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Featured Application: Combining different data sources has high power to predict students at-risk
of failure and to identify behavior patterns to develop institutional polices based on evidence.

Abstract: This paper describes the application of Data Science and Educational Data Mining
techniques to data from 4529 students, seeking to identify behavior patterns and generate early
predictive models at the Universidad de la República del Uruguay. The paper describes the use
of data from different sources (a Virtual Learning Environment, survey, and academic system) to
generate predictive models and discover the most impactful variables linked to student success. The
combination of different data sources demonstrated a high predictive power, achieving prediction
rates with outstanding discrimination at the fourth week of a course. The analysis showed that
students with more interactions inside the Virtual Learning Environment tended to have more success
in their disciplines. The results also revealed some relevant attributes that influenced the students’
success, such as the number of subjects the student was enrolled in, the students’ mother’s education,
and the students’ neighborhood. From the results emerged some institutional policies, such as the
allocation of computational resources for the Virtual Learning Environment infrastructure and its
widespread use, the development of tools for following the trajectory of students, and the detection
of students at-risk of failure. The construction of an interdisciplinary exchange bridge between
sociology, education, and data science is also a significant contribution to the academic community
that may help in constructing university educational policies.

Keywords: classification; educational strategies; higher education; learning analytics

1. Introduction

Universities have been concerned with using the extensive data produced by their
educational systems in aiming to improve the overall performance of students [1–6].
According to [7], the scope of contemporary higher education is vast, and concerns about
the performance of higher education systems are widespread. Among several challenges
that have been faced by universities, one can mention low completion rates, which are
commonly associated with inefficiencies in higher education, even though they also depend
on other factors, such as the student profiles and their paths to completion [5,7,8].
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Data mining techniques can be used to overcome some of these challenges. Two specific
areas are used to refer to the application of data mining in educational settings: Educational
Data Mining (EDM) and Learning Analytics (LA) [9,10]. EDM is an interdisciplinary
research field that deals with the development of methods to explore data sourced from
the educational context [11,12]. LA seeks to measure, collect, analyze, and report data
about students and their contexts to understand and optimize their learning and learning
environment [13]. Student and teacher interactions within Virtual Learning Environments
(VLEs) provide data that feed the research in these areas, thus, enabling the discovery of
new knowledge [14].

Learning Management Systems (LMSs) and student information systems containing
socio-demographic and student enrollment data can be considered the technological
foundation for higher education institutions [15]. Modern educational systems use VLEs
to support classroom activities, even in face-to-face courses. In these environments, it is
possible to share materials, perform tasks, and interact with other users with the ultimate
goal of generating and acquiring knowledge, both individually and collectively [14,16,17].
Modular Object-Oriented Dynamic Learning Environment (Moodle) is one of the most
widely used VLEs worldwide. In Uruguay, there are 413 installation sites [18].

Data mining in higher education is mainly used for techniques, such as classification,
clustering, and association rules as well as to predict, group, model, and monitor various
learning activities [5,9,19]. Current studies on LA vary in several dimensions, covering,
for instance, the techniques employed (data mining, visualization, social network analysis,
and statistics), the source of the data (LMSs, surveys, and sensors), the stakeholders
involved (students, professors, and administrators), and the educational level to which the
systems/experiments are directed [20].

This work aims to unveil educational patterns of student interactions with the VLE
in higher education courses that use Moodle as a complementary tool for teaching and
learning processes. Hence, a series of data mining experiments are applied to the data
from the VLE and also to data from other sources, such as surveys and academic systems.
The experiments intend to better understand the VLE’s role in helping students’ education
inside the studied courses and to discover educational patterns and knowledge that can
further help in planning future actions and policies inside the institution. For the present
work, we propose the following research questions (RQ):

• RQ1: Is the use of VLE associated with student approval?
• RQ2: Which features from the different datasets (VLE, census, and academic system)

are the most important for the early prediction of student performance?
• RQ3: Which learning patterns can educational data mining help to unveil in the

studied courses?

In this work, data mining was used as a tool to unveil educational knowledge and
possible existing patterns related to the final status of the students. Even though we report
quantitative results about predictive models, our main goal is to uncover these patterns to
better understand the role that VLEs and other variables have in students’ performance
so that future educational policies can be built based on empirical findings. The process
followed here can also be defined as Knowledge Discovery in Databases (KDD).

The context of the study is the University of the Republic (Udelar), the main institution
of higher education in Uruguay. The remainder of this work is organized as follows:
Section 2 presents related works, and Section 3.2 describes the context of the present
study. Section 3 depicts the methodology followed in the paper (data collection, model
generation, and evaluation). Section 4 presents the results, and Section 5 discusses the
research questions based on the results. Section 6 presents possibilities of institutional
polices based on the evidence, and Section 7 indicates our conclusions, limitations, and
future research.
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2. Related Work

This section presents an overview of the research problem topic. Also in this section,
Table 1 presents a summary of the aboarded studies.

Leitner et al. [21] presented a practical tool that can be used to identify the risks
and challenges that arise when implementing LA and explained how to approach the
same. The authors propose a framework with seven main categories for LA initiatives:
Purpose and Gain, Representation and Actions, Data, IT Infrastructure, Development and
Operation, Privacy, and Ethics. They remarked that the order of implementation depends
on each institution. The Data dimension encompasses the application of the advantages of
modern technology and the various data sources available, looking for the right analysis
to improve the quality of learning and teaching, as well as to enhance the chances of
student success.

In a global context, the prediction of performance and dropout is concentrated at the
university level, with about 70% of the research focused on this purpose [22]. This trend
is the same in Latin America [23]; however, according to [1], Latin American universities
still have considerably lower adoption rates compared to institutions in other regions.
Thus, Latin American educational institutions can use LA to combat disparities in teaching
quality, performance problems, and high dropout rates.

The potential of using predictive methods in education has already been demonstrated
by numerous works in the literature [4,14,24–32].

Our work focuses on the data dimension, as it is essential to analyze practical case
studies and understand which are the key metrics and the processes they are applying.
As there is already another work summarizing the important findings up to 2017 (i.e., [9]),
we concentrated our exploratory search on papers after 2017. The systematic review from [9]
covered the most relevant studies related to four main dimensions: computer-supported
learning analytics, computer-supported predictive analytics, computer-supported behavioral
analytics, and computer-supported visualization analytics from 2000 to 2017.

The authors identified twelve relevant EDM/LA techniques that researchers normally
combine: classification (26.25%), clustering (21.25%), visual data mining (15%), statistics
(14.25%), association rule mining (14%), regression (10.25%), sequential pattern mining
(6.50%), text mining (4.75%), correlation mining (3%), outlier detection (2.25%), causal
mining (1%), and density estimation (1%). Searching EDM/LA works after 2017, we found
research applying different techniques and using different sources of data that we mention
here.

A practical application of early prediction is proposed by [29]. The authors implemented
an alert system to predict performance in some classes at the university. The research
demonstrated that the use of predictive methods in education allowed an increase of up to
15% on te students’ performance compared to those in classes that did not use the models.

Gutiérrez et al. [27] proposed the use of the Learning Analytics Dashboard for Advisers
(LADA) as a tool to support the learning process and the students’ final success. This tool
seeks to assist educational counselors in the decision-making process through comparative
and predictive analyses of the student data. The use of the predictive methods of this tool
showed significant results, especially in complex cases, in student success.

Foster and Siddle [26] investigated the effectiveness of LA in identifying at-risk
students in higher education. To this end, the authors compared the low-engagement
alerts of an LA tool with the results of students at the end of the first year of graduation. In
addition, different methodologies for generating alerts have been compared, such as the
use of demographic data and only VLE participation data. The tests demonstrated that the
VLE-data approach was more efficient at generating alerts than using socio-demographic
data. In the end, the authors demonstrated that students who had performance problems or
dropped out at the end of the first year received an average of 43% more alerts on the tool.

The problem of college-going students taking longer to graduate than their parental
generations was tackled by [33]. The authors presented a prediction model to identify
students at-risk of failing courses that they plan to take in the next term (or future). Different
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models are learned from different courses. To predict a student’s grades in the next courses,
his grades from prior courses are fed into corresponding models. To capture the sequential
characteristics of students’ grades in prior courses, they modeled the learning behavior
and performance using recurrent neural networks with long short term memory (LSTM).

In Latin America, a number of initiatives proposed approaches to the use of Educational
Data Mining and Learning Analytics at the higher educational level [23]. In this context, [4]
presented a proposal that aimed at early prediction of university student retention at Chile.
For that, the authors applied a number of different data mining algorithms (decision trees,
k-nearest neighbors, logistic regression, naive Bayes, random forest, and support vector
machines) over students socioeconomic information and previous achievements in their
courses. The results demonstrated an accuracy on the classification higher than 80% in all
tested scenarios.

Table 1. Summary of related works.

Work Goal Technique Algorithm Edu. Level Features Used

[29] To predict students
at-risk of fail

Classification Logistic regression Higher Student factors (IMD area, price
area, and disability), Previous
studies (highest qualification on
entry), Student course (total credits
studying in a year and
late registration), Previous progress
at the university (best previous
score and number of fails)

[27]
To support academic
advising scenarios

Multilevel
clustering

Fuzzy C-means Higher Grades and the number of courses
students took during the semester

[26] To predict students
at-risk of fail

Not-mentioned Not-mentioned Higher Demographic data versus only VLE
participation data

[4] To predict
student retention

Classification Decision trees,
k-nearest neighbors,
logistic regression,
naive Bayes, random
forest, and SVM

Higher Educational score and the
community poverty index and
university grades.

[30] To predict students
at-risk of fail

Statistical Analysis Correlation and
regression analysis

Higher Click stream data,
self-reported measures, and
course performance.

[24] To predict both
marginal and at-risk
students of fail

Classification Training vector-based
SVM

Higher Demographic data and interaction
with a virtual learning environment.

[25] To select best features
to improve predicting
students performance

Feature selection to
improve supervised
learning classifiers

Deep learning
with LSTM

Higher Metrics from navigation events that
are combined in the LSTM network.

[28] To predict students
at-risk of dropout

Classification Random forest and
boosted decision

School Attendance and
course performance.

[32] To identify
learners personality

Classification Naive bayes Higher Participation in forums and chats,
access to supplementary course
materials, delay in assignment
delivering, score, accomplishment
of assignments, time solving of
quizzes, and number of entrances in
the system.

[33] To predict students
at-risk of fail

Classification LSTM and RNN Higher Previous grades.
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The learning process in which students are responsible for defining their goals and
constantly auto-regulating their objectives towards some content or course is named
Self-Regulated Learning (SLR) [34]. Li et al. [30] evaluated SRL in face-to-face courses
that are supported by online activities/courses to demonstrate the extent to which LMS
interactions may be used to better understand how students manage their time and regulate
their efforts. By doing so, the authors aim to improve their performance on the identification
of at-risk students.

They collected questionnaire data (pre- and post-course) from freshmen university
students enrolled in a 10-week course. The questions were based on the following:
the Motivated Strategies for Learning Questionnaire (MSLQ), the students’ interactions
with the VLE, and socio-demographic data. Their findings showed a moderate positive
correlation between the VLE clicks and students’ SRL, as well as between VLE clicks and
the students’ final performance. Moreover, the authors reported that the combination of
demographic attributes with SRL variables significantly impacted the model’s ability to
predict at-risk students.

According to [25], a significant challenge faced when building predictive models
of student learning behaviors is to use handcrafted features that are effective for the
prediction task at hand. The authors, then, adopted an unsupervised learning approach to
learn a compact representation of the raw features. They sought to capture the underlying
learning patterns in the content domain and the temporal nature of the click-stream data.
The authors used Deep Learning the training and a modified auto-encoder combined with
the LSTM network to obtain a fixed-length embedding for each input sequence.

The selected features used in supervised learning models achieved superior results.
Identifying at-risk students is the main goal of [28]. Dropout reasons include not only poor
performance but also other events, such as violation of school rules, illness, etc. The authors
addressed the class imbalance problem in the binary classification (dropout corresponds to
1% of the labeled dataset) through oversampling techniques.

They trained the embedded methods of random forest and boosted decision trees
using the big data samples of the 165.715 high school students. The 15 features used
referred to attendance (for example, unauthorized early leave in the first four weeks),
behavior (number of volunteer activities), and course performance (normalized ranking on
Math). A ROC and PR curve analysis was presented, showing that the boosted decision
tree achieved the best performance.

3. Materials and Methods

This section presents an overview of the research methodology and the general context
of the case study.

3.1. Overview

In Data Science, it is essential to define the project flow steps and the methodology
to be followed. The method used in this work is the Cross-Industry Standard Process for
Data Mining (CRISP-DM) [35] with minor adaptations to the application for the context of
this research. Figure 1 shows the flow of the methodology model used and Figure 2 shows
the proposed solution to this project.

The adapted CRISP-DM process and its six steps were applied and are presented in the
sections of this paper as follows: context understanding is presented in Sections 1 and 3.2;
data understanding is presented in Section 3.4; data preparation consists of the feature
engineering process and is detailed in Section 3.5; the generation of models (modeling)
is an iterative step that occurs in conjunction with data preparation, and this is shown in
Section 3.6; evaluation of the results and its discussion are presented in Sections 4–6; and,
at the end, the conclusions are shown in Section 7.
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Figure 1. CRISP-DM with adaptation.

Figure 2. The proposed solution.

3.2. Contextualization: Case Study of Udelar

In Uruguay, Udelar is the main institution of higher education, concentrating 75% of
the students (public and private), 90% of the university system, and 99.5% of the public
universities. It has a policy of free and unrestricted admission, with no other condition
than the completion of high school. In 2020, the Udelar had 100 undergraduate courses and
a few more than 200 graduate courses. In 2018, the university had more than 135 thousand
undergraduate students and more than 10 thousand graduate students [36].

The Continuous Survey of Udelar’s Students

To better understand its students, Udelar developed a set of statistical survey mechanisms
to generate information about their characteristics and distribution, called “FormA-Students”.
The FormA-Students is a longitudinal survey that must be responded to annually by all
students. The survey covers questions in the following dimensions: (a) sociodemographic,
(b) pre-university education, (c) work, (d) other university and/or higher education studies
outside Udelar, (e) languages, (f) academic mobility, and (g) scholarships.
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In addition to these dimensions, this research also uses data of their activity and
qualifications recorded in the Bedelias System, the administrative management system
that collects all the official records of the students’ academic career, the subjects taken and
completed, the approvals and failures, and the grades received.

The present work analyzed data from the second-year students enrolled in courses
from three different faculties, in the year 2017, as follows: (1) Faculty of Information and
Communication (FIC), (2) Faculty of Nursing (FEnf), and (3) Faculty of Sciences (FCien).
These faculties have similar number of students and represent the three macro areas in
which the Udelar are organized.

3.3. Computational Settings

The computer used to process the data used the Operating System Ubuntu 18.04
and had an Intel i5 4th generation processor with 8 GB RAM. The environment was
created using an Anaconda distribution, and the scripts were developed in Python 3.8 with
scikit-learn, Pandas, and Numpy packages. The total runtime for training and testing the
models was roughly 24 h. For each dataset combination, the model generation took from 2
to 4 h.

3.4. Data Understanding

Data from students enrolled in three bachelor programs from three different faculties
of Udelar were collected. The programs are Biology (BIO), Communication (COM),
and Nursing (NUR). Table 2 shows the number of subjects used in each program, the total
number of interactions inside the VLE for each subject, the total number of students
enrolled in, and the following: students that had success without retaking exams, students
that had success after the final exams, and students that failed.

Table 2. Description of the student population and final status.

College Total of Interactions Subjects Students Success FailFinal Exam Retake Exam

BIO 23,606 3 59 0 43 16
COM 150,623 5 1361 820 318 223
NUR 955,163 6 3109 914 901 1294

Total 1,129,392 14 4529 3089 1262 1533

It is important to highlight that it is not mandatory for the student to attend the classes
to take or retake the final exams. This particularity affects the way students use VLE,
especially during the first year when a large number of students drop out of university
as this public university does not have entrance exams. This is the main reason for choosing
data from second-year students as it tends to be stable in terms of dropout. In this sense,
we believe that we have a clearer picture of the use of the VLE by the students, which was
intended to keep them enrolled in the courses.

Two different output variables (targets) were defined for our study: the prediction of
success in the course (students who passed without the need of exams) and the prediction
of success in the final exams. For the first target, the models predict whether a given student
will be approved directly or if they will need to take exams. For the second target, the
models predict whether a given student will pass or fail after taking the exams. Together
with the students’ interactions inside Moodle, we also used data from the university’s
academic system and the FormA-Students survey database.

Students’ interactions within VLE in its raw state were collected. These data were
separated by students, day of interaction, and type of content. We collected, from the
academic system, the subjects enrolled in by each student, the academic performance in the
subjects, and the number of previous failures in each subject. The third data’s source was the
continuous survey called FormA-Students. This survey is completed by students annually,
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and it collects 111 attributes distributed in sections referring to socio-demographic and
socio-economic background, pre-university and further university studies, employment
status, language proficiency, motivation and expectations about career, academic mobility,
and scholarships.

According to the dean of Udelar [37], the survey data can enable the institution to
think about itself in the long term and in strategies that require the prediction of the
state of affairs of the different actors to achieve specific objectives. For example, it has
the education and occupational category of the father and mother, marital status, family
income, ethnic self-perception, disabilities, employment status, occupation classification,
scholarship receptions, place of birth, and the place where they live and with whom.

The exploratory data analysis step sought to visualize the different datasets before
integration to identify database sizes, become familiar with the data, and gain insights for
the transformation of target features, as well as identify visible behavioral patterns.

Figure 3 shows the distribution of interactions in VLE by age. A possible observation is
that the older the student, the lower their use of the VLE. This may represent an acceptance
trend where younger students tend to adhere more to the use of Moodle. Still the right
sidebar of the graph shows the distribution of students by age, and the top bar shows the
distribution by interactions. As seen, the highest concentration of interactions was found
in students between 20 and 25 years of age.

Figure 3. Dispersion between interactions and age.

Another important analysis of the Figure 3 is that a significant part of the dispersion
was located between 0 and 200 interactions. In this range, 52 students were identified who
had 0 interactions with the VLE during the courses, of which 16 passed the course (without
exam), 23 passed the exam, and 13 failed. In addition to that, only two students took the
course for the first time, and both failed.

Figure 4 shows the difference of interactions between students who had success
versus students who failed the subjects. In the upper part of the figure, interactions are
presented during the 16 weeks of the subjects, where notably the students who had success
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demonstrate a higher engagement in VLE compared to those who failed. The bottom part
of the figure shows the total number of interactions after the end of the semester (after the
16 weeks and the final exam) and before students retake the exams. It must be noticed that
the failing students had higher engagement compared to the course progress but less than
the successful students.

Figure 5 shows the distribution of interactions during the weeks of the course. The
interactions grew until the partial exams (in weeks 8 and 14/16). This movement is an
indication that the closer the exams/tests are in a given subject, the higher the students
access to the VLE to consult the materials.

Figure 6 shows the total number of interactions per subject (upper) and the average
number of interactions for each of the analyzed subjects (bellow). It is possible to analyze
that, even within a program, the use of VLE was considerably different between subjects.

Analyzing the VLE subjects’ didactic design, it was possible to characterize them
as mainly organized as repositories of resources to support face-to-face classes, where
professors upload materials, such as text, images, and videos, and provide online
assessments and self-assessments. Forums are used mainly as a place for coordination and
information dissemination rather than for the discussion of content-related issues.

The two main uses of a quiz are as follows: first, as a form of assessment evaluation
of learning instruments, generally mandatory, by a single attempt, for all active students
and carried out on a pre-established date; and second, as an interactive activity oriented to
education and training over a long period and allowing multiple attempts. Rodés et al. [38]
defined a typology of didactic designs according to the type of resources and activities
supported by VLE. The courses analyzed here fall mainly under the repository and
self-assessment types.

Figure 4. Interactions per weeks approval X failed.
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Figure 5. Interactions per weeks.

Figure 6. Sum and mean interactions by subject.

Figure 7 displays the frequencies of the distribution of total interactions by programs
and the students’ final status. In FIC and NUR, both categories have their peak of
interaction near zero and do not seem to present a different distribution. On the other hand,
BIO presents a different distribution of interactions between the categories, with the peak
of interactions for the success category near 500 and for the failed category near 300.

To evaluate whether the VLE’s students’ interactions were associated with their final
status in the subjects, we performed a statistical analysis. First, we used the Shapiro–Wilk
test to verify whether interactions from both groups (success and failure) of each course
followed a normal distribution. For the groups that follow a normal distribution, we
performed a t-test and for the others, we applied the Mann–Whitney non-parametric test.
The goal was to check whether the means/medians (depending on the test) of the groups
present statistically significant differences. This analysis was performed for three different
periods of the semester: week 4, week 8, and week 16 (all weeks). The results are shown in
Table 3.
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Figure 7. Distribution of interactions by courses.

Table 3. Statistical analysis.

Status Shapiro Mann–Whitney Mean Median t-Test
Statistic p-Value Statistic p-Value Statistic p-Value

BIOAll Success 0.959 0.138 - - 442.8 465 −2.194 0.0322Failed 0.961 0.684 285.1 316

BIO W4 Success 0.841 0.00 208.5 0.00 16.55 11 - -Failed 0.673 0.00 7 2.5

BIO W8 Success 0.897 0.001 188.5 0.00 81.18 92 - -Failed 0.772 0.001 34.93 3.5

FIC All Success 0.757 0.00 109,676.5 0.00 113.7 85 - -Failed 0.791 0.00 94.72 73

FIC W4 Success 0.433 0.00 114,591.5 0.00 3.38 2.5 - -Failed 0.393 0.00 1.19 0

FIC W8 Success 0.503 0.00 114,197.0 0.00 16.97 7.5 - -Failed 0.278 0.00 4.58 0

NUR All Success 0.814 0.00 1,061,837.5 0.00 295.1 235 - -Failed 0.892 0.00 324.2 259.5

NUR W4 Success 0.290 0.00 1,148,365.0 0.05 0.59 4 - -Failed 0.350 0.00 0.43 0

NUR W8 Success 0.279 0.00 1,135,913.0 0.02 0.87 13 - -Failed 0.514 0.00 0.85 0

As shown in Table 3, the only case where the distribution was normal was for the
Biology course considering all 16 weeks. In this case, the T-Test showed a statistical
difference between the means of the two groups. For the other cases, the Mann–Whitney
test showed statistical differences between the medians of the two groups. These results
allowed us to conclude that the students’ usage of VLE was associated with their subjects’
final status: success or fail.

Another interesting observed attribute is the number of subjects the student was
enrolled in and the relation with their final status. Figure 8 shows a box-plot for both
groups of students versus the number of subjects enrolled. Even though the mean and
median of subjects for both groups were the same (Success: median = 6.0 and mean = 5.93;
Fail: median = 6.0; and mean = 6.47), a Mann–Whitney test showed a significant statistical
difference between them (statistic = 2,138,630.0, p-value < 0.05).
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Figure 8 shows that students who failed in the subjects presented a wider dispersion
in the number of subjects. Students who had success, tended to enroll in five to eight
subjects, while students who failed tended to enroll in three to nine subjects. One of the
possible reasons for this discrepancy may be related to the fact that students may enroll in
subjects that they are not necessarily interested in taking (as they are allowed to take the
final exams without attending classes for those subjects).

This may contribute to the fact that some subjects have a high number of students
enrolled although they are not effectively participating. For instance, one given subject
from the Nursing course had 590 students enrolled. This is a relatively common practice
in Udelar; however, the data seem to show that students regularly attend the subjects in
which they have success. This flexibility may also reflect in the engagement of the students
in the subjects with students enrolling in more subjects than they are able to attend.

The analysis of the features used in Moodle (Figure 9) showed that Folder, Forum,
Page, Quiz, and URL represented around 90% of the students’ environment interactions.
From these, most were interactions with folders and quizzes.

Although they are all asynchronous tools, they can be separated into two categories:
interactive and non-interactive. First, there are methods that do not interact with students
or professors and are basically used as a content repository, such as Folder, Page, and URL.
Second, there are others with interactions, such as forums and quizzes, but no synchronous
communication was found, such as conferencing or chat.

Figure 8. Number of subjects enrolled versus final status.

Figure 9. Type of interactions.
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3.5. Data Preparation

After the exploratory data analysis, the data were cleaned, and inconsistencies were
treated (such as missing values). Additionally, normalization techniques were applied
wherever necessary. The next steps consisted of data integration where scripts were
generated to match students enrolled in the subjects with data from survey and the
academic system.

The derived attributes were generated from the student’s interactions, type of
interaction and subject. Subsequently, interactions were grouped every fortnight and
classified according to the five main types of interactions used in Udelar’s VLE (Folder,
Forum, Page, Quiz, and URL). The average number of interactions per week and the
standard deviation of the interactions per week (or period) were calculated. This approach
is based on previous findings [20,39–41] that indicated the possibility of generating models
to predict at-risk students by using the VLE’s count of interactions along with the derived
attributes from these counts.

The target features for both approaches were constructed based on information from
the academic system. The initial academic database consisted of the student’s grade in
the final exam of the subject and the retaken exam (when this was the case). Thus, two
variables were generated from that. In the first scenario, we classified whether the student
passed the course without retaking the final exams or if they had to retake the final exams.
In the second scenario, we classified whether the student who retook the final exam had
success or failure.

3.6. Modeling

This step consists of finding the best combinations of input data to generate predictive
models, as well as to fine tune the hyperparameters of the algorithms used to generate
the models. Data selection and data preparation were performed together with the
modeling. An essential task in data mining and predictive modeling is choosing the
performance evaluation metric. For this work, we chose the Area Under the Receiver
Operating Characteristic Curve (AUC) [42].

The AUC is calculated from the size of the area under the plotted curve where the
Y-axis is represented by the True Positive Rate (TPR) or Sensitivity (or Recall) (A1) and
the X-axis is the True Negative Rate (TNR) or Specificity (A2) [43]. In order to provide a
general overview of the results, the following metrics are also presented for comparison:
the Accuracy (A5), F1-score (A3), and Precision (A4).

Among the classifiers initially tested, AdaBoost [44], logistic regression [45], and
random forest [46] obtained the best results. However, random forest exceeded the others
in practically all tested scenarios, and it was chosen for the work sequence. SKlearn’s
GridSearchCV was chosen as the hyperparameter selection technique. GridSearchCV is a
parameter selector that tests a combination of hyperparameters initially set and that returns
the one that obtained the best results in the tested set. The data normalization technique
with the best results was SKlearn’s StandardScaler.

We generated eight different datasets to evaluate the extent to which the different
configurations could help to improve the models’ performance, as shown in Table 4. The
main idea of these configurations is to evaluate how the combination of different datasets
may interfere in the models’ performance, thus, showing the importance of each database
for a better prediction.

The use of DS1 seeks to assess the potential for prediction presented by the survey
without any other information besides academic. DS2 is generated by adding the count
of total interactions to the survey data. After the EDA, the evaluation shows that this
base would be the one with the highest predictive power, being able to be considered the
maximum value that can be predicted with the available data. In this way, DS2 is used to
compare the gains of using information from the survey along with the information related
to the count of interactions.
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Table 4. Configuration of the different datasets.

Dataset Academic Data Survey VLE Type of Interaction Number of Weeks

DS1 YES YES NO - -
DS2 YES YES YES YES 16
DS3 YES NO YES NO 16
DS4 YES NO YES YES 16
DS5 YES NO YES YES 8
DS6 YES YES YES YES 8
DS7 YES YES YES YES 4
DS8 YES NO YES YES 4

DS3 and DS4 contain the total count of interactions within the VLE, and DS4 also
contains the type of each interaction. DS5, DS6, DS7, and DS8 aim to verify the extent
to which it is possible to early predict the performance of the students, so that there is
time to perform pedagogical interventions. For that, the count of interactions is performed
for a limited number of weeks. All datasets that used VLE data contained the derived
attributes earlier described according to the number of weeks covered by the dataset and
the inclusion of the type of the interaction or not.

After defining the datasets, a random forest classifier was executed in GridSearchCV to
obtain the most optimized configuration for the predictive model. The 10-fold cross-validation
was used to evaluate the models. The approach to deal with unbalanced data was the
Synthetic Minority Oversampling Technique (SMOTE), which generated new synthesized
cases on the training datasets.

4. Results

This section presents the results obtained by the models for each scenario evaluated
and considering the different datasets.

4.1. Scenario 1: Predicting Success in Final Exams

The goal here was to generate predictive models able to classify students between
two groups: those who had success in the final exams and those who had to retake the
exams. Table 5 presents the results for each dataset configuration and the following metrics:
True Positives (TP), True Negatives (TN), Accuracy (ACC), F1-Score, Precision, and Recall.
Comparing the metrics here is quite important as the AUC presented low values in some
cases, as shown in Figure 10.

In the figure, True Positives (TP) represents the accuracy for classifying the successful
students in the final exams and True Negatives (TN) the accuracy for classifying students
who need to retake exams. This AUC low value raised the question of whether the random
forest model was really learning or just classifying all students in the major category. This
was the case of the classifier generated with DS8, which was able to only correctly classify
a few cases of the minor category (TP = 12.58 and TN = 94.48). As evidenced in Figure 10,
there was an increase in performance when using both the survey and VLE data.

The AUC shows all models with acceptable values (higher than 0.50). DS1 achieved
0.78, which can be considered excellent [43]. Moreover, DS2, DS6, and DS7 achieved values
higher than 0.87 and very close to what can be considered outstanding discrimination (0.9
or higher). These are the datasets that combined information from the survey and the VLE.
It is important to highlight the results obtained by using DS7, which is the dataset that
used data from both the survey and the VLE’s count of interactions (including the type of
interactions) for the first four weeks of the courses. This model yielded excellent results
(AUC = 0.864).



Appl. Sci. 2021, 11, 6811 15 of 24

Table 5. Predicting success in the final exams versus retaking exams.

DS TP TN ACC F1-Score Precision Recall

DS1 76.96 64.04 72.40 0.72 0.72 0.72
DS2 88.41 79.00 85.09 0.85 0.85 0.85
DS3 85.97 77.16 82.87 0.82 0.82 0.82
DS4 86.98 76.11 83.00 0.83 0.83 0.83
DS5 82.83 75.06 80.09 0.80 0.80 0.80
DS6 87.41 75.06 83.05 0.83 0.82 0.83
DS7 88.12 73.75 83.05 0.82 0.82 0.83
DS8 12.58 94.48 41.48 0.32 0.65 0.41

4.2. Scenario 2: Predicting Approval in Retaking Exams

The second scenario aims to predict whether students will be successful after retaking
exams. Table 6 presents the results for each dataset configuration and the following metrics:
Positives (TP), True Negatives (TN), Accuracy (ACC), F1-Score, Precision, and Recall.
Results obtained using the AUC for the different datasets are presented in Figure 11. Here,
TP is the accuracy of correctly classifying a student who failed, and TN is the accuracy of
correctly classifying a student who had success in the retake exam.

As shown in Figure 11, the performance of the models for the datasets DS3, DS4,
DS5, and DS8 can be classified as acceptable [43]. For DS3, DS4, and DS5, the classifiers
presented low accuracy to classify successful students. This leads to the conclusion that it
is not recommended to use only the data coming from VLE to predict student performance
in this scenario.

Figure 10. ROC Success in a course.
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Figure 11. ROC Success in the exam.

Table 6. Predicting success in retaking the exam versus failure.

DS TP TN ACC F1-Score Precision Recall

DS1 76.96 64.04 72.40 0.72 0.72 0.72
DS2 88.41 79.00 85.09 0.85 0.85 0.85
DS3 85.97 77.16 82.87 0.82 0.82 0.82
DS4 86.98 76.11 83.00 0.83 0.83 0.83
DS5 82.83 75.06 80.09 0.80 0.80 0.80
DS6 87.41 75.06 83.05 0.83 0.82 0.83
DS7 88.12 73.75 83.05 0.82 0.82 0.83
DS8 12.58 94.48 41.48 0.32 0.65 0.41

DS1 presented an excellent AUC but low accuracy to classify students who failed
(51.23%). DS2, DS6, and DS7 presented the best results, thus, confirming that using
data from the survey together with the VLE’s data was the best combination to generate
predictive models. The performance achieved by the model trained with DS7 can be
classified as outstanding (0.908), which allows us to say that it is possible to generate
models to early-predict student performance using the survey and the interactions of the
first four weeks for the present scenario.

5. Discussion

In this section, we answer the research questions proposed at the beginning of the paper.
RQ1—Is the use of VLE associated with the students’ qualifications? Yes. We found

significant statistical association between the number of student interactions within the
VLE and the final status (success or fail). Moreover, after the analysis, we concluded
that using only the count of the interactions inside the VLE or using only survey data to
generate the predictive models led to lower model performance compared with using a
combination of both.

Models trained with a combination and using the count of the first four weeks (DS7)
were able to achieve excellent and outstanding performances; thus, one can say that it is
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possible to predict students’ final status at the beginning of the courses. These findings
suggest the importance of VLE in face-to-face courses, even though its usage mainly focuses
on the delivery of materials and activities without much collaboration among peers. In
addition, it can also be said that different VLE’s activities weigh differently inside the
models, as the type of interaction also increases their performances.

The work of [20] used VLE data together with data collected from a student survey
and evaluated the extent to which the use of the combination of both databases interfered
in the models’ performance. The authors concluded that there was no gain in using data
collected from the survey.

Moreover, the authors also tested different dataset combinations considering the
different types of VLE’s presence (teaching, cognitive, and social presence), according to
the theory of [47], and found no statistically significant difference in the performance of the
models that used this differentiation. Their results contradict the present paper’s findings.
Based on that, one could say that the use of different combinations of databases to improve
the performances of the models as well as considering different types of interactions inside
the VLE are context dependent.

For the present scenario, the combination of databases and the differentiation of the
types of interaction helped to improve the performance of the classifiers.

RQ2—Which features from the different databases are the most important to early
predict students’ performance? Figure 12 presents the fifteen most important attributes
used by the models to predict student performance. The attribute that helped the most
in predicting student performance was the number of subjects a student was enrolled in.
This attribute is located in the academic system database, which was used in all possible
scenarios and datasets of this study.

Moreover, attributes that belong to the VLE appeared most frequently in the list (week
2, mean week 2, week 4, and mean week 4, among others). Regarding the VLE attributes, it
is important to notice that Forum Week 4 appears at the seventh place of importance. As the
forum is used only by the professors to communicate operational/academic/administrative
things about the subjects, this attribute may indicate the importance of students being up
to date about the daily routine of their courses.

The importance of the types of interaction inside VLE becomes evident from the figure.
Attributes Forum, Quiz, URL, and Page appear in the list of the most important attributes
together with weeks 2 and 4. Regarding the survey data, it is important to mention that
the educational level of the student’s mother was the third strongest attribute used by the
models. The place of residence is another attribute that played an important role in the
prediction.

RQ3—Which educational patterns can educational data mining help to unveil in
the studied courses?

The most notable finding of the present study is VLE’s importance in the teaching-
learning process and its association with the final status of the students. This finding can
help institutions implement official policies focused on a more widespread dissemination
of the VLE usage, along with the other existing faculties, departments, and courses at the
university.

Such a policy could encompass different initiatives, such as offering practical training
for professors in VLE, the inclusion of introductory subjects in the curriculum, focusing
on VLE features and usage, and the increase of physical and personnel infrastructure to
maintain new VLE services. Moreover, considering the high accuracy achieved by the
predictive models developed here, it is now possible to use such models to follow up
students more closely and intervene early on in situations that identify at-risk students.

The university may consider investing in the development of new tools and
technologies to follow students’ trajectories and improve their learning experiences, e.g.,
through LA dashboards [48] and e-learning recommender systems [49]. We also found that
the number of subjects the students were enrolled in was the strongest attribute associated
with their success.
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This finding may help coordinators better plan the curriculum of their courses so that
students can maintain a course load up to an ideal number. Finally, two other important
attributes that influence predictive models were the “mother’s education” and “place of
residence”. These attributes could be monitored by the university to offer assistance aimed
at students in these specific categories.

Figure 12. Feature importance.

6. Towards the Implementation of Institutional Policies

This section presents a broad discussion of the results obtained in this work in order
to provide evidence for the implementation of institutional policies at Udelar.

Institutional Polices Based on Evidence

University policies are public policies, and the Udelar is the main higher education
institution in Uruguay. Considering that, Udelar is also responsible for proposing the
agenda of such policies to transform higher education in Uruguay. In this context, it is
important to bring the digital inclusion process to the debate, which requires a collective
action with some key actors: decision makers, researchers, students, and professors/teachers
to which the findings of this study will be useful to generate such public policies.

Furthermore, this study presents conclusions based on evidence and it is fundamental
to implement public policies and to treat educational problems, such as evasion, time
spent in the program/course (lag), and contextual variables (both are present here). The
main beneficiaries of the paper’s findings are the general population and it is possible to
quantify the impact of that on a regional and international scale. Based on this, we present a
discussion considering some factors that are important to the creation and implementation
of educational policies based on our findings.

We consider that, at any educational institution, especially at universities, there is more
than one database with a diversity of features, and it is potentially possible to combine and
mine these features to contribute to the understanding of the learning process. We consider
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the creation of strategies to guide the educational policies based on evidence, that is,
based on empirical data (information) transformed into knowledge to be very important,
necessary, and not able to be postponed.

In this paper, we show evidence on predicting, starting at the beginning of a course,
what the final status of the student will be based on a combination of datasets. The use
of such predictors (models) allows the manager to create, early in the course, alerts and
warnings to students and professors. It is also possible to help the professors to redesign
their materials and pedagogical strategies in their courses.

On the one hand, we found that the expanded classrooms were the most frequent
classes in the VLEs of the faculties. On the other hand, the importance of hybrid classrooms
emerged from our work, since the student performance was higher in this modality. In fact,
these models are proposed in a general context of educational uncertainty and changes
that are necessary for digital transformation, which has been accelerated.

However, the usefulness of these models for creating educational and institutional
policies not only reaches guidelines for the individuals (students, professors, researchers,
and so on) but also contributes to the understanding of the educational problems associated
with backwardness and evasion, thus, helping to create policies and technical teams to
support and protect educational paths.

The results highlight the importance of participants’ mediation within the online
classrooms, which increases student performance. Additionally, due to the strict relation
between the learning and teaching process, the lecturers’ formation policies should point
to the development of digital skills to allow them to include hybrid models in their
teaching–learning process.

Our findings present evidence that the students’ age is an important factor using the
VLE: the younger they are, the more they use the VLE. In this context, it is good to raise
different pedagogical hypotheses to attempt to understand this behavior. If students older
than 25 years old do not frequently use the VLE, it is mandatory to develop pedagogical
policies to guide strategies to digital literacy focusing on these different groups of students
in order to mitigate evasion and to promote lifelong education development supported
by educational technologies. This is particularly important in Latin America, where
educational institutions tend to present retention problems.

The distribution of interactions during the courses present differences among the
subjects and disciplinary areas but are roughly similar when comparing the final status of
the students. Those students who had the least interactions were the the ones who tended
to fail in the courses. Why did they not use the VLE? Can it be due to educational causes,
where the student infers that there is no new content, material, or changes in the teaching
process? Or is it an individual cause, where the student infers that it is not necessary to
revisit the content and only carry out the tests and assessments to have success?

In this case, we suggest the development of actions addressed to those students who
fail, stimulating them to use the VLE through instructional design specifically dedicated to
this population. The other way around, successful students had more interactions within
the VLE, and this raises more questions: why did they have success in the subject? Is it due
to the interactions with educational technologies? These are all questions that still need
to be answered and that will help with the development of institutional policies based on
evidence.

The VLE interactions appear to be a very strong indicator of a student’s commitment
to their studies. It shows how they tackle the learning process and what their strategies are
to achieve success. Furthermore, students that sustained their participation permanently
within the VLE over the whole semester were more likely to pass than students who
participatee only at the end, even when they used the environment intensively (but still
less than the successful students). The comparison between the student trajectories in VLE
shows learning strategies that resulted in better performance and allow for the development
of protection policies based on evidence. One way to do this is to design teaching and
learning paths considering these students and their strategies.
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The incorporation of the VLE in the educational processes of undergraduate teaching
at Udelar has reached a point of naturalization. The results of the present study show the
relevance of understanding the relations between the behavior of the students inside the
VLE and their success in their disciplines, as this allows one to define didactic strategies,
pedagogical orientations, and educational policies based on that.

Even though a VLE produces, collects, and stores a large amount of data about
students and teachers interactions, there are a number of challenges and difficulties
to face before properly transforming this data into meaningful knowledge. For that,
specific computational strategies and tools are required. The present work also presents a
contribution in this matter, as it provides a methodological framework that uses both EDM
and LA to better understand students behavior inside a VLE.

7. Conclusions, Limitations, and Future Research

The present paper analyzed different aspects of data involving students enrolled
in courses at the Universidad de la República in Uruguay. Precisely, we collected data
from 4529 students of three programs and through three different sources: the academic
system, an academic survey, and a VLE. We applied data science techniques (visualizations,
statistics, and data mining) to understand how different combinations of the datasets could
help predict students’ final status in the subjects and the role that different attributes played
in this task.

The results presented an overview of the institutional patterns regarding the use of
the VLE, and this will help pave the way for the implementation of future policies in
institutions to diminish student failures and increase persistence. Among the findings was
an association between the use of the VLE and the final status of the students (success and
fail) and also the different types of activities inside the VLE presenting different levels of
importance in this association.

Examples of institutional policies that could emerge from these findings are as follows:
the allocation of extra computational resources for improving VLE infrastructure and its
widespread use in the university, the development of new tools for following students’
trajectory and detecting at-risk students at early stages of their courses, and the construction
of more institutional policies to mitigate students’ failure based on other relevant attributes
(e.g., the number of subjects the student is enrolled in, the student’s mother’s education,
and the student’s neighborhood).

The proposed methodology for combining different data sources, as well as their
pre-processing and feature engineering, demonstrated that the combination of data had a
high predictive power. In this regard, the combination of the survey variables, academic
system, and virtual environment showed a high capacity for early prediction. Thus, it was
possible to achieve prediction rates with outstanding discrimination as soon as in the
fourth week of the course. This characteristic satisfies the temporal factor of precocity,
which is considered to be a determining factor in identifying and attempting to reverse the
problem [31,50].

This proposed approach model, although initially restricted to only three university
programs, can serve as a basis for future work that seeks to implement methods of online
information and prediction on student behavior, such as academic dashboards. However,
for these steps, it is still necessary to clarify two key points: how this approach would
behave with more data and the analysis of its acceptance regarding the technology and the
reliability of the methods by the stakeholders, teachers, and students.

The present work can help the university to develop user profiles based on the
students practices inside the VLE, thus, allowing the future development of systems
able to continuously deliver indicators related to the learning processes. In this way,
it contributes to the production of primary information that can potentially help to the
evaluation of quality and the definition of strategies that guide the university teaching and
learning processes.
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One limitation of the present work is the lack of a qualitative analysis of the scenarios.
Future work could explore the opinions of students and professors regarding the usage
and importance of the VLE in their teaching and learning processes. Another limitation
is the restricted number of courses used in this study. As mentioned before, Udelar has
100 undergraduate courses and the number of courses studied here (only three) can not be
considered representative of the whole university, even though it serves for the purpose
of an initial assessment. Future work could expand the data analyzed by increasing the
number of courses. Future work could also include new data covering the period of the
COVID-19 pandemic and evaluate how this period influenced the behavior of the students
inside the VLE.

Moreover, future work could explore a voting scheme with the learning algorithms
utilized here (AdaBoost, logistic regression, and random forest) to improve the accuracy of
the predictions. Finally, it would be interesting to also explore the reasoning followed by
the predictors developed here, thus, assisting the stakeholders to better understand the
role each feature plays in the classification.

Finally, traditional approaches to the investigation of student persistence in the
teaching–learning process are normally carried out from the sociology of education and
educational sciences with a fundamentally deductive perspective. The introduction
of data science tools with inductive approaches challenges and empowers traditional
theoretical and methodological models of educational science. The construction of this
interdisciplinary exchange bridge is perhaps the most significant contribution to the
academic community that may help in constructing university educational policies.
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Appendix A. Formulas

True Positive Rate (TPR) or Sensitivity (or Recall)

TPR =
TP

TP + FN
(A1)
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True Negative Rate (TNR) or Specificity

TNR =
TN

TN + FP
(A2)

F-Score
F1 − Score = 2X

Precision ∗ Recall
Precision + Recall

(A3)

Precision
Precision =

TP
TP + FP

(A4)

Accuracy

Accuracy =
TP + TN

TP + FP + TN + FN
(A5)
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43. Gašević, D.; Dawson, S.; Rogers, T.; Gasevic, D. Learning analytics should not promote one size fits all: The effects of instructional

conditions in predicting academic success. Internet High. Educ. 2016, 28, 68–84. [CrossRef]
44. Schapire, R.E. Explaining adaboost. In Empirical Inference; Springer: Berlin/Heidelberg, Germany, 2013; pp. 37–52.
45. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, Global Edition, 4th ed.; Foundations, v. 19; Pearson Deutschland

GmbH: München, Germany, 2021; p. 23.
46. Liu, Y.; Wang, Y.; Zhang, J. New Machine Learning Algorithm: Random Forest. In Information Computing and Applications; Liu, B.,

Ma, M., Chang, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 246–252.
47. Garrison, D.R.; Anderson, T.; Archer, W. Critical inquiry in a text-based environment: Computer conferencing in higher education.

Internet High. Educ. 1999, 2, 87–105. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-64792-0_6
http://dx.doi.org/10.3390/app10031042
http://dx.doi.org/10.1111/bjet.12941
http://dx.doi.org/10.1016/j.chb.2018.06.032
http://dx.doi.org/10.1145/3303772.3303795
http://dx.doi.org/10.1080/02602938.2019.1682118
http://dx.doi.org/10.1016/j.chb.2018.12.004
http://dx.doi.org/10.3390/app9153093
http://dx.doi.org/10.18608/jla.2019.61.5
http://dx.doi.org/10.1016/j.iheduc.2020.100727
http://dx.doi.org/10.1016/j.compedu.2009.05.010
https://www.tandfonline.com/doi/abs/10.1080/10494820.2019.1636084?journalCode=nile20
http://dx.doi.org/10.1080/10494820.2019.1636084
http://dx.doi.org/10.1145/3303772.3303802
http://www.universidad.edu.uy/prensa/renderItem/itemId/43652/refererPageId/12
http://www.universidad.edu.uy/prensa/renderItem/itemId/43652/refererPageId/12
http://dx.doi.org/10.3390/app10113998
http://dx.doi.org/10.5753/cbie.sbie.2018.1503
http://dx.doi.org/10.1007/978-1-4614-6849-3
http://dx.doi.org/10.1016/j.iheduc.2015.10.002
http://dx.doi.org/10.1016/S1096-7516(00)00016-6


Appl. Sci. 2021, 11, 6811 24 of 24

48. Einhardt, L.; Tavares, T.A.; Cechinel, C. Moodle analytics dashboard: A learning analytics tool to visualize users interactions in
moodle. In Proceedings of the 2016 XI Latin American Conference on Learning Objects and Technology (LACLO), San Carlos,
Costa Rica, 3–7 October 2016; pp. 1–6.

49. dos Santos, H.L.; Cechinel, C.; Araújo, R.M. A comparison among approaches for recommending learning objects through
collaborative filtering algorithms. Program 2017, 51, 35–51. [CrossRef]

50. Márquez-Vera, C.; Cano, A.; Romero, C.; Noaman, A.Y.M.; Mousa Fardoun, H.; Ventura, S. Early dropout prediction using data
mining: A case study with high school students. Expert Syst. 2016, 33, 107–124. [CrossRef]

http://dx.doi.org/10.1108/PROG-05-2016-0044
http://dx.doi.org/10.1111/exsy.12135

	Introduction
	Related Work
	Materials and Methods
	Overview
	Contextualization: Case Study of Udelar
	Computational Settings
	Data Understanding
	Data Preparation
	Modeling

	Results
	Scenario 1: Predicting Success in Final Exams
	Scenario 2: Predicting Approval in Retaking Exams

	Discussion
	Towards the Implementation of Institutional Policies
	Conclusions, Limitations, and Future Research
	Formulas
	References

