overall leading to a more efficient photocatalytic
dye degradation as demonstrated on rhodamine B. Finally, the paramagnetic nature of the
nano-onions with a magnetic core allowed for the easy recovery of the composite through
magnetic separation [95].

Carbon nano-onion/anatase hybrids have been proposed as innovative replacements
for graphite anodes in lithium-ion batteries. Titania was formed with a sol-gel method
onto the nanocarbon template, exerting a certain level of both morphological and size
control over the nanocrystals, which appeared to be smaller than 10 nanometers in diameter.
Furthermore, the presence of the conductive carbon nanostructure overall significantly
enhanced the electrochemical properties of the final material relative to the reference
without the nano-onions [96].

Carbon nano-onions/anatase materials were also obtained by a hydrothermal route,
with various mass compositions, ranging from an excess of the nano-onion to an excess of
the titania, as confirmed by thermogravimetric analyses. The best results within the series
were obtained with compositions featuring approximately 80–90 wt% nano-onions. In
particular, high-resolution transmission electron microscopy (HR-TEM) images (Figure 4)
revealed an intimate contact between the inorganic and the carbon components, with both
the graphitic walls of the nano-onions and the lattice of the anatase nanocrystals being
clearly visible. These materials demonstrated the highest capacitance and an enhanced elec-
trochemical performance overall, which was rationalized through a cooperative effect of
both the electrochemical double layer capacitance from the nano-onions and non-capacitive
Faradaic storage regarded as pseudocapacitance from titania [97]. Carbon nano-onions
have been proposed for use in dye-sensitized solar cells, thanks to a number of advanta-
geous features, including their limited cost, ease of dispersibility that does not require the
use of binders—in contrast with other carbon nanomaterials—and the high level of optical
transparency of the final device [179].
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Figure 4. HR-TEM images of carbon nano-onion/anatase nanocrystals with different ratios of the
two components, consisting of either (a) 89 wt%/11 wt% or (b) 83 wt%/17 wt%, respectively. White-
dotted circles highlight the nano-onion cores; yellow-dotted circles indicate the interface between the
two components. The nano-onion graphitic walls area visible with the typical 0.34 nm-distance, as
is the lattice spacing of 0.35 nm, corresponding to the (101) plane of anatase. Reprinted from [97],
Copyright © 2017, with permission from Elsevier.
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2.3. Nanocones

The cone-like morphology of carbon nanocones leads to very interesting features,
such as an uncommon graphene-sheet stacking depending on the apex (cone) angle,
which in turn implies the presence of a number of pentagons within the six-membered
ring patterns, creating the conical geometry. In the absence of pentagons, the angle can
reach 0◦, thus resulting in a flat disk. Nanocones are normally produced as a mixture
of these varied structures with differing geometrical parameters and containing a large
excess (approximately 70%) of disks. The nanocones were oxidized to display hydroxyl
groups that could act as anchor sites for the inorganic phase, which was grown as a
uniform coating reproducing the nanocone morphology with high fidelity through a
sol-gel process. The coating included embedded palladium nanoparticles, and the final
material displayed very high photocatalytic activity under UV irradiation thanks to an
increased surface area and the ability of the carbon framework to scavenge the photo-
excited electrons to retard the charge recombination rates. Despite the lower conductivity
relative to carbon nanotubes or graphene, nanocones provide other advantages, such as
the ease of dispersibility in liquid media. The intimate contact between the organic and the
inorganic phases, leading to an increased number of heterojunctions, was responsible for the
higher activity in photocatalytic hydrogen production, using ethanol as an environmentally
friendly sacrificial donor, which is conveniently a product of fermentation from feedstock
(corn, sugarcane, etc.) [98].

2.4. Nanohorns

Nanohorns can be considered as clusters of nanocones, and they have also been used
as templates for titania. The nanocarbon entanglement features a high surface area that
templates a large distribution of “hard–soft” bimetallic sites, where 1.5 nm palladium
nanoparticles were embedded within the titania phase while being electrically wired to an
electrode by the nanohorn support. This hybrid electrocatalyst activated carbon dioxide
reduction to formic acid nearly at zero overpotential in the aqueous phase, while being
able to produce hydrogen thanks to a sequential formic acid reduction [99].

In another study, nanohorns templated the formation of anatase with nanoflower
morphology through a solvothermal method. The photocatalytic degradation of two
model dyes (i.e., methylene blue and methyl orange) was combined with the generation of
hydrogen fuel upon solar-light irradiation [100].

Besides the prospective uses in solar cells [180,181], nanohorns are potentially suit-
able for biological uses thanks to their additional advantageous features relative to other
carbon nano-allotropes, such as the ease of oxidation and the high dispersibility in buffer
solutions [182]. To this end, they have been used as templates for nanostructured tita-
nia with the nanohorn morphology and applied to phosphoproteomics on cancer cell
lysates for diagnostics purposes thanks to the well-known binding affinity for titania with
phosphorylated peptides (Figure 5) [101].
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2.5. Nanodiamonds

Nanodiamonds’ high thermal conductivity, hardness and friction-resistance, high sur-
face area, chemical inertness, non-toxicity, tunable structure, and excellent opto-mechanical
properties have rendered them attractive building blocks in nanotechnology [183]. Nanodi-
amonds are typically produced by explosive detonation under oxygen-deficient conditions
and consist of nanoparticles as small as 4–5 nm with a large portion of sp3-hybrized car-
bon atoms, in addition to sp2-hybridized atoms. A hydrothermal method at 70 ◦C was
used as an easy and low-cost production method for the nucleation and growth of titania
nanoparticles. Despite the limited control over the particle morphology and the presence
of agglomerates, the presence of the nanodiamonds allowed for a reduced recombination
rate of photogenerated charge carriers, with an improved photodegradation of bisphenol
A as a model organic pollutant [102]. Similar protocols produced nanodiamonds–titania
composites that were successfully tested for the photodegradation of other pollutants, thus
confirming their versatility towards environmental remediation [103,104]. Further, this
kind of nanomaterial has been envisaged as an anodic component for lithium batteries,
thanks to the features of nanocarbon, such as its high lithium adsorption capacity, wide sur-
face area, and chemical inertness, as well as is overall high capacitance and the long-term
cycle stability of the composites [105].

2.6. Single-Walled Carbon Nanotubes (SWCNTs)

The use of SWCNTs is less common than MWCNTs due to the latter being easier to
handle and disperse and presenting lower costs of production. In one study, SWCNTs
successfully templated the formation of titania through a sol-gel method, and subsequent
calcination at 600 ◦C allowed for the crystallization into anatase/rutile phases onto the
tubes and the formation of an aerogel, which was tested for photocatalysis. The addition
of platinum nanoparticles as co-catalysts onto the tubes, prior to titania nucleation and
growth, was also studied to enhance the activity thanks to a more efficient charge carrier
separation [106].

In another work, SWCNTs were first coated with a dendrofullerene (Figure 6) to
provide suitable anchoring points for the nucleation and growth of titania while leading to
good performance with regard to photo-catalytic H2 evolution under visible-light irradia-
tion. Co-axial inorganic–organic nanowires were thus obtained with a high photo-activity
that was rationalized in terms of the electron-extracting TiO2 layer accelerating the electron
forward-transfer and the concomitant deceleration of the undesired back-transfer [107].

2.7. Multi-Walled Carbon Nanotubes (MWCNTs)

MWCNTs have been widely studied as templates for titania nanostructures, as can
be seen from the many entries in Table 1; thus, only a few studies are discussed here.
With a sol-gel process in ethanol using a tetrabutyl titanate precursor, it was possible to
decorate CNTs with titania nanocrystals, and the materials were used to obtain a film for
potential applications as a battery anode [119]. When the same precursor was used in
alkaline aqueous solutions with wider, hydroxylated CNTs (average diameter of 50 nm),
nanowires were obtained instead, which entangled with CNTs in a network and were
envisaged for the same application [126]. The CNT/titanium relative ratio is one of the
critical parameters that determines nanomorphology. For instance, when an excess of
titania precursor was used in a solvothermal method, nanoflowers were obtained, while
increasing the relative amount of CNTs yielded nanowires through which the titania
anatase coated the CNTs [130].
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Figure 6. Schematic illustration of the fabrication of SWCNT/fullerodendron/titania co-axial hybrid
nano-wires. Reproduced from [107], published by the Royal Society of Chemistry.

The hollow interior of MWCNTs can also be exploited for various functions. For
instance, iron-filled nanotubes could harness a magnetic separation after use for the easy
recovery of the photocatalytic system. The tubes were functionalized on their surface
to display carboxylic acid groups as anchors for titania nucleation and growth, and a
thermal treatment allowed for the formation of anatase nanocrystals on the surface of CNTs
(Figure 7) [184].
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2.8. Graphene, Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)

The combination of graphene-based materials and titania is perhaps the most inves-
tigated nanocarbon-titania combination, and the topic was reviewed in 2017 [185] and
2019 [186]. Therefore, we focus here on the progresses made in the last two years and,
given the vast amount of relevant literature, only selected examples are discussed in this
section, while more can be found in Table 1.

Despite the sheet morphology of graphene-based materials, they can be used also to
successfully attain elongated nanofibers, as demonstrated by the use of electrospinning
techniques. This technique allows continuous nanofibers to be drawn from a liquid,
thanks to electrostatic forces in the liquid jet that accelerates through an electric field.
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The inclusion of both rGO and a titania precursor in the dispersion of reagents allowed
electrospun nanofibers to be attained that after calcination revealed a shell anatase titania
round a core with rGO. The nanofibrous exhibited the efficient photocatalytic degradation
of a drug and a dye as model pollutants [171].

The enhanced photo-activity arises from synergistic effects, and it critically hinges
on the covalent bonds between the two phases, which can be confirmed through the
spectroscopic characterization of the Ti-O-C signature. To this end, it can be convenient
to use titanium tetrachloride as a titania precursor, as the chloride is an excellent leaving
group that can be replaced by the oxygen of the hydroxyl groups present on graphene [153].

Other important parameters that determine the performance of the final materials
are clearly the crystallinity and particle size or film thickness of titania [187]. Solvother-
mal methods have been proven to be appropriate for attaining the complete coverage of
graphene oxide flakes by highly homogeneous anatase nanocrystals (approximately 10–20
nm in size) (Figure 8a). In silico investigations confirmed that the presence of oxygen-
bearing functional groups on graphene oxide acted as anchoring sites for the nucleation
of anatase (Figure 8b–d), which was favored over the growth of larger crystals. Com-
parison with analogous composites obtained using different nnocarbons (i.e., MWCNTs,
nanohorns, or graphitized carbon black), revealed that graphene-based material displayed
the highest selectivity for phosphopeptides relative to non-phosphorylated peptides. The
former could thus be enriched from cancer cell lysates for phosphoproteomics profiling, in
a proof-of-concept study for oncological research and potentially for the early detection of
cancer [101].
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Figure 8. (a) TEM image of a graphene oxide flake covered by anatase titania nanocrystals that are
highly homogeneous in size; (b–d) in silico investigation revealed how the nanocarbon’s oxygen-
bearing functional groups (i.e., (b) epoxide, (c) hydroxyl, and (d) carboxylic acid) anchored titanium
species, thus favoring nucleation over the growth of the nanocrystals. Adapted by permission from
Springer Nature [101], copyright © 2020.

3. Applications

As mentioned in the introduction, nanostructured titania finds a wide variety of
applications in areas spanning from energy to medicine, as described below more in detail.

3.1. Photocatalysis for Energy and Synthesis

Titania is a promising candidate for photocatalytic applications related to sustainable
schemes for energy and environment. For instance, titania is well-studied for the conversion
of carbon dioxide into a range of useful fuels or commodities, such as methane, methanol,
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ethylene, formaldehyde, or formic acid [188]. For hydrogenation reactions, such as those
of carbon dioxide and monoxide, titania and titanates have also been used as active
supports for Rh catalysts [189]. Additionally, iridium-based catalysts have benefited from
research that developed titania-based active supports for the photocatalytic synthesis of
benzimidazoles, whereby rutile surpassed anatase in terms of performance, thanks to an
increase in the adsorption of the reagents and in the charge transfer from the support, both
of which led to higher product yields [190].

The photoelectrochemical generation of hydrogen from water has also enjoyed great
prominence, where one-dimensional titania nanostructures demonstrated promising perfor-
mance [191]. In silico tools are highly valuable to understand the nature of the rate-limiting
steps and anticipate the better approaches to improve the efficiency of the process [192].
The further improvement of the photocatalytic performance of titania can be achieved
through combination with other metal oxides (such as SnO2 [193], ZnO [194], CuO [195]),
gold [196,197], as well as alkali metals and conducting polymers [198], carbon-doping [199],
iron oxides to attain magnetic systems [200], gadolinium [201], various rare earths [202],
and bismuth vanadate [203], amongst others. In particular, the use of 4D transition metals
was shown to be effective through the production of impurity-originating intra-gap energy
states, but also through the semiconductor–metal phase transition [204].

A recent promising approach consists of single-atom doping. In the case of copper,
light irradiation leads to electron transfer and the protonation of Cu/titania, and a local
distortion around the copper atom stabilizes the deep-trap state on the copper d-orbital and
its decoupling from free charges, thus yielding high photocatalytic hydrogen generation
activity [205]. Further, the photocatalytic performance of Cu/titania can be improved by
spin selection, which is achieved via optical intersite spin transfer or chiral semiconductor
coating [205]. Both hydrogen adsorption and spin selection processes increase charge
carrier lifetimes by an order of magnitude [205].

3.2. Photocatalysis for Environmental Remediation

The photoactivity of titania has been widely applied for environmental remediation;
for instance, through the generation of graphene-bearing membranes for water purifica-
tion [186,206]. The mechanisms of titania-photocatalyzed dye degradation proceed through
the generation of reactive oxygen species (ROS) that trigger the photooxidation of organic
molecules [207]. This phenomenon can be applied to a variety of different pollutants.
They include dyes, for which titania co-doping with iron and praseodymium was recently
reported to significantly narrow the band gap. Moreover, it promoted the generation of
oxygen vacancies, which can trap electrons and thus reduce the recombination of charge
carriers [208]. Nitrogen and sulfur co-doping represents a very popular strategy to enhance
the photodegradation of cationic dyes [209]. Another type of target pollutants consists
of volatile organics, whose photo-degradation is heavily influenced by levels of humid-
ity [210]. Another area that requires urgent action is the environmental pollution by drugs,
especially antibiotics, whose mechanisms of photodegradation are still the subject of in-
tense investigations [211]. Clearly, the removal of pesticides is also highly sought after,
although a number of variables have to be taken into consideration as they may affect the
efficiency of the process [212]. Ammonia is a critical pollutant of agricultural concern, both
in gaseous and aqueous matrices, for which heterogeneous nanostructures find application
as photocatalysts [213]. In fact, ammonia splitting into nitrogen and hydrogen gases is
particularly attractive as it would concomitantly generate clean fuel [214]. The fundamental
reaction pathways involved in the process are shown in Figure 9 [214].
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3.3. Biomedical Applications and Public Health

The photoactivity of titania nanoparticles has also been recently investigated for appli-
cations in medicine. The most popular uses exploit the ability of nanostructured titania to
generate ROS upon light irradiation, as these species can be employed for photodynamic
therapy, but also for the inactivation of bacteria that are resistant to antibiotics [219]. An-
other area that is gaining momentum is the development of active coatings and films for
food packaging [220]. To this end, the antimicrobial activity phototriggered by nanostruc-
tured titania can be boosted upon the inclusion of silver or copper species, for applications
that go beyond food packaging, including also active textiles and self-cleaning fabrics [221].

Titania nanotubes are being investigated as vehicles for local drug delivery, espe-
cially if functionalized to promote osteogenesis at the bone–implant interface, as recently
reviewed [222]. Given the widespread use of titanium implants, the possibility to use
nanotopography to modify their surface to render it bioactive is particularly attractive. To
this end, the usefulness of a variety of potential designs, including titania nanotube arrays
loaded with antibiotics (Figure 10), has been recently discussed as a potential strategy to
address localized infections [223].

3.4. Sensing

Nanostructured titania has been investigated to develop a variety of electrochemical
sensors, especially as applied to biomarkers for early disease diagnosis. Volatile organic
compounds (VOCs) can be useful biomarkers for the early detection of a variety of patholog-
ical states, and therefore chemoresistive breath sensors for their detection are investigated,
often using semiconducting metal oxides. To this end, various forms of nanostructured
titania can be used, such as nanoparticles, nanotube arrays, and nanosheets, as recently
reviewed [224]. Zinc-doped titania nanoparticles have been also proposed to develop glu-
tamate sensors, as glutamate is a common food additive but also a useful biomarker, since
abnormal levels were linked to pathologies such as epilepsy, Alzheimer’s and Parkinson’s
diseases, ischemia, and amyotrophic lateral sclerosis [225].
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For all these sensing applications, the inclusion of carbon nanostructures can be ben-
eficial to enhance sensitivity and the performance of the devices generally, as recently
reviewed [10]. This is true for a variety of carbon nanomorphologies. For instance, the in-
clusion of CNTs allowed a lower detection limit and an increased linear range of operativity
for an epinephrine sensor [226]. In another recent example, an rGO/titania nanohybrid de-
posited on a glassy carbon electrode displayed a better performance for the electrochemical
detection of a red dye relative to the sensor made with either component, thanks to a larger
electroactive surface area and lower charge-transferred resistance [227]. Finally, graphene
quantum dots also allowed for an enhanced photoresponse, with higher photocurrents and
improved charge carrier separation efficiency, for an NO gas sensor based on titania that
operated under UV-light irradiation [228].

4. Conclusions and Future Perspectives

The synergy between carbon nanostructures and titania has been extensively inves-
tigated over the years and allowed great progress in a variety of fields; in particular, for
tailored applications to address urgent societal needs such as clean energy, medicine,
and environmental remediation, which is now being extended to the issue of microplas-
tics [229]. It has been undoubtedly demonstrated that the inclusion of nanocarbon into
titania-based functional materials leads to the significant enhancement of the materials’
properties. In photocatalysis, for example, depending on the efficiency of the titania/carbon
contact, a clear reduction in the electron–hole recombination rate has been observed, as
the nanocarbon scaffold is able to scavenge the photoexcited electrons. On the other hand,
in electrocatalysis, the carbon conductivity has been exploited to facilitate the electron
transfer processes occurring at the TiO2-based catalytic sites, resulting in enhanced per-
formances. Regardless of the application, it appears that the suitable interface between
the carbon and the TiO2 phases is in most cases an essential parameter to gain definite
advantages in performance. For this reason, we have seen that efforts have focused on the
development of synthetic protocols that could guarantee adequate phase contact, giving
rise to the desired synergistic effects. As an example, the production of co-axial CNT–
titania nanostructures, with an intimate contact between the two phases, could be attained
through the careful selection of CNT functionalization, so that the support displays suitable
oxygen-bearing functional groups to effectively anchor titania, and the optimization of the
thermal annealing step to seal the CNT–titania interface [230].

The main limitation of titania for use in photochemical applications, namely its rela-
tively wide bandgap that makes it unresponsive to visible light, has been linked in recent
times to a predicted slow decline in the popularity of titania-based materials for photo-
chemical sustainable processes, paving the way for the exploration of new semiconductor
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materials with a more profitable exploitation of sunlight. However, we foresee that TiO2
will still have a long life as the leading semiconductor as many authors have shown av-
enues for expanding its use to incorporate the exploitation of visible light. For example,
defect engineering in TiO2 polymorphs has reached a deep level of understanding, and
the controlled alteration of the TiO2 structure at atomic level can lead to considerable ad-
vantages. Black titania, obtained in 2011 by an intensive H2 treatment that causes reduced
Ti states by means of oxygen atom removal, is a symbolic case of a visible-light active
TiO2 material [231]. As the activity under visible light is caused by intragap states, it is
frequently hypothesized that combined nanocarbon–TiO2 could cause a C-doping of the
titania at the phase interface, creating new midgap states.

TiO2 is being revisited in modern times as a component in more complex composites,
and the interfacing with carbon nanostructures certainly brings many advantages (some
of them illustrated above), in concomitance with a confinement at the nanoscale level of
the material, with the expected benefits of nanomaterials. However, TiO2 junctions with
other semiconductors bearing suitable electronic features could make further amends for
the intrinsic shortcoming of self-standing TiO2. Z-schemes or p-n heterojunctions are the
two best known examples to improve photochemical properties. Therefore, opportune
multi-phase nanohybrids or nanocomposites featuring nanocarbon and TiO2 in conjunction
with other components bear great potential for unlocking new multifunctionalities and
directing these properties to specific purpose.

As we advance our detailed understanding of the mechanisms of interactions and
reactions of nanostructured titania, further progress is set to be realized in this fascinating
field. New opportunities are arising also from studies on surfaces [232]. The use of
photoluminescence spectroscopy is emerging as a key tool to unravel mechanistic details of
photocatalytic processes [233]. Finally, chiral nanostructures that can be attained through
the templating of self-assembling molecules are also opening the door to new opportunities
in non-linear optics, sensing, and photonics [234]. Examples of potential applications
include circular polarizers, since titania chiral superstructures showed strong optical
activity due to the difference of absorbing left and right-handed circularly polarized
light [235]. Optically active films were also obtained from anatase nanocrystals that were
spatially organized with long-range chiral nematic ordering, allowing for the selective
reflection of circularly polarized light and iridescence [236].

Another emerging area of application lies in electronics and memory
devices [114,237,238]. A recent report noted that the doping of titania with hydrogen,
deuterium, and lithium led to bipolar conduction and a giant positive magnetoresistance,
thus significantly expanding the properties of the materials [239]. Doping with cerium
enhanced the magnetic properties of semiconductors from UV-light irradiation, thanks to
the ferromagnetic orientation of spin densities near oxygen vacancies in Ce-doped titania,
as opposed to the anti-ferromagnetic orientations of those found in undoped titania [240].

In conclusion, it appears that there is still a bright future ahead for the application of
titania’s great ability to interact with light, especially if maximized through the synergy
with other nanomaterials and advanced techniques of characterization and fabrication.
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