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Abstract: Recent empirical works reveal that visual representation learned by deep neural networks
can be successfully used as descriptors for image retrieval. A common technique is to leverage
pre-trained models to learn visual descriptors by ranking losses and fine-tuning with labeled data.
However, retrieval systems’ performance significantly decreases when querying images of lower
resolution than the training images. This study considered a contrastive learning framework fine-
tuned on features extracted from a pre-trained neural network encoder equipped with an attention
mechanism to address the image retrieval task for low-resolution image retrieval. Our method is
simple yet effective since the contrastive learning framework drives similar samples close to each
other in feature space by manipulating variants of their augmentations. To benchmark the proposed
framework, we conducted quantitative and qualitative analyses of CARS196 (mAP = 0.8804), CUB200-
2011 (mAP = 0.9379), and Stanford Online Products datasets (mAP = 0.9141) and analyzed their
performances.

Keywords: image retrieval; representation learning; contrastive learning; self-supervised learning

1. Introduction

Even though high-quality images are popular, we get often degraded or low-resolution
images due to careless photo taking of loose focusing or picture taking from afar. Thus
image retrieving from low-quality images is requested in real applications because retrieval
results for a degraded image are usually poor. In this paper, we propose a proper deep-
learning-based framework that can straightly deal with low-resolution images. This study
implemented three main modules for solving category image retrieval on low-resolution
samples. First, an attention-based encoder network was employed to extract meaningful
visual representations of images. Second, we manipulated a contrastive learning framework
to obtain embeddings that are used for information retrieval. The purpose of contrastive
learning is to find consistent representations of different resolution views augmented from
the same source. Third, a model was trained end-to-end, including its encoder network and
projection head with multiple loss functions, consisting of contrastive loss for maximizing
agreement of different resolution versions of an identical image, cross-entropy loss for
classification, and triplet loss for maximizing distance of negative pairs (different category)
and minimizing the distance of positive pairs (same category). This section presents a brief
review of previous studies about image retrieval, attention mechanism, and contrastive
learning. To show the importance of this study, we examined some failure cases when
using low-resolution images as queries for image retrieval, as shown in Figure 1. These
examples highlight that low-resolution images are inferior for feature matching despite
using a powerful pre-trained model.
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taset. First row: 1st image is query image from class “mourning warbler “, 2nd image from class 

“magnolia warbler”, 3rd image from class “yellow-throated vireo”, 4th image from class “white-

crowned sparrow”, 5th image from class “blue-headed vireo”, 6th image from class “yellow-

throated vireo”. Second row: 1st image is query image from class “Clark nutcracker”, 2nd image 

from class “Western Kingbird”, 3rd image from class “song sparrow”, 4th image from class “Amer-

ican pipits”, 5th image from class “blue-headed vireo”, 6th image from class “scissor-tailed fly-

catcher”. Third row: 1st image is query image from class “stapler “, 2nd image from class “lamp”, 

3rd image from class “cabinet“, 4th and 5th images from class “stapler”, 6th image from class “ket-

tle”. Fourth row: 1st image is query image from class “lamp “, 2nd and 3rd image from class “cabi-

net”, 4th image from class “lamp”, 5th and 6th images from class “chair”. 
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Figure 1. Failure cases when querying a retrieval system using low-resolution images. The base
model is EfficientNet-b7 with features extracted from the last convolutional layer. The first image
of each round is the query, and the next five images are the top 5 retrieval results, with labels of
some images different from the label of the query image. Images in the first two rows belong to
the CUB200-2011 dataset, while those of the last two rows belong to the Stanford Online Product
dataset. First row: 1st image is query image from class “mourning warbler “, 2nd image from class
“magnolia warbler”, 3rd image from class “yellow-throated vireo”, 4th image from class “white-
crowned sparrow”, 5th image from class “blue-headed vireo”, 6th image from class “yellow-throated
vireo”. Second row: 1st image is query image from class “Clark nutcracker”, 2nd image from class
“Western Kingbird”, 3rd image from class “song sparrow”, 4th image from class “American pipits”,
5th image from class “blue-headed vireo”, 6th image from class “scissor-tailed flycatcher”. Third
row: 1st image is query image from class “stapler “, 2nd image from class “lamp”, 3rd image from
class “cabinet“, 4th and 5th images from class “stapler”, 6th image from class “kettle”. Fourth row:
1st image is query image from class “lamp “, 2nd and 3rd image from class “cabinet”, 4th image from
class “lamp”, 5th and 6th images from class “chair”.

Image Retrieval: Image descriptors based on deep convolutional neural networks
(CNNs) have been used as primary descriptors in various computer vision tasks, such
as classification, semantic segmentation, and especially on image search [1,2]. Studies
on image retrieval have progressively developed various methods to compress spatial
feature maps into a vector-form descriptor. There are growing appeals for constituting
image descriptors. Outputs from the final fully connected layers [1,3], the most activated
convolutions [2], and generalized pooling of convolutions [4] have been utilized as image
descriptors. Each descriptor has different functions, such as concentrating on informa-
tive regions or large receptive field regions. Consequently, modern methods have come
up with ensemble techniques to boost the desired systems’ performance. Early fusion
blends descriptors across layers and trains an integrated model based on an end-to-end
approach [3,5–7], while late fusion is a method in which individual models and features
from multiple learners are entangled to form a compact global descriptor [8]. Recently, one
of the major topics that show the growth in interest from numerous researchers in this field
is attention mechanism.

Attention Mechanism: One of the current trends in designing neural network archi-
tecture is the attention mechanism [9–11]. The attention model integrates the concept of
relevance by focusing only on the relevant aspects of a given input, which is useful for
achieving a compelling performance of the task. These systems only focus on a relevant
part of input useful for getting the required knowledge for working on a task and ignoring
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irrelevant details. Approaches tackling the image retrieval problem include using attention
structures introduced in [12–15].

This study employed a simple contrastive learning framework [16] for image retrieval
but investigated an effective architecture for the feature extractor. As a result, we found
that the Visual Transformer [11] model is especially effective for visual representation
learning. Inspired by Transformer architecture [10] from the natural language processing
domain, ViT is proposed as a promising model that naturally integrates a self-attention
mechanism to solve computer vision problems. Self-attention is introduced to visual
tasks to interpret the correlation among pixels where a high attention score between two
visual patches indicates their strong relation and vice versa. Although ViT is not the first
method to implement self-attention for the visual task [17–19], it is remarkable thanks
to its overwhelming results and efficiency in hardware accelerators, in addition to its
simplified implementation. When pre-trained using large-scale datasets and transferred
to multiple recognition benchmarks, ViT outperforms state-of-the-art convolution-based
neural networks [11,20,21]. However, Transformers lack some inductive biases compared
to CNNs, such as translation equivariance, and thus training on sufficient amounts of
data is recommended. Otherwise, the self-attention mechanism inherits receptive field
properties from CNNs and considers wide regions even from low layers.

Contrastive learning: Learning visual representation is mostly a label-driven task,
where learnable feature extractors are trained to optimize objective functions that involve
the label of samples, such as categories and pairs of negative and positive samples. The
success of such tasks requires large amounts of labeled data [22–24], which is not always
available and is often very expensive to acquire. However, unsupervised visual repre-
sentation learning remains an unexploited area in computer vision research. Recently, a
considerable research effort has been put into methods to enhance vision systems without
providing a large amount of full supervision. In particular, this effort is characterized by ad-
vances in self-supervised learning with a contrastive loss function [25–27]. Self-supervised
learning frameworks formulate pretext learning tasks that leverage unlabeled data to learn
high-level semantic visual representations useful for the downstream task of interest. For
example, pretext tasks such as predicting orientation of rotated image [28], filling in a
missing patch [29], or jigsaw re-ordering [30] are beneficial for downstream tasks such
as recognition and semantic segmentation because high-level concepts of objects (e.g.,
shape and texture) are encoded when solving the pretext task. Precisely, self-supervised
representation learning’s underlying concept is maximization of the mutual information
between different views of the data [31–33].

The main theme of contrastive learning is an instance discrimination task. An image
and its augmentation are taken to be in the same class (positives), and all other images
are considered to be of different classes (negatives). Noticeably, contrastive loss objective
function and aggressive data augmentation are the other two key factors influencing the
success of self-supervised representation learning [16,32]. In addition, Ref. [34] showed
that contrastive loss encourages consistent representation of augmented view and matches
prior distribution. There are two main practical advantages of contrastive learning. First,
the agreement is estimated between only the learned representations of various views,
which lie on a lower dimensional space than the original one. Second, various views can
be chosen to capture different aspects and modalities of the data with plenty of modeling
flexibility [35,36]. These properties can be especially beneficial for feature matching that
helps to retrieve information in retrieval tasks.

Contribution: Our research aimed to find a solution for the challenging problem of
category image retrieval tasks on low-resolution images. The problem can be hypothesized
into a general question about learning effective visual representations in an embedding
space where similar images with different resolutions are kept close to each other and
dissimilar ones are placed far away from each other. In this paper, we present a framework
that consists of contrastive learning trained over the Visual Transformer encoder (ViT). The
benefits of using contrastive learning are expected to maximize positive pairs’ agreement,
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which are samples from the same class or augmenting resolution samples from the same
source, via contrastive loss. However, it is usually a huge challenge when training a con-
trastive framework from scratch since it requires large-batch training for a long period [16].
Therefore, a possible solution to the problem at hand is proposed in this paper. We used a
powerful pre-trained encoder to extract visual representations and fine-tune contrastive
learning to learn embeddings for feature matching. Our contribution can be summarized
as follows:

1. We adapted the Visual Transformer to the image retrieval task when the embedded
vectors were calculated using attention weights. The main advantage of this method
is that the attention mechanism of the ViT model helps to focus more on an object of
interest when comparing two images.

2. We addressed the problem of retrieval with degraded samples such as low-resolution.
We proposed using a contrastive learning framework to learn an embedded space
where the same samples are close together with respect to Euclidean distance.

3. We conducted extensive experiments on CARS196, Stanford Online Products, and
CUB200-2011 datasets under various circumstances. Both quantitative and qualitative
results show that the proposed framework is efficient.

2. Materials and Methods

This study introduces an effective yet simple framework for image retrieval. The fea-
ture descriptor is extracted from a backbone network and goes further through a projection
module to become embedded vectors for retrieval. We study the behavior of the output
representation space when training with a contrastive loss, in particular, how augmenting
impacts the space properties and the performance of image retrieval on low-resolution
inputs. Our framework is illustrated in Figure 2. This section demonstrates our framework
with three modules. A feature extractor module extracts a visual representation of a given
image, while a projection head trained in a contrastive approach helps to map visual
representation to an embedding space so that the similarity of samples can be calculated.
Finally, we introduce an auxiliary module with classification loss and triplet loss, which
significantly enhances the category retrieval’s performance.
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Figure 2. The overall architecture of our proposed framework. The framework is described using five
major computing steps. (1) An input image is augmented into two views with different resolutions
for contrastive learning. (2) Two augmented images go through a shared encoder module to extract
representation vectors. (3) A projection head is added on top of the encoder model to perform non-
linear mapping into an embedding space so that (4) contrastive and triplet loss can be established to
maximize the similarity of positive pairs and dissimilarity of negative pairs. (5) We add a linear layer
with softmax activation followed by batch normalization to calculate all samples’ class probability
from two branches.
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2.1. Feature Extractor

We manipulate the Visual Transformer [11] model to extract a visual representation of
given images. The main component of the ViT model is the self-attention encoder module,
which implements Transformer architecture [10] in the most standard way. According to
the original version of ViT, our feature extractor involves three main steps.

Patch embedding: We split an image into a sequence of patches and map each patch
to a D dimensions embedding space. Precisely, we put an image x ∈ RC×W×H through
D 2d convolutions with the kernel size of P × P and stride of P, resulting in a feature
map with the size D× N × N, then flattening the feature map into a sequence of N2 latent
vectors with a constant size of D. In the above configuration, N2 = H ×W/P2 is the
number of embedded patches, where (H, W) represents the resolution of the original
image, and (P, P) is the resolution of an image patch. Apart from the embedded patches,
the ViT model adds an extra learnable class embedding for classification tasks, and the
results obtained from using this class token are referred to as “ViT-class” in our study. To
maintain the position of the patches after flattening, we follow the standard way by adding
a learnable 1D positional embedding into each patch, and this positional embedding does
not share weights across patches.

Encoder: Encoder is a computational block consisting of a multi-head attention mod-
ule [10] and an MLP with two consecutive linear layers. Input and output of encoder
module are both embedded vectors of batches. LayerNorm is applied before feeding
embedded vectors into the attention module and MLP. The multi-head attention module
expands the model’s ability to jointly focus on different positions, thus providing different
representation subspaces of pair (key K, query Q, value V) from different attention heads:

multihead = Concat(head1, . . . , headh), (1)

where each head is a context vector from scale dot-product attention.

headi = so f tmax

(
QiK

T
i√

d

)
Vi, (2)

Q, K, and V represent a query, key, and value, respectively, calculated inside the
transformer architecture that encodes information from the image’s patches with the
self-attention mechanism to mutually attend to each other. d is the dimensions of patch
embeddings; Equation (2) employs d to scale the attention scores. The encoder module is
illustrated in Figure 3.
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Visual descriptor: We develop a novel visual descriptor for the corresponding image
based on the attention mechanism. Our technique naturally arises from attention maps
of the ViT model. We generate visual descriptors by combining the final embeddings of
informative regions selected by ranking attention weights.

Given an image x ∈ RC×W×H , let z(i) =
[
z(i)1 , z(i)2 , . . . , z(i)N2

]
be the list of embedded

patches resulting from the ith encoder. Obviously, the first list of embedded patches z(0) is
spawned from the summation of linear projections and positional embedding as described
above, z0 = [embed(x1) + position_embed(x1), . . . , embed(xN2) + position_embed(xN2)].
The ith embedding layer is the output from the ith encoder module, while input is the
(i− 1)th embedding layer zi = encoder

(
zi−1). Let ap be a joint self-attention weight of

a local patch xp, p = 1, . . . , N2, then our visual descriptor for an image x is the ranking
weighted sum of its patch embeddings,

z(K) =
K

∑
i

aizi, (3)

where K is the desired rank, a = σ([a1, . . . , aN2 ]) is a permutation of the list of joint attention
weights, and z = σ([z1, . . . , zN2 ]) is the corresponding list of embedded patches’ output
from the final encoder and sorted with the same order. When σ is the arrangement from
greatest to least, our visual descriptor is the weighted sum of the most K attentive regions.

According to ViT architecture, each encoder block has its own self-attention maps from
the multi-head attention. The self-attention mechanism allows ViT to interpret information
across the entire image, even in the early layers. In the early layers, some heads consistently
focus on small areas, while others attend to most parts of the image, indicating that the
ability to unite information globally is already in use inside the early layers. Meanwhile,
the attention regions from all heads tend to be wider when going through higher layers,
showing that the model aims to capture global information at higher layers. This ability is
analogous to the receptive field concept in CNNs, which is the strength of convolutional
layers capable of integrating both local and global information.

Instead of considering the correlation among patches of an image, we investigate parts
of the image that should be attended to and extract their corresponding embedded patches.
As highlighted in the equation, the embedded patches are output from the final encoder
block, but the attention weights are jointly measured across multi-head attention modules.

Let A(i) ∈ [0, 1]h×(N2×N2) be the attention map calculated inside the multi-head attention
module of the ith encoder, where h is the number of attention heads, and N2 is the number
of patches as earlier mentioned. Then, A(i) is a collection of attention maps, which are
symmetric matrices of size N2 × N2 whose coefficients estimate the degree of attention
between two patches. To derive the joint attention map, we first average all attention
maps for different heads to obtain an attention map responsible for a layer. To account for
residual connections, we add an identity matrix to the attention map and re-normalize the
weights,

Ana(i) = normalize

(
1
h

h

∑
j

A(i)
j + IN2×N2

)
, (4)

where Ana(i) ∈ [0, 1]N
2×N2

is the normalized average attention map from the ith layer,
IN2×N2 is an identity matrix of size N2 × N2, and normalize(X) = X/ ∑i,j Xij. Finally, the
joint attention map is obtained by multiplying the attention maps across all layers.

Ajoint =
L

∏
i

Ana(i), (5)

where Ajoint ∈ [0, 1]N
2×N2

and L is the number of encoder blocks. To generate the
visual descriptors, we require only the attention weights assigned to image patches; these
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attention weights attend to themselves and can be attained by extracting diagonal of the
joint attention matrix a =

[
a1, . . . , aN2×N2

]
= diagonal(Ajoint). The attention weights

derived here are exactly the weights involved in Equation (3). The aforementioned method
is referred to as attention rollout and was introduced in [11]. Figure 4 illustrates our
approach to extract visual representations from the ViT model.
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Figure 4. Extracting attention representation from Visual Transformer model: The output of the final
encoder module of the ViT model includes N×N patch’s embeddings and N2×N2 attention weights.
The attention representation of an image is calculated by summation of the patches’ embeddings
weighted by the attention scores.

2.2. Contrastive Learning Framework

We train projection heads on top of the ViT model in a contrastive way to maximize the
agreement of positive pairs in an embedding space. The contrastive learning framework
can be decomposed into four modules: data augmentation, backbone network, projection
head, and contrastive objective function.

Data augmentation: This study concentrates on low-resolution image retrieval, and
thus the augmentation method we applied here only varies the input’s resolution. A
stochastic data augmentation module transforms the input data randomly, resulting in
two correlated views of the same sample but with different resolutions. In this work, we
apply random cropping followed by a low-pass filter. The low-pass filter used here is the
Gaussian blur with a fixed size of the kernel and random kernel standard deviation.

Base encoder: The input to the base encoder network is augmented data, and output
is a representation vector. We mainly use ViT as our base encoder model; however, we
also experiment with other encoder networks, such as BiT [20] and EfficientNet [21]. In the
case of BiT and EfficientNet encoders, we extract the final convolutional layer before fully
connected layers and then apply adaptive average pooling to obtain a 1-D representation
vector. This study uses z = Encoder(x) as a notation for the representation vector. As a
result, the dimension of the representation vector varies based on encoder architectures.
The base encoder is visualized as two “Encoder” blocks as in Figure 2.

Projection head: The projection head consists of a non-linear mapping that maps
representation vectors into an embedded space where the similarity between samples can
be measured. As suggested in [16], we use an MLP with one hidden layer to formulate the
projection head. This study uses e = Projector(z) as a notation for the embedded vector.
The projection head is depicted in Figure 2 as “Projector” blocks with a hidden layer. The
size of the hidden layer is the same as the number of dimensions of embedded vectors.

Contrastive objective function: A contrastive function is defined so that minimizing
it results in maximizing the agreement between positive pairs; in other words, it is meant
to pull similar samples closer to each other and push dissimilar samples in the opposite
direction. We measure the similarity within a minibatch of N random samples. Following
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the setting of the data augmentation module, two different resolution versions of the
original input are generated inside a minibatch, resulting in 2N data points. Within a
multiview minibatch, let i ∈ I ≡ {1, 2, . . . , 2N} be the index of an arbitrary augmented
sample, and let j(i) ∈ I be the index of the other augmented sample obtained from the
same source sample. In self-supervised contrastive learning [16], the loss function for a
positive pair of examples (i, j) is defined as

Lsel f = ∑
i∈I

Lsel f
i = −∑

i∈I
log

exp
(

sim
(

ei, ej(i)

)
/τ
)

∑2N
k=1
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where ei is embedding obtained from the projection head, and τ is the temperature scaling
factor. This loss is infoNCE loss that maximizes a lower bound on mutual information of
two observations.

Regarding the presence of labels, supervised contrastive losses [37] can be used and
also be generalized to an arbitrary number of positive pairs. The loss function takes the
following form:

Lsup = ∑
i∈I

Lsup
i = ∑

i∈I
− 1
|P(i)| ∑

p∈P(i)
log

exp
(
sim
(
ei, ep

)
/τ
)

∑2N
k=1
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[k 6=i] exp(sim(ei, ek)/τ)
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where P(i) ≡
{

p ∈ A(i) : yp = yi
}

is the set of indices for all positives in the multiview
batch. In addition to the augmented version of the anchor, supervised contrastive loss
considers the same label samples within the minibatch as a positive pair.

2.3. Auxiliary Module: Classification Loss and Triplet Loss

Contrastive loss maximizes agreement between augmented versions derived from
the same source without implicitly sampling negative pairs [16]. To achieve a better
performance, many negative pairs are sampled to ensure the convergence of the contrastive
objective function. For example, [16] used a batch size of 8196. In that case, 16,382
negative samples per positive pair were given from both augmentation views, and the
same conditions were applied in [37] with a batch size of 6144. Using a large batch size is a
computational burden and hard to train with regular optimizations [38,39]. In this study,
instead of using a large batch size, we leverage the samples’ label to implicitly generate
pairs of negative and positive samples. We also found that training with implicit labels
or supervised training is standard practice to learn embedded vectors for category image
retrieval.

As proposed in previous literature on image retrieval, softmax cross-entropy loss and
ranking loss, such as triplet loss, are used for end-to-end training of a CNN backbone [6]
or to fine-tune model triplet loss based on a classifier trained with cross-entropy loss [5,8].
In this study, we train the model with auxiliary classification loss to maximize inter-class
distance and utilize triplet loss to rank the embeddings of inter-class pairs over intra-
class pairs. We add label smoothing [40] and temperature scaling [41] in the auxiliary
cross-entropy loss function to prevent overconfidence and to learn better embedding.

LCRE = − 1
2N

2N

∑
i=1

log
exp

( ciy(i)
τ

)
∑M

j exp
( cij

τ

) , (8)

where 2N is the batch size, including augmented samples, M is the number of classes, and
τ is the temperature scaling factor. ci = WTzi + b is logits of sample ith obtained by adding
a trainable liner layer over the embedded vector ei.

Additionally, we add triplet loss to the objective function. Minimizing the triplet loss
in the embedding space results in instances with the same label, and its augmentations
should be closer together to form well-separated clusters. The version of triplet loss used
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in this study is online triplet mining using the hard-batch strategy [42]. For each sample a
in the batch, we can select the hardest positive and the hardest negative samples within the
batch when forming the triplets to be used for computing the loss.

Ltriplet =
P

∑
i=1

K

∑
a=1

[
m + max

p=1...K
D
(
eia, eip

)
− min

j=1..P,n=1..K,j 6=i
D
(
eia, ejn

)]
, (9)

where m is margin and P and K are the number of classes and the number of samples in
these classes, calculated within a minibatch. The final loss function for end-to-end training
of our framework is the weighted summation of a contrastive loss and the two auxiliary
losses.

L = αLsel f + (1− α)Lsup + β× LCRE + γLtriplet, (10)

where α, β, γ ∈ {0, 1} are hyperparameters to control the presence of each loss.

3. Results

We evaluated our proposed framework on category image retrieval tasks with low-
resolution queries. This section gives a brief overview of the datasets that were used in
this experiment, and then we give implementation detail such as model configurations
and training settings; finally, we present quantitative results of the ranking recall and show
visualization results.

3.1. Datasets

We report performance on three popular datasets widely used for category-level image
retrieval. CUB200-2011 [43] dataset contains 11,788 images representing 200 bird classes.
CARS196 [44] dataset consists of 16,185 images corresponding to 196 classes. Stanford
Online Products [45] contains 120 k online product images of 22,634 categories. Such data
are prone to fine-grain tasks, especially CARS196 and CUB200-2011, which contain many
images that share the same properties of an object across categories such as shape and
color. In the contrastive learning framework, we apply an identical augmentation for all
three datasets. First, we randomly crop part of the input image with the ratio ranges from
0.5 to 1, then apply Gaussian kernel to generate two blurred images originated from the
same source; the kernel size is set to 23, but the variance is randomized from 1 to 5 to
generate multiresolution samples. At the end of the preprocessing step, we resize the
augmented images to a fixed size of 224× 224. The training and testing set for each dataset
are separated as per the default settings provided in the datasets package. We further split
20% from the training set to form a validation set. The sampling strategy is similar for
all the three datasets. In the retrieval phase, the samples from the test set without blurry
augmentation are used to form a gallery and samples from the evaluation set with the
above augmentations are used as queries.

3.2. Implementations

All experiments are implemented using Pytorch on a Titan V GPU with 12 GB memory.
We use Python as the programing language for all experiments, including structuring model
architecture, loading dataset, and evaluations. The deep learning framework used in this
study is Pytorch. The source code is available at https://github.com/Ka0Ri/Contrastive-
learning-for-image-retrieval (accessed on 20 May 2021).

We use BiT [20] and EfficientNet [21] as the backbone network for comparison with the
ViT [11] model. All the models are fine-tuned based on pre-trained weights on ImageNet.
The comparison of the size of models is given in Table 1. For more details, we use ViT-B-16,
the base version with 12 encoder layers, 12 self-attention heads per layer, and patchify
an image by 16× 16. We use BiT-M-R152 × 4 architecture, a varied version of ResNet
version 2 with 152 layers and a width factor of 4. BiT models maintain almost the same
architecture as the original ResNet version 2, except for replacing batch normalization with
group normalization and weight standardization. The BiT comes up with three versions, S,

https://github.com/Ka0Ri/Contrastive-learning-for-image-retrieval
https://github.com/Ka0Ri/Contrastive-learning-for-image-retrieval
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M, and L, where the pre-trained dataset scales up from S to L. The scale of BiT depends on
which ResNet model is used; in our study, two factors are considered: depth factor, which
reflects how deep the model is going to be (50, 101, 152 layers), and width factor, which
defines how many channels are used in a residual model (×1, ×2, ×4). EfficientNets are
a family of models resulting from extensive search by neural architect search to balance
performance and computational resources usage. EfficientNet’s scaling factors include
depth, width, and resolution of a pre-trained dataset of use to maximize the model accuracy
for any given resource constraints. EfficientNet is scaled up from MobileNet (B0) into seven
versions from B1 to B7 where the number of parameters gradually increased from 5.3 M
to 66 M. We experiment with EfficienNet and BiT along with ViT architecture to clarify
the effectiveness of ViT’s attention-based mechanism over residual-based and depth-wise
convolution-based mechanisms. In this study, we use Efficient-B7 for a fair comparison
with other types of architectures. ViT, BiT, and EfficientNets are models that challenge the
recently developed state of the art in regards to the large-scale ImageNet dataset.

Table 1. Parameters count, FLOPS, and ImageNet Top-1 accuracy for ViT, BiT, and EfficientNet. The
parameters and FLOPS are reported by “thop” library given an image of size 224 × 224 × 3.

Model Name Params FLOPS Top-1 (%)

ViT-B-16 86 M 16.85 G 84.15
BiT-M-R152x4 68 M 68.59 M 85.39

Efficient-B7 66 M 87.07 M 84.3

We consider the setup generic for training hyperparameters in all experiments unless
otherwise stated in the separated experiments. In the training phase, we use the AdamW
optimizer [46] with cosine-annealing learning-rate schedule during the training process,
the weight decay is set to 10−6, and the other parameters of the optimizer are set to default.
The learning is also warmed up during the first ten epochs from 0 to 0.001. The model is
trained for 100 epochs with a batch size of 64.

3.3. Quantitative Results

We save the model’s weights that attain the lowest loss value or the highest accuracy
for the validation set in the case of using the auxiliary classification loss. The model’s
weights are loaded into the corresponding model to extract embedded vectors for perform-
ing image search in the retrieval phase. The search strategy used in our study is simply
an exhaustive search using L2 similarity. Note that the embedded vectors are normalized
in a unit sphere so that the similarity can be calculated simply by the dot product. For
quantitative evaluation, the embedded vectors from the test set are used to build a gallery
and embedded vectors extracted from the validation set act as queries. It is rational to
apply a more effective searching strategy rather than an exhaustive comparison using L2
for image retrieval; however, we focus on improving the searching space and consider
effective search methods as future works. The matching score for a query is measured by
ranking recall as follows.

R@k(x) =
{

1 |{z ∈ Rk|y(z) = y(x)}| > 0
0 |{z ∈ Rk|y(z) = y(x)}| = 0

, (11)

where x is a query image and Rk is a set of top k retrieval results. The main focus of this
experiment is to calculate the average recall value over queries from the validation set, and
such a higher recall value shows better performance. In addition, we also calculate the
mean average precision (mAP) for comparison purposes.

Most experiments were carried out with a basic setting as follows: the ViT-B-16 model
is fine-tuned and used to perform image retrieval on the CUB200-2011 dataset with super-
vised contrastive loss function (α = 0), auxiliary classification loss (β = 1), and triplet loss
function (γ = 1); the embedding dimension is set to 128, and the representation vector is
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extracted from the class token. First, we show the performance of the proposed framework
using different datasets. Then we make an ablation study about the effectiveness of the
backbone networks, the number of embedding dimensions, and loss components in the
subsequent sections.

3.3.1. Experimental Results of Different Datasets

This section sets a benchmark for our framework on CUB200-2011, CARS196, and SOP
datasets. Recall results are reported for the first five ranks on CUB200-2011 and CARS196
datasets, and they are reported in recall of rank 1, 10, 100, 500, and 1000 on the SOP dataset
with the instance-level label. The experimental results show that our approach achieves a
recall of 0.9414, 0.8541, and 0.9806 with the first ranking and mAP of 0.9379, 0.8804, and
0.9141 on the CUB200-2011, CARS196, and SOP datasets, respectively, details are given
in Table 2. SOP dataset gives two types of labels: class labels with 22,634 categories and
super-class labels with 12 categories. The super-class labels indicate the type of product,
while the class label varies according to each product, that is, different views of the same
product. Our result also shows a high recall value with instance image retrieval, and we
obtain recall at the first rank of 0.947 on the SOP dataset.

Table 2. Recall@k and mAP results from CUB200-2011, CARS196, and SOP datasets.

Dataset
Recall@k

mAP
1 2 3 4 5

CAR196 0.8541 0.9218 0.9661 0.9739 0.9817 0.8804
CUB200-2011 0.9414 0.9687 0.9765 0.9765 0.9765 0.9379

SOP super-class 0.9806 0.9891 0.9932 0.9952 0.9966 0.9141
1 10 100 500 1000

SOP class 0.9470 0.9867 0.9962 0.9986 0.9986

3.3.2. The Effectiveness of Backbone Network

Table 3 shows image retrieval performances as a result of different backbone encoder
networks. The highest mAP value is obtained from ViT architecture (0.9379) which proves
that representations encoded by ViT perform better than representations extracted from
other state-of-the-art architectures, such as BiT (mAP = 0.904) and EfficientNets (mAP =
0.7906). Our results demonstrate that attention-based architecture performs better than
ResNet-based architectures in regards to studies about image retrieval [1,3,8]. It is well
understood that a big model commonly results in better performance. However, these
results are not biased since we selected those architectures with the approximate number
of parameters.

Table 3. Recall@k and mAP comparison between different encoding models.

Model Name
Recall@k

mAP
1 2 3 4 5

ViT-B-16 0.9414 0.9687 0.9765 0.9765 0.9765 0.9379
BiT-M-R152x4 0.9296 0.9648 0.9726 0.9765 0.9804 0.9040

Efficient-B7 0.7226 0.8242 0.8828 0.9062 0.9257 0.7906

3.3.3. The Effectiveness of the Number of Embedding Dimensions

A typical experiment in previous studies about information retrieval aimed to analyze
the impact of the number of dimensions of embeddings. After a series of experiments, it
is found that the dimensions of 256 produce the best performance with the mAP of 0.955
and the first rank recall of 0.9453, as shown in Table 4. These findings are consistent with
previous research on contrastive learning [16,26,37], which shows that the embeddings’
dimensions should be either 128 or 256. It is also consistent with studies about image
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retrieval using the embeddings search strategy [3,6,8]. We also note that the size of a hidden
layer in the projection head is equal to the dimensions of the embedded vector.

Table 4. Recall@k and mAP comparison using different numbers of embedding dimensions.

Dimensions
Recall@k

mAP
1 2 3 4 5

64 0.9296 0.9843 0.9843 0.9843 0.9843 0.9507
128 0.9414 0.9648 0.9765 0.9765 0.9804 0.9438
256 0.9453 0.9726 0.9843 0.9843 0.9882 0.9555
512 0.9101 0.9687 0.9882 0.9882 0.9960 0.9339

1024 0.9257 0.9570 0.9726 0.9726 0.9765 0.9336

3.3.4. The Effectiveness of Loss Components

We study the effectiveness of loss components that impact the performance of image
retrieval. We add auxiliary loss functions such as triplet loss and classification loss into the
contrastive loss to train the model end-to-end. In particular, we experiment with a tuple of
three parameters (α, β, γ) ∈ {0, 1}3 that characterize the presence of self-contrastive loss
(α = 1), otherwise supervised contrastive loss (α = 0), the presence of classification loss
(β = 1), and triplet loss (γ = 1). As mentioned in the previous section, the classification
loss used in this study is the cross-entropy loss with label smoothing (p = 0.1) and
temperature scaling (τ = 0.5). Otherwise, the temperature scaling factor in contrastive loss
is set to 0.5. In addition, the margin parameter in triplet loss is set to 1. Table 5 demonstrates
that the case of using supervised contrastive loss in combination with classification and
triplet loss achieves the best performances (mAp = 0.9379). The experiment also shows that
stand-alone contrastive loss is not enough to accomplish the category image retrieval task,
as shown in the cases of self-supervised contrastive loss (mAP = 0.6026) and supervised
contrastive loss (mAP = 0.6214). In addition, the effectiveness of classification loss is
higher than that of triplet loss, as shown in the case of (self-)contrastive loss combined
with classification loss (mAP = 0.9120, mAP = 0.8929), compared to the case of (self-
)contrastive loss combined with triplet loss (mAP = 0.8445, mAP = 0.8910). The results
confirm that classification loss is a good option to supply category information for image
retrieval tasks.

Table 5. Recall@k and mAP comparison between using different loss function settings of ViT model.

Loss Components
Recall@k

mAP
1 2 3 4 5

α = 1, β = 0, γ = 0 0.6210 0.7070 0.7382 0.7890 0.8164 0.6026
α = 0, β = 0, γ = 0 0.6484 0.7265 0.7773 0.7890 0.8046 0.6214
α = 1, β = 0, γ = 1 0.8437 0.8984 0.9375 0.9492 0.9570 0.8445
α = 0, β = 1, γ = 0 0.8789 0.9531 0.9726 0.9726 0.9726 0.8929
α = 1, β = 1, γ = 0 0.9023 0.9531 0.9726 0.9765 0.9765 0.9120
α = 0, β = 1, γ = 1 0.9414 0.9687 0.9765 0.9765 0.9765 0.9379
α = 1, β = 1, γ = 1 0.9296 0.9804 0.9804 0.9843 0.9882 0.9268
α = 0, β = 0, γ = 1 0.8867 0.9296 0.9531 0.9531 0.9531 0.8910

3.3.5. The Effectiveness of Attention Mechanism

Finally, we analyze the effectiveness of attention embeddings, which is the key pro-
posal in our study. ViT architecture is built upon the attention mechanism, where each
image patch has its own attention weight to determine which region should be focused.
In this study, we also investigate the effectiveness of the attention mechanism by analyz-
ing the number of “decisive” patches corresponding with the highest attention weights.
Table 6 illustrates that our simple method achieves a better result using 25 decisive patches
(recall@1 = 0.9492, mAP = 0.9475). The case of only one decisive patch means that only
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the most attentive region is extracted, while the case of 128 decisive patches reflects that
the average attention of all patch’s embeddings is extracted. We compare our findings
with a previous study [6] to address our results, as shown in the CGD row. The study
from [6] is a typical study about image retrieval where a ResNet-based model is fine-tuned
using combined global descriptors, and this study achieved significant performance on
a broad range of datasets. We verify that our proposed framework outperforms CGD in
both terms of ranking recall and mAP. Together, the present findings confirm that using
attention patch’s embedding is slightly more robust than class’s embedding, as suggested
in [12]. To conclude this section, we show that fine-tuning the ViT model with contrastive
learning provides substantially better results than the direct use of features extracted from
the pre-trained model, that is, an mAP of 0.54 without fine-tuning compared to an mAP of
0.6214 when fine-tuned with supervised contrastive learning. This phenomenon can be
extended to other models as well.

Table 6. Recall@k and mAP comparison of different representation output via ViT-based encoder.

Model Name
Recall@k

mAP
1 2 3 4 5

ViT-class 0.94140625 0.96875 0.976563 0.976563 0.976563 0.937995
ViT-1 0.8984375 0.949219 0.960938 0.972656 0.976563 0.897331

ViT-128 0.92578125 0.96875 0.980469 0.992188 0.992188 0.918958
ViT-25 0.94921875 0.988281 0.992188 0.992188 0.996094 0.947578
CGD 0.875 0.923611 0.947917 0.958333 0.96875 0.857604

No fine-tuning 0.55078125 0.648438 0.6875 0.726563 0.757813 0.540013

3.4. Qualitative Analysis

From the quantitative results presented in the previous section, we verify that our best
model for a retrieval system is the model with 25 decisive patch embeddings trained with
supervised contrastive loss, classification loss, and triplet loss. This section illustrates some
qualitative analyses obtained from our method. First of all, we describe that our framework
works well across fine-grain datasets, typically CUB200-2011, CARS196, and SOP. Figure 5
shows the retrieval results when the queries are images with mild resolution reduction.
It is important to highlight the fact that a successful retrieval system should show that
retrieval results match the query in different views, such as varied lighting conditions or
points of view. This property partially manifests in our results, for example, a green car in
a different viewpoint or the same type of car but in two different colors, red and blue, as
illustrated in Figure 5.

To clarify the purpose of our study, we consider the case where strong resolution
reduction is used, as depicted in Figure 6. The result from Figure 6 is concrete proof that
our framework can deal with low-resolution images. We speculate that the result might
be due to contrastive learning to fine-tune the model with both multiresolution and fine
resolution samples. The study may raise concerns about superior performance, which
can be addressed by using super-resolution preprocessing. However, training additional
models for super-resolution is impractical because of the demand for high computational
resources. In addition, in our findings, we believe that the effectiveness of descriptors for
feature matching is a result of careful fine-tuning of the model with proper augmentation.

Finally, we once again address the effectiveness of the attention mechanism, as demon-
strated in Figure 7. The attention mechanism grants the ability to focus on the region of
interest, that is, the region that contains objects, as displayed in Figure 6. Attention is
particularly important when investigating visual objects in a distracting background. The
experimental results herein aim to verify that with the help of attention, the retrieval results
can be more accurate in fine-grain category-image retrieval and even in sophisticated cases
where semantic vision may not be distinguished.
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This study introduced a simple yet effective framework for category image retrieval.
We exploited the Visual Transformer architecture to take advantage of the self-attention
mechanism to enhance the robustness of representation vectors. Additionally, we solved
the low-resolution image retrieval problem by using contrastive learning with a proper aug-
mentation strategy. The solution proposed here addresses only the case of low-resolution
samples; however, the same framework can be applied to other degraded image retrieval
systems if a suitable augmentation method is defined. We guarantee the effectiveness of
our approach through extensive experiments, both quantitative and qualitative, on several
public datasets. However, the limitation of this study is that the retrieval system was only
analyzed at the category level. The lack of evaluations at the instance level makes the
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