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Abstract: Databases are an important part of today’s applications where large amounts of data
need to be stored, processed, and accessed quickly. One of the important criteria when choosing
to use a database technology is its data processing performance. In this paper, some methods for
optimizing the database structure and queries were applied on two popular open-source database
management systems: MySQL as a relational DBMS, and document-based MySQL as a non-relational
DBMS. The main objective of this paper was to conduct a comparative analysis of the impact
that the proposed optimization methods have on each specific DBMS when carrying out CRUD
(CREATE, READ, UPDATE, DELETE) requests. To perform the analysis and performance evaluation
of CRUD operations for different amounts of data, a case study testing architecture based on Java
was developed and used to show how the databases’ proposed optimization methods can influence
the performance of the application, and to highlight the differences in response time and complexity.
The results obtained show the degree to which the proposed optimization methods contributed to
the application’s performance improvement in the case of both databases; based on these, a detailed
analysis and several conclusions are presented to support a decision for choosing a specific approach.

Keywords: database management system (DBMS); CRUD operations; NoSQL; relational; document-
based MySQL; relational MySQL

1. Introduction

Nowadays, one of the most important aspects when building an application is the
database where the data will be stored. As traditional relational databases could not handle
these large volumes of data and process them instantly, there was a need for a different
approach to data storage, namely, NoSQL (Not Only SQL (Structured Query Language))
databases. A NoSQL database is a non-relational database that does not store information
in the traditional relational format. NoSQL is not built on tables and, in some cases, does
not fully satisfy the properties of atomicity, consistency, isolation, and durability (ACID) [1].
A feature that is common to almost all NoSQL databases is that they handle individual
items, identified by unique keys [2]. Additionally, structures are flexible, in the sense that
schemas are often relaxed or free schemas.

A classification based on different data models has been proposed [3], and it groups
NoSQL databases into four major families:

1. Key–value stores: based on a key–value model, where each record is characterized by
a primary key and a collection of values;

2. Column-oriented: data are stored in columns, and each attribute of a table is stored in
a separate file or region in the storage system;
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3. Document stores: data are stored in a document, and documents can be nested and
thus contain other documents, lists, and arrays;

4. Graph stores: designed for data whose relations are well represented as a graph
consisting of elements interconnected with a finite number of relations between them.

From the several DBMSs that we have today, this paper focuses on two well-known
alternatives for an application: a relational database (MySQL), and its non-relational
alternative (document-based MySQL). The differences between the two are large, with
MySQL being a relational database, structured in the form of tables containing columns,
while document-based MySQL is a non-relational database, saving data as documents,
using key–value pairs [4]. Document-based MySQL allows developers to work with SQL
relational tables and schema-less JSON (Java Script Object Notation) collections [5]. To
make that possible, MySQL has created the X DevAPI which places a strong focus on
CRUD by providing a fluent API (application program interface) [6] allowing you to work
with JSON documents in a natural way [7]. The X DevAPI uses a new protocol based on
Google Protobufs [8] that provides features unable to be offered in the old protocol such as
multiple non-blocking async queries and using MySQL as a NoSQL JSON Document Store
with simple CRUD functions [9]. The X Protocol is highly extensible and is optimized for
CRUD as well as SQL API operations. Moreover, document-based MySQL does not require
defining a fixed structure during document creation and makes it significantly easier to
change the record structure later [5,10].

Document-based MySQL offers users maximum flexibility in developing traditional
SQL relational applications and NoSQL schema-free document database applications; this
eliminates the need for a separate NoSQL document database [11]. Developers can mix
and match relational data and JSON documents in the same database as well as the same
application. Some of the document-based MySQL advantages are its high reliability, full
consistency that provides multi-document transaction support, and full ACID (atomic,
consistent, isolation, and durability) compliance for schema-less JSON documents. ACID
properties define the key SQL database properties to ensure a consistent, safe, and robust
database modification when saved [12].

One of the important criteria when choosing a database to use is its performance, in
terms of the speed of data access and processing. When choosing the database, several
aspects must be considered, including response times to the most important operations
(insert, select, update, and delete), and its scalability, security, and flexibility, so that it can
be changed easily and quickly without side effects. With this idea, this paper is focused on
the issue of increasing database performance and proposes several methods to optimize
the database structure and queries. The most important optimizations considered are those
on the database structure and indexes. To show the efficiency of the proposed optimization
methods, a testing architecture was developed that involves the implementation of two
versions of a Java application, using IntelliJ IDEA [13] (IntelliJ IDEA, version 2020.2.4, build
#IC-202.8194.7, built on 24 November 2020, JetBrains, Prague, Czech Republic, known as
Intellij IDEA), with one using relational MySQL, and one using document-based MySQL.
Furthermore, optimization methods were applied to both relational MySQL and document-
based MySQL, and performance tests were run on CRUD operations before and after these
optimizations to observe the impact of these optimization methods on each database.

This paper is organized as follows: The first section contains a short introduction
emphasizing the motivation of the paper, followed by Section 2 that reviews related
work. The structures of the databases, methods, and testing architecture used in this
work are described in Section 3. The database optimization methods are described in
Section 4; furthermore, the experimental results and their analysis regarding the impact of
the optimization methods on the two databases in an application that uses large amounts
of data are presented in Section 5. Some discussion regarding the performance tests
over different complexities of queries and data volumes is carried out, and, finally, some
conclusions regarding the analysis are presented.
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2. Related Work

Many studies have been conducted in recent years to compare the efficiency of differ-
ent optimization techniques on both relational and non-relational databases [14,15]. In [16],
the authors presented a comparative study between relational and non-relational database
models in a web-based application, by executing various operations on both relational
and non-relational databases, thus highlighting the results obtained during performance
comparison tests. The authors of [17] conducted an exhaustive analysis and comparison
with regard to MySQL and CouchDB query performances as well as the configuration and
structure of the data; for this purpose, specific similar applications were developed in Java
in order to compare the time performance when working with large amounts of data.

In [18], the authors presented a study that shows that multi-query optimization for
shared data using predicate-based filters can open new opportunities to gain significant
improvements by reducing redundant filtering tasks. Antonio Celesti et al. [3] described
an approach to perform join operations at the application layer in the MongoDB database,
which allows preserving data models.

As NoSQL databases are growing in popularity, the integration of different NoSQL
systems and the interoperability of NoSQL systems with SQL databases are becoming an
increasingly important issue. In [19], the authors proposed a novel data integration method-
ology to query data individually from different relational and non-relational database sys-
tems. To show the applicability of the proposed methodology, a web-based application was
developed, which confirms the usefulness of the method. The authors of [20] conducted a
comparative analysis between NoSQL databases such as HBase, MongoDB, BigTable, and
SimpleDB and relational databases such as MySQL, highlighting their limits. The authors
specifically tested the above databases analyzing both simple and more complex queries.

In [21], the authors presented a protocol to assess the computational complexity of
querying relational and non-relational databases in a healthcare application. This protocol
shows that SQL systems are not practical for single-patient queries since response times
are slower. The query optimization problem was addressed in [22], where the authors
addressed the issue of the efficient execution of JOIN queries in the Hadoop query language,
Hive, over limited big data storages.

Query optimization in relational and non-relational databases has become a promising
research direction due to the increasing amount of data to be processed and queried as
fast as possible. With this idea, the methods for optimizing the database structure and
queries proposed in this paper address a particularly challenging and actual problem,
being applied on two of the most popular open-source database management systems:
MySQL as a relational DBMS, and document-based MySQL as a non-relational DBMS. The
results obtained confirm the efficiency and impact that these optimization methods have
on each specific DBMS when carrying out CRUD operations for different amounts of data.

We chose to focus on these two databases because relational MySQL is the most used
type of database at present, and document-based MySQL comes as an alternative to other
non-relational databases, with MySQL thus trying to provide solutions to all application
developers. Being a newer database about which there is not much documentation, by
conducting this study, we can highlight important details about how to use it, integrate it
into an application, and optimize it and its performance in certain operations.

3. Method and Testing Architecture

The testing architecture implies the implementation of two applications in Java
(Java, version 15.0.2, developed by Oracle Corporation, Canada), using IntelliJ IDEA
2020.2.4 (Community Edition) (IntelliJ IDEA, version 2020.2.4, build #IC-202.8194.7, built
on 24 November 2020, JetBrains, Prague, Czech Republic, known as Intellij IDEA), with
runtime version 11.0.9+11-b944.49 amd64 [13], one for relational MySQL, and one for
document-based MySQL.

The version of MySQL used was 8.0.25 (developed by Oracle Corporation, United
States). Even if the same database engine was used, the structure of the two databases is
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different. In relational MySQL, the database structure is based on tables representing the
created entities that contain columns, representing their fields; in document-based MySQL,
the structure is in the form of a document containing information in JSON format, in the
key–value form.

The structure of the relational database used in this paper is composed of 3 entities:
business, user, and client, as shown in Figure 1.
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Figure 1. Relational database structure.

This structure is based on 3 entities and can be used to store clients of different
small service providers. It can be developed to store both their services and customer
appointments, becoming an agenda. In the case of relational MySQL, the application
contains entities, their repositories where the queries are written, one service class for
each entity, a class dealing with the logic of the application, and the main class where
performance tests are conducted. In the case of document-based MySQL, the application
contains only one class for each object and the main class where the tests are conducted.
To respect the same structure in both applications, separate classes were created where
the logic applied was written, and we just called them from the main class. In the case
of relational MySQL, queries were executed from repositories that have the Repository
annotation [23], and each query was written in the parameter query annotations applied to
each method in this class. In the case of the application that uses document-based MySQL,
there are predefined commands by the MySQL Connector Java version 8.0.25 library, and
we called methods that take a query as a parameter, similar to that of relational MySQL.

For document-based MySQL, the structure is described in Figure 2:
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Each document can contain the information of a single customer, which also includes
the information of the user to whom it belongs as well as the information of the business
to which the user belongs. In this way, each document is independent, although the
information is duplicated and takes up more storage space. In the case of this type of
database, the structure can be dynamic, new fields can be added, and existing fields can
be deleted without affecting the other documents in any way. To keep a structure as close
as possible to that of relational-based MySQL, we used objects inside which we defined
all the fields presented in Figure 1, except for the deleted and created_at fields that were
defined per document, only in the business object.

The column created_at tells us when the entity was created and can be used to order
the items after their creation in ascending or descending order, and the column deleted can
be used to mark an entry as deleted before being permanently wiped. Datetime fields were
saved in the database in UTC in both applications.

The most important optimizations are those on the database structure and indexes.
In this paper, the fields in the tables were optimized by trying to have as few fields as
possible that can be null, with their length being as small as possible, depending on the
needs. To improve the structure of the database, normalization was applied on it; thus,
instead of storing the profession as a string for each user, a separate table was created
with the most important professions, and in the user table, only the id column related to
those professions was stored. To make database querying more efficient, indexes were
added to all columns used in queries, and, where necessary, compound indexes were
added to further improve response times. To analyze the impact of the optimizations, two
applications in Java were implemented, using IntelliJ IDEA [13], one for relational MySQL,
and one for document-based MySQL. Applications were used to carry out several CRUD
operations for different amounts of data before applying these optimizations and, after,
in order to be able to observe the efficiency and impact on the performance of optimizing
the database.

4. Database Optimization Methods
4.1. Field Optimization-Based Methods

Considering the database structure, the following field optimizations were applied:

• Reducing the possible values for a field by changing its type from object to primitive;
• Minimizing the length of the fields;
• Replacing recurring values with an enum and storing only the associated id saved

as tinyint;
• Reducing the possibility of string fields being null.

The first optimization proposed by us is to reduce the values that a field can take by
changing its type in the application from the object to the primitive type. In the case of a
field of types integer, Boolean, long, and not only, defined as object, the field can be null,
and it is not necessary to have a default value. By changing these fields to primitive types,
we reduce the possibility that these fields will be null, and we must have a default value
for them. In our case, this optimization was applied to the deleted field, which became,
by default, false. By this optimization, the filter conditions that use these types of fields
can be simplified, and there is no longer the need to check for null, in our case, reducing
the condition from (deleted is null or deleted = false) to (deleted = false). These optimizations
reduce the possibility of obtaining a wrong result (not all possibilities have been checked),
reduce the length of the query, and help to make it run faster, and the field becomes cheap
considering the memory expense.
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Another proposed optimization is the one related to the length of the fields. The
length of the fields will be defined in correlation with the maximum value stored in that
field. When creating a new table or a new object, the length of each field in the table/class
up to the maximum that the type of respective field can take is usually set. However, a
shorter length can be defined for certain fields, for which we know the maximum value of
the field that will be entered in that field. For example, in the case of the database described
in Figure 1, for the phone field, we know that its length cannot exceed 13–14 characters;
therefore, the column of this length should be defined and not be left longer.

The same optimization can be conducted in the case of email, name, address, and
profession columns. By this optimization, the storage space is reduced because the length
of the fields is fixed, and no larger space that will never be used is allocated, thus helping
to improve response times because they are saved in memory after the first operation on
that table, with the performance being affected by this aspect. The length of the fields is
strictly defined with the maximum value of the field. In this case, if we want to insert or
update a column that has a fixed length with a longer field, an exception may occur, and
the value is no longer inserted or updated. This exception can be avoided by modifying
the setter so that it makes a substring of maximum x characters. The frontend application
should address this issue and, if the length is longer, display an error to the user, but we
must ensure that this length is respected. We can handle this issue by calling an exception
to avoid data loss.

The fields from tables that save an enum type, a string that is repeated, or store values
that can be changed into an enum type need to be saved in databases as numbers, each
number meaning something, and not as a string, which is stored as an entire value. For
values from 0 to 128, tinyint can be used, being the smallest type of integer, stored on one
byte. In the structure described in Figure 1, the profession field is an important one if we
want to perform certain statistics based on the professions of users, in order to see which
professions dominate the application. Therefore, an optimization that can be conducted
is to create an enum type that can contain the most common professions, but there are
also other professions, which would include users who are not in one of the predefined
professions. Following this optimization, the profession field can be defined as a tinyint,
with only the id of the profession being saved in the database, thus reducing the storage
space allocated to this field; in queries, the search can be carried out faster. Thus, with this
optimization, we can establish groupings by profession very easily, with the statistics also
being easy to obtain.

A last optimization in this sense is reducing the possibility of the string fields being
null. The fewer fields with a null value that we have, the cleaner the database will be,
and the better the searches can be conducted, meaning the fields such as name, phone,
profession, and address will not be null. This optimization can be conducted in document-
based MySQL by defining columns as not null, or by annotating the field as not blank,
with the annotation available in javax.validation.constraints. This annotation requires that
the field contain at least one character, excluding whitespaces.

4.2. Index-Based Optimization Methods

The optimization that most significantly reduces query response times is the addition
of indexes to the fields used in the query’s conditions: simple indexes if only one field from
the table is used, or compound indexes if multiple columns in the query are used.

In relational MySQL, adding indexes can be conducted in two ways; in document-
based MySQL, adding indexes is carried out by using the predefined command createIndex
which has two parameters: the name of the index, and its definition, as can be seen in
Table 1:
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Table 1. Index creation.

Relational MySQL: Create Indexes

Version 1: by adding them by alter table add index:
ALTER TABLE ‘user‘ ADD INDEX‘ user_created_at_index‘ (‘created_at‘)

Version 2: by adding them directly to entities:
@Table (indexes = {@Index (columnList = “created_at”)})

Document-based MySQL: Create indexes

col.createIndex(“createdAtIndex “,”{\”fields\”:
[{\”field\”: \”$.created_at\”, \”type\”: \”INTEGER\”, \”required\”: true}]}”)

Using the second possibility in relational MySQL, indexes are visible in entities and
can be easily identified. For document-based MySQL, in the definition of the index, the
path to the field on which we want to add the index must be specified, with its type, text,
or integer in the case of numbers, whether it is required or not. If an index is of the text
type, its length must also be specified. In the case of the relational MySQL application,
the indexes were added directly to the entities so that they can be easily observed and
modified; in the case of the document-based MySQL application, they were added from the
application when it was run. In order to obtain the best possible results for all operations,
we analyzed each operation separately and noted which columns it used to obtain the data,
centralizing these columns and adding an index for each combination obtained at the end.
Indexes added to the two databases are described in Table 2.

Table 2. Added indexes.

Relational MySQL Document-Based MySQL

deleted field on each table (3 indexes) deleted field on each document
created_at field in user and client table created_at field on each document

client name client name
business name business name

user table: id, deleted, created_at, and business_id compound index: id, deleted, created_at, and
user.id

user table: id, deleted, and business_id compound index: id, deleted, and user.id
on id field

on user.id field

In document-based MySQL, because each entry is a separate document, the deleted field
and created_at are applied per document, meaning only one index is added. In relational
MySQL, each table automatically creates an index on the primary key; therefore, to maintain
the consistency in both structures and to have the same indexes in both databases, we
needed to add two more indexes in the relational MySQL database, one for the business_id
field, and one for the user.id field. By adding these two indexes, the two databases are
identical from this point of view. We added several indexes, simple and compound, to
cover all the column combinations used in the case of the operations performed. Thus, each
database will use the required index or a combination of several indexes, when performing
the query, to obtain the highest possible performance, thus highlighting their effect. In the
case of all operations, the database chooses the indexes it uses, without specifying certain
indexes to be used.

5. Performance Tests—Results and Analysis

For each structure of the database, the CRUD operations were performed before and
after they were optimized in order to be able to analyze and compare the improvements
brought to them by applying optimization. The optimization methods described in Chapter
4 were applied for the existing fields, for the structure of the tables, and in the indexes part.

The field optimization-based methods involve optimization in terms of storage, the
space occupied by data storage, and how clean the data are when stored and used. The
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index-based optimization methods have an impact on improving the response times within
an application. Both methods are very important to achieve in order to obtain a stable and
fast database.

As optimizations’ impact can best be seen on a large number of items, operations were
applied on a range between 10,000 and 5,000,000,000 entries. These data were generated
absolutely randomly, with a for statement with which the desired number of elements
was generated (i.e., for(int a = 1; a≤10000; a++){//generate entries}), the id being the value
from the for statement. Additionally, the values of the fields in the entities were gener-
ated randomly, except for the created_at field, which was generated as follows: for each
quarter of the elements, we set it as the current date—x days, x being the value of for; the
rest of the elements either remained null or were generated with a random string (i.e.,
RandomStringUtils.randomAlphabetic(10)—generates a 10-letter random string).

Creating a session within which a schema is created and then a collection where the
data are to be saved and processed using document-based MySQL is conducted as follows:
SessionFactory sFact = new SessionFactory ();
Session session = sFact.getSession (“mysqlx://name:password@localhost:33060”);
Schema schema = session.createSchema (“application”, true);
Collection collection = schema.createCollection (“business”, true);

In relational MySQL, in the application.yml of the application, a file containing the
application settings, we have the following configuration:

datasource:
url:jdbc:mysql://127.0.0.1:3306/databaseName?useUnicode=

true&useJDBCCompliantTimezoneShift=
true&useLegacyDatetimeCode = false&serverTimezone = UTC

username: username
password: password
All the tests presented further were conducted on a computer with the following

configuration: Windows 10 Home 64-bit, processor Intel Core i7-1065G7 CPU @1.50 GHz,
16 GB RAM, and a 512 GB SSD.

Several variants of the four CRUD operations were performed during tests, especially
different selection operations, in order to observe the impact of optimizations on the
database performance and to analyze differences in response times.

The operations were performed with the help of a programming task, at an interval of
a few minutes, achieving an average of the results obtained at each run. These operations
are the same before and after optimization, and the filtering conditions may differ a little
depending on the field or fields used that have been optimized.

The optimizations performed were the value optimization of the field by which we
reduced the values that a field can have, removing the possibility for some fields to be null,
and the field-type optimization by which we changed the value of a field. For example, for
the first type of optimization, we optimized the deleted field from each entity, and for the
second type, we optimized the profession field from the user entity; therefore, they will
be passed only once, and the response times will be passed twice, before the optimization
and after.

5.1. Insert Operation

For each database structure, the insert operations are presented in Table 3. The insert
operation will perform the insertion of a new client. In the case of relational MySQL, we
need to look for the user before inserting the client, in order to make sure that it exists in
the database and is not marked as deleted; otherwise, an exception may occur. If the user
is found, we create the client object with the help of a constructor that has all the fields
from the client, except the id field that we set to auto-increment, as parameters. In the case
of using document-based MySQL, no previous verification is needed, we build the client
object, and, with the help of the add() method, we save the element in the database.
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Table 3. Insert operation.

Relational MySQL: Insert Operation

User user = userRepository.getById(7777);
if (user! = null){

Client client = new Client(new Date(), “client name”, “+0770123456”, “clientTest@gmail.com”,
“always late”, user);

clientRepository.save(client);
}

Document-Based MySQL: Insert operation

Client client = new Client(“client name”, “+0755123456”, “client email “, “always late”);
User user = new User(“user name”, “+40789123456”, “hair stylist”, “user email “, client);

Business business = new Business(12345,”business name “, “+4071234567”, “business address”,
new Date(), false, user);

collection.add(new ObjectMapper().writeValueAsString(business)).execute();

In order to obtain a clean code, when creating objects, we can use constructors, or
we can use the Builder annotation (i.e., @Builder) available in the lombok package. If we
annotate a class with @Builder, a constructor with all the respective class fields becomes
available, with the help of which we can create objects such as Client.builder().build(), the
necessary fields being added after the builder. This way, the code is much cleaner than
if we had used setters. Figure 3 presents the execution time of the INSERT operation on
relational MySQL and document-based MySQL.
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For the insert operation, the differences between the execution times before and after
the optimization are not very big in the case of both databases, as we can see in Figure 3.
Since, in the case of relational MySQL, for inserting a client, a search operation is performed
before, the user is searched after the id field that already has an index created, being the
primary key. The same goes for the actual insertion when looking for the next id.

In the case of document-based MySQL, the insertion is faster than in the case of
relational MySQL because no validation of the fields is conducted, saving the object as it
was built. In relational MySQL, it is checked to respect the type of each specified field and
its length. We observe that the optimization methods do not have a great impact on the
insertion operation, in the case of both databases, with the improvement in the response
times being insignificant.

5.2. Update Operation

Several types of update operations were performed, implying updating one or more
elements (items) and, within them, one or more fields, in order to better see the differences
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between response times before and after optimizations and the way in which the databases
are used to make these changes.

5.2.1. Updating a Single Item

First, updating a single item and a single field was performed, by changing the name
of a business; the update operation that was performed is presented in Table 4.

Table 4. Update a single item and a single field operation.

Relational MySQL: Update a Single Item and a Single Field Operation

@Query(value = “update business set name = :name
where id = :businessId”, nativeQuery = true)

void updateById(@Param(“name”) String name, @Param(“businessId”) long businessId);

Document-based MySQL: Update a single item, a single field operation

collection.modify(“_id = 0000608070550000000000002713”)
.set(“name”, “Nails by Ayana”).execute();

In both cases, if there is no business with a given id, no exception will appear, no element
will be modified, and the query will run successfully. In the case of using document-based
MySQL, we used the predefined modify() method which takes the element search condition,
the part of the query that follows “where”, as a parameter, and then the set() method was
called, which changes the value of the field passed as the first parameter with the new
value passed as the second parameter.

Second, updating the same item but multiple fields was performed, as presented in
Table 5.

Table 5. Update a single item but multiple fields operation.

Relational MySQL: Update a Single Item but Multiple Fields Operation

@Query(value = “update business set name = :name, address = :address
where id = :businessId, nativeQuery = true)

void updateMultipleFieldsById(@Param(“name”) String name,
@Param(“businessId”) long businessId, @Param(“address”) String address);

Document-based MySQL: Update a single item, multiple fields operation

collection.modify(“_id = 0000608070550000000000002713”)
.set(“name”, “Nails by Ayana”).set(“address”, “London, United Kingdom, 4”).execute();

In the case of relational MySQL, for updating several fields, the fields we wanted to
update were separated by commas, after the keyword set. In the case of document-based
MySQL, after we filtered the element we wanted to modify, as in the previous case, using
the set() method, we modified the desired fields with the new values.

Modifying a single item involves finding the element and then modifying it. The
difference between changing one or more fields does not have a more significant impact
in either document-based MySQL or relational MySQL, the differences being minor, as
shown in Figures 4 and 5.

For a small number of elements, the times are very close because the search was
conducted after the primary key that already contains the index; after the subsequent addi-
tion of the other indexes and the optimization of the entity structure, the times improved
relatively little, but with the increase in the number of elements, the time became slower
for relational MySQL compared to document-based MySQL, the trend being maintained
even after optimization.

For update operations, optimizing the length of the fields and adding the indexes on
the columns that change brought a small improvement in the response times, namely, an
improvement of about 20%.
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5.2.2. Updating Multiple Items

In this case, we updated more clients, depending on the business id. In order to obtain
the clients of a business, a join between user and client tables is necessary for relational
MySQL because there is no direct connection between the business and client tables, and
the user table contains a foreign key business_id field. The deleted field is null in all entities; in
this case, when we want to update several elements, we add the condition of not updating
the already deleted ones. Being nullable, we must add the condition (deleted is null or
deleted = false) because, under certain conditions, the deleted field may have been set to
false, no longer remaining with the default value of null.

Updating multiple elements with a single field and with multiple fields within the
elements is presented in Tables 6 and 7, respectively.

In relational MySQL, to obtain the entries that we want to modify, we need to establish
a join between two tables, while in document-based MySQL, we use the same methods as
in the other updates, the only difference being the parameters of the two used methods.

In the case of update operations, where more elements are modified, the execution
times are significantly improved when the proposed optimization methods are applied,
in the case of relational MySQL, as we can see in Figures 6 and 7. The improvement in
these times is due to the fact the search operations for the element are much faster due
to the created indexes, and the deleted field is no longer nullable, thus escaping the “or”
conditions. Additionally, in the case of using document-based MySQL, the proposed
optimization methods bring in an improvement of the execution times, but not a very
significant one, as in the case of relational MySQL.
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Table 6. Update multiple items and a single field operation.

Relational MySQL: Update Multiple Items and a Single Field Operation

@Query(value = “update business b inner join user u on b.id = u.business_id
inner join client c on u.id = c.user_id set c.notes = :notes

where b.id = :businessId and (b.deleted is null or b.deleted is false)
and (u.deleted is null or u.deleted = false) and (c.deleted is null or c.deleted = false)”,

nativeQuery = true)
void updateByBusinessId(@Param(“businessId”) long businessId, @Param(“notes”) String notes);

@Param(“address”) String address);

Document-based MySQL: Update multiple items, a single field operation

collection.modify(“id = 10001 and (deleted is null or deleted is false)”)
.set(“user.client.notes”, “plus 10 dollars”).execute();

Table 7. Update multiple items and multiple fields operation.

Relational MySQL: Update Multiple Items and Multiple Fields Operation

@Query(value = “update business b inner join user u on b.id = u.business_id
inner join client c on u.id = c.user_id set c.notes = notes, c.name = :clientName

where b.id = :businessId and (b.deleted is null or b.deleted is false)
and (u.deleted is null or u.deleted = false) and (c.deleted is null or c.deleted = false)”,

nativeQuery = true)
void updateMultipleFieldsByBusinessId(@Param(“businessId”) long businessId,

@Param(“notes”)
String notes, @Param(“clientName”) String clientName);

Document-based MySQL: Update multiple items, multiple fields operation

collection.modify(“id = 10001 and (deleted is null or deleted is false)”)
.set(“user.client.notes”, “plus 10 dollars”).set(“user.client.name”, “Jerry’s client”).execute();

The improvement in execution times is mostly due to the added indexes because
they help to find the elements that correspond to the set conditions faster. The difference
between updating a single field or several is not very big, as we can see in Figures 6 and 7,
because the search is the same, and this operation takes most of the actual time of a query.
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When there is a small number of elements, the results for updating operations are
similar because the search is relatively fast, but with the increase in the number of elements
and the lack of indexes, relational MySQL takes a very long time compared with document-
based MySQL. After applying the optimization methods on both databases, we can see
from Figures 6 and 7 that document-based MySQL is faster than relational MySQL, but
timing improvements are significant for relational MySQL.

We noticed, as a result of the tests performed, that the indexes have a huge impact; thus,
the proposed optimization methods, described above, help with gaining an improvement
in the execution time over 60% in the case of both databases.

5.3. Select Operation

We further analyzed several select operations in order to better observe the result
of the proposed optimization methods. The selection operations performed are a simple
select operation, based on the primary key of the table; a select operation that uses a join
based on the name field in the business table; a select operation that uses two joins also
based on the business name; a select operation with multiple joins and different functions
based on the business_id field in the user table; and a select operation with two left joins
and different functions. All selections exclude deleted items from all tables.

5.3.1. Simple Select Operation

To exemplify a simple select operation, for example, a business by its id, in the case of
relational MySQL, we used a select statement; in the case of document-based MySQL, we
used the predefined getOne() method which takes the id of the document as a parameter.
These operations are presented in Table 8.

Table 8. Simple select operation.

Relational MySQL: Simple Select Operation

//repository
@Query(value = “select * from business where id = :businessId”, nativeQuery = true)

Business getById(@Param(“businessId”) long businessId);
//service

Business business = businessRepository.getById(1234);

Document-based MySQL: Simple select operation

DbDoc result = collection.getOne(“0000608070550000000000002713”);

In the case of this operation, as shown in Figure 8, the proposed optimization methods
do not have a significant impact with the increase in the number of elements because the
selection operation is performed after a primary key that is actually indexed automatically.
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However, there is a better performance in the case of document-based MySQL compared
to relational MySQL.
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5.3.2. Select Using One Join

A select operation that uses a single join is presented in Table 9. We consider that
the business name field is unique because in the future, this field can be used to generate
links to create sites for each business. We conducted a selection to obtain all users of this
business, as presented in Table 9.

Table 9. Select operation using a single join.

Relational MySQL: Select Using a Single Join Operation

@Query(value = “select u.* from business b inner join user u on b.id = u.business_id
where b.name = :businessName and (b.deleted is null or b.deleted = false)

and (u.deleted is null or u.deleted = false)”, nativeQuery = true)
List<User> findByBusinessName(@Param(“businessName”) String businessName);

Document-based MySQL: Select using a single join operation

DocResult res = collection.find(“name = ’Beauty by Ali’ and user.name is not null
and user.client.name is null”).execute();

In the case of using relational MySQL, users are obtained by performing a join based
on the business_id field, a field that is a foreign key in the user table, and then we set the
condition that the business name is the one sought.

In the case of document-based MySQL, users are obtained by searching for all busi-
nesses that have their respective name and a username which is not null. DocResult contains
a list of DbDoc because it extends FetchResult <DbDoc>, returning an object that contains all
the elements filtered according to the set conditions. Using the deleted field, we exclude
deleted items. As we have seen in the case of updates, in the case of selections, we must
add the condition that the deleted field be null or false.

Selecting the users of a business already involves using a join in relational MySQL,
which automatically involves increasing the response times. Before applying the optimiza-
tion methods, during the search, it must be checked that the element either has the field
deleted null or deleted false. After optimization, with the addition of the index composed
in the user table to user_id and business_id, as well as the index in the deleted field, the
search was much faster, the “or” disappeared, and each field that needed to be verified
to comply with the conditions after “where” had an index, thus no longer scanning the
entire tables.
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In the case of document-based MySQL, response times were much shorter than in
the case of relational MySQL, the difference between these decreasing after applying the
optimization methods, as can be seen in Figure 9.
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The indexes in document-based MySQL work on the same principle as in relational
MySQL, helping to find the elements faster, having a huge impact in the case of relational
MySQL. The optimization methods on the database structure and the fields do not have
a significant impact; in this case, only the indexes bring significant improvements. After
applying the optimization methods, relational MySQL significantly improved its response
time, with the methods having a significant impact when the number of elements in-
creased, as shown in Figure 9. After applying the optimization methods, relational MySQL
was faster than document-based MySQL without optimizations; however, it had a lower
performance than document-based MySQL with optimizations.

5.3.3. Select Using Two Joins

A select operation that uses two joins is presented in Table 10. In this example, we
conducted a selection to obtain all the clients of a business.

Table 10. Select operation using two joins.

Relational MySQL: Select Using Two Joins

@Query(value = “select c.* from business b inner join user u on b.id = u.business_id inner join
client c on u.id = c.user_id where b.name = :businessName and (b.deleted is null

or b.deleted is false) and (u.deleted is null or u.deleted = false) and (c.deleted is null
or c.deleted = false)”, nativeQuery = true)

List<Client> findByBusinessName(@Param(“businessName”) String businessName);

Document-based MySQL: Select using two joins

DocResult res = collection.find(“name = ’Beauty by Ali’ and
(deleted is null or deleted = false) and user.client.name is not null “).execute();

In the case of relational MySQL, it takes two joins to obtain the clients, and for each
join, the condition of deleted is null or false, while in document-based MySQL, the field
deleted is applied per document, with only one condition being necessary. The difference
from the previous selection is the fact that, now, the client name must be different from
null, meaning it must exist.

Filtering customers of a business involves the use of two joins in this case, one to find
the users of the business, and one to find the customers of each user. The response times
increase automatically with each join added and, in our case, with each “where” condition.
In document-based MySQL, the difference is not very big compared to the selection of
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users, changing the search condition a little; therefore, there is not a big difference between
the response times for finding clients or users, scanning the same elements, and checking
the same fields.

For a small number of elements, the optimization methods do not have a significant
impact, as can be seen in Figure 10, and the response times are very close to each other,
regardless of whether or not optimizations were conducted, in the case of both databases.
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The differences start to appear with the increase in the number of elements. In the
case of the selection without optimizations, the response times increase significantly with
the number of elements, especially in the case of relational MySQL, because indexes do not
exist in the fields involved in the “where” condition.

The optimization methods improved the performance for both databases, but as can
be seen from Figure 10, they have a much greater impact on relational MySQL. Document-
based MySQL has a better performance both before and after optimizations compared to
relational MySQL in the case of the select operation using two joins.

5.3.4. Different Selects with Multiple Joins and Different Functions

In the case of relational MySQL, some functions (group by or order by) can have an
important impact on the execution time for a query. To better see the impact that these
functions can have, how much they increase the execution times, and how optimizations
can improve the database performance, two select operations with multiple joins that
use these functions were created. Through these select operations, we present how these
functions are used in document-based MySQL and their impact on this database.

A select operation that uses multiple joins and different functions by which we obtain
all the names of a user’s clients ordered after their creation date is presented in Table 11.

Table 11. Select operation with multiple joins and different functions.

Relational MySQL: Select with Multiple Joins and Different Functions

@Query(value = “select group_concat(c.name SEPARATOR ‘,’) from user u inner join
client c on u.id = c.user_id where u.id = :userId and (u.deleted is null or u.deleted = false)

and (c.deleted is null or c.deleted = false) order by c.created_at”, nativeQuery = true)
String findClientsByUserName(@Param(“userId”) long userId);

Document-based MySQL: Select with multiple joins and different functions

String res = collection.find(“user.id = 10,001 and user.client.name is not null and deleted
is null or deleted is false”).orderBy(“created_at”).fields(“user.client.name as

clientName”).execute().fetchAll().stream().map(dbDoc -> dbDoc.get(“clientName”)
.toFormattedString()).collect(Collectors.joining(“,”));
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In relational MySQL, there is the group_concat() function that groups and concatenates
the given field as a parameter, using the specified separator, finally returning a string, being
a way to obtain the names of all clients. In document-based MySQL, there is no such a
function; therefore, using the fields method, we specify only the fields we want to take
from the whole object; in this case, the client name and the list are formatted as a string,
separating the fields with the same separator as in the case of the other type of database. In
the end, the two operations will return exactly the same result, in exactly the same format.

To select the names of a user’s clients, in relational MySQL, we used the group_concat()
function which groups the clients and concatenates, at the same time, the specified field,
in this case, their names. In the case of relational MySQL, the response times increase
significantly with the number of elements when optimization methods are not applied, as
shown in Figure 11. This is largely due to the order by which the elements are filtered, with
grouping and concatenation being relatively fast.
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In document-based MySQL, this function does not exist; therefore, a selection was
conducted, and using the fields method, we selected only the desired field from the whole
object, in this case, the client’s name, finally obtaining a string identical to the one in
relational MySQL. The use of order by clause in this case does not significantly increase
the execution times because the elements were already filtered when their order was
established, the order being established by the number of elements found. There are
significant differences between the response times before and after optimization, especially
in the case of relational MySQL, as can be seen in Figure 11. In the case of document-based
MySQL, the differences between response times before and after optimization are not very
large. By applying optimization methods, we obtained an improvement of over 50% in
the case of using document-based MySQL, and over 80% in the case of relational MySQL,
when the number of items increased over one million.

The query presented in Table 12 uses two left joins and multiple functions and returns
each user of each company and the number of their customers ordered by the date of
their creation.

For each function in relational MySQL, there is a method in document-based MySQL
with its name taking the fields we want to use as a direct parameter. To take several fields
from the existing object, inside the fields() method, we must use a comma for all the desired
fields. In order to use the groupBy() method, we must take the field we want to group and
then use it as a parameter in this method. If grouping is attempted using any fields other
than those in the fields(), an exception such as “Invalid empty projection list for grouping”
will appear.
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Table 12. Select operation with two left joins and different functions.

Relational MySQL: Select with Two Left Joins and Different Functions

@Query(value = “select b.name, u.name, count(c.id) as clients from business b left join user u on
b.id = u.business_id left join client c on u.id = c.user_id where (b.deleted is null or b.deleted =

false)
and (u.deleted is null or u.deleted = false) and (c.deleted is null

or c.deleted = false) group by u.id order by u.created_at”, nativeQuery = true);

Document-based MySQL: Select with two left joins and different functions

DocResult res = collection.find(“deleted is null or false”)
.orderBy(“created_at”).fields(“name as businessName”, “user.name as userName”, “user.id as

userId”, “count(user.client.name) as clients”).groupBy(“userId”).execute();

The query that lasts the longest and where we can observe the optimizations conducted
is the one where we obtain the number of customers for each user of each business. This
query uses a group by clause to group the customers according to the user they belong to
and an order by clause to obtain the users created in ascending order. This query does not
use any primary key or foreign key, and only the user id is used in the group. Therefore,
the response times when using relational MySQL are very long and increase significantly
with the number of items because the tables are scanned in their entirety, no index can be
used on any primary key, and the deleted field must be checked.

When using document-based MySQL, all documents that are not deleted are selected
and then sorted by their creation date. The group by function only takes projections as a
parameter, and the field or fields used in groupBy() must be selected first with the fields()
method; otherwise, this method will not work. Therefore, first, we selected the fields
we wanted to obtain and, in addition, the field user id based on which the grouping was
conducted. Additionally, in the case of this database, this is the query that lasts the longest,
but the differences between the databases are very large, as shown in Figure 12.
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After optimizing the database structure and adding indexes, the response times when
using relational MySQL decrease, but not by very much when there are many elements;
however, by adding compound indexes, the times are greatly reduced, decreasing from
10–12 to 1–3 s, which is very good. By adding the index composed in the user table
consisting of deleted, created_at, id, and business id, the query can use this index when it
takes the data and filters them according to the conditions specified.

5.4. Delete Operation
5.4.1. Hard Delete

The hard delete operation of all customers of a business is presented in Table 13.



Appl. Sci. 2021, 11, 6794 19 of 23

Table 13. Hard delete operation.

Relational MySQL: Hard Delete Operation

@Query(value = “delete c.* from user u inner join client c on u.id = c.user_id
where u.business_id = :businessId”, nativeQuery = true)

@Modifying(clearAutomatically = true)
void deleteAllClientByBusinessId(@Param(“businessId”) long businessId);

Document-based MySQL: Hard delete operation

collection.remove(“id = 10 and user.client.name is not null”).execute();

In the case of using document-based MySQL, deleting elements can be conducted very
simply, using the remove() command which takes the filtering condition of the elements as
a parameter; therefore, all the elements that satisfy this filter will be deleted. In relational
MySQL, a join is needed to obtain all the clients, which are then deleted. As the actual
deletion of elements is conducted in document-based MySQL using the predefined remove()
command, it is very fast, whether it has optimizations or not, with the times increasing
slightly with the increasing number of elements.

In relational MySQL, execution times are longer and increase significantly with the
number of elements due to the joins between tables, with the search for elements taking
a long time. After applying the optimization methods on the databases, response times
are significantly reduced, as they now use added indexes, achieving a 50% improvement
in relational MySQL, and a 10% improvement in document-based MySQL, as shown in
Figure 13.
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5.4.2. Soft Delete

Marking the clients of several businesses as soft deleted was conducted, as presented
in Table 14.

Table 14. Soft delete operation.

Relational MySQL: Soft Delete Operation

@Query(value = “update user u inner join client c on u.id = c.user_id set c.deleted = true where
u.business_id in (businessIds)”, nativeQuery = true)

void softDeleteAllClientByBusinessId(@Param(“businessIds”) List<Long> businessIds);

Document-based MySQL: Soft delete operation

collection.modify(“id in (10, 11, 12) and user.client.name is not null”)
.set(“deleted”, true).execute();

To mark one or more elements as deleted, the same operation is used as in the case of
the update; in fact, this is an update of the deleted field. Using the keyword “in” followed
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by a list, all customers of these businesses are marked as deleted, and in both cases, the
orders are similar to the update. As we deleted certain elements or marked them as deleted,
we are not interested in excluding those already deleted because this would involve an
additional filtering that can take longer; therefore, all elements that meet the specified
conditions are included.

The performance improvement can be seen in the case of both databases after we
applied the optimization methods, where document-based MySQL is faster before and
after optimizations, as shown in Figure 14.
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The soft delete operation is an update in which several elements and a single field
are modified. The duration of the query is due to the joins between the tables, with the
update itself being fast. The differences in duration are quite significant between the two
databases before optimization, especially when the number of elements increases due to
the join and the lack of an index on the deleted field.

6. Discussion

After applying the optimization methods to both relational MySQL and document-
based MySQL and running performance tests on CRUD operations before and after these
optimizations, the impact of these optimization methods on each database is summarized
in Table 15.

In the case of an insert operation, optimizations do not have an important impact,
neither in relational MySQL nor in document-based MySQL, mainly because an index is
already used in relational MySQL.

For the update operations, the optimizations improve the database performance, thus
reducing the execution time when queries are more complex, more tables are used, more
fields are updated, and more fields were used in the filter condition. For the simple update
operation, the differences are not so great.

However, the proposed optimization methods have a great impact on relational
MySQL in the case of more complex selections, such as selections that do not use primary
keys, in which different functions were applied on different fields, and that have more fields
in the search condition and use more tables; for those, response times before optimization
are very long, but after optimization, these response times decrease greatly, in some cases
by 80%, being much faster or as fast as document-based MySQL before optimizations.
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Table 15. Summary of comparative analysis.

Relational MySQL Document-Based MySQL

Indexes Indexes can be added in two ways, directly in
entities or by alter table statement.

Indexes are added from the application using the
createIndex() method.

Insert operation

The optimizations do not bring a major
improvement because there is already an index on
the primary key, and the field validations are still

performed.

The insertion is performed much faster because no
validation is performed, and the optimizations do

not bring a significant improvement.

Update operation

The improvements brought by the optimizations
can be observed in the case of complex update
operations on several elements, where several

tables and fields are used because their search is
conducted much faster by added indexes on the
fields, increasing the performances by up to 60%.

The differences are much more visible as the
number of elements increases, providing

performance close to document-based MySQL
before optimization.

The predefined update methods are already
optimized, offering very good response times for

both a small volume of data and a large volume of
data. The optimizations conducted improve the

response times, the biggest differences being in the
case of the update on several columns and several

elements for a large volume of data.

Select operation

The proposed optimization methods have a great
impact on relational MySQL. In the case of more

complex selections, the response time before
optimization is very long, but after optimization,

the response time decreases greatly, in some cases
by 80%, being much faster or as fast as

document-based MySQL before optimizations.

Using predefined methods that are already
optimized to provide the best response speed, the
optimizations conducted bring an improvement
but not as significant as in the case of the other

database. However, the operations are performed
much faster, regardless of their complexity and
volume of data, being very suitable for a large

volume of data.

Delete operation

The soft delete operation is similar to the update
one, these being close in performance. The hard
delete operation has a 50% improvement after

optimizations in the case of a large volume of data.
For a small volume of data, there is an

improvement but not as significant. Even after
these optimizations, the response times are much

longer than document-based MySQL.

Being an update operation, in the case of soft
delete, the operation is performed quickly both
before and after optimization, regardless of the
data volume. For the hard delete operation, the
optimizations bring a minor improvement, of

about 10%, but, nevertheless, it is much faster than
relational MySQL, especially for a large volume of

data.

For the soft delete operation, the optimization also brings an important impact on
relational MySQL, reducing the execution times, but in the case of the hard delete operation,
the impact is much lower.

Both databases were easy to configure and to integrate in the application, the same
MySQL 8.0.25 version being used in both cases. For relational MySQL, queries could
be written manually in repositories or various frameworks could be used where certain
general operations are predefined, while for document-based MySQL, the library offers
parametrized predefined methods for all operations.

7. Conclusions

In this paper, a comparative study was conducted between document-based MySQL
and relational MySQL on their performance during the execution of CRUD operations be-
fore and after optimization. Two types of optimization were considered: field optimization,
and index-based optimization.

The tests performed showed that document-based MySQL was much faster than
relational MySQL when the number of elements increased, whether or not optimizations
were applied, because predefined methods were used and not direct queries. With a
small number of elements, the two databases had relatively similar response times, with
small differences. Before the applied optimizations, as the number of elements increased,
the differences between the two databases became larger, but after optimizations, the
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differences were considerably reduced. Thus, for relational MySQL, applying optimization
methods, especially adding indexes, represents an important performance issue.

Consequently, in the case of an application with a huge volume of data, document-
based MySQL, with or without optimizations, represents the best solution. In the case
of relational MySQL, the proposed optimization methods are of great importance, and
their impact can be seen better in the select and update operations for a large number of
elements. In the case of document-based MySQL, the impact is not so noticeable even if
it exists.
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