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Abstract: The curse of dimensionality problem occurs when the data are high-dimensional. It af-
fects the learning process and reduces the accuracy. Feature selection is one of the dimensionality
reduction approaches that mainly contribute to solving the curse of the dimensionality problem
by selecting the relevant features. Irrelevant features are the dependent and redundant features
that cause noise in the data and then reduce its quality. The main well-known feature-selection
methods are wrapper and filter techniques. However, wrapper feature selection techniques are
computationally expensive, whereas filter feature selection methods suffer from multicollinearity.
In this research study, four new feature selection methods based on outlier detection using the Projec-
tion Pursuit method are proposed. Outlier detection involves identifying abnormal data (irrelevant
features of the transpose matrix obtained from the original dataset matrix). The concept of outlier
detection using projection pursuit has proved its efficiency in many applications but has not yet
been used as a feature selection approach. To the author’s knowledge, this study is the first of its
kind. Experimental results on nineteen real datasets using three classifiers (k-NN, SVM, and Random
Forest) indicated that the suggested methods enhanced the classification accuracy rate by an average
of 6.64% when compared to the classification accuracy without applying feature selection. It also
outperformed the state-of-the-art methods on most of the used datasets with an improvement rate
ranging between 0.76% and 30.64%. Statistical analysis showed that the results of the proposed
methods are statistically significant.

Keywords: outlier detection; feature selection; projection pursuit; Genetic Algorithms; Tribes

1. Introduction

The data is continuously evolving, leading to a big challenge in several domains.
It is generally high-dimensional, which causes the curse of the dimensionality problem.
In this study, we investigated this problem with a high number of attributes (features).
Reducing the space of features is performed through feature extraction or feature selection
(FS). Feature extraction transforms the initial feature space into a novel low-dimensional
feature space, for example, Kernel Dimensionality Reduction [1], Principal Component
Analysis (PCA) [2], and Kernel PCA [3]. While FS does not produce new features but
employs the original features to select the best ones, it consists of choosing a subgroup
of significant features that mainly contribute to enhancing the output. FS is an essential
preprocessing step in clustering and classification techniques to improve data quality. The
effectiveness of FS method is one of the crucial aspects that affect the accuracy outcomes.
The goal of the algorithm is to minimize the cardinality of the features set. Finding the
most relevant features is not an easy task. For a dataset with a dimension d, there are
2d − 1 potential subsets of features (excluding the empty subset) [4]. For even a reasonable
value of d, it is of interest to choose a less computationally expensive method. FS is
required in numerous domains and applications, for example, in bio-informatics [5,6],
where the data can hold a large number of variables, most of wihich might be extremely
well correlated with other variables. These variables are called dependent variables and
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do not deliver further information in the classification process, but they are considered
as a noise for the classifier, which requires removing them to enhance the data quality.
Another example in the biomedical domain wherein protein interaction discovery is vitally
needed [7]. In biometric identification, FS is requested in facial recognition [8] to diminish
the data dimensionality and then increase the classification accuracy. In addition, text
mining suffers from the curse of dimensionality, and some FS methods were addressed in
text categorization [9] and text clustering [10].

FS methods are classified into four categories, as displayed in Figure 1, called wrapper,
filter, embedded, and outlier detection methods. Wrapper methods consist of evaluating
features based on their predictive power using a classifier and usually a cross-validation
technique. Several wrapper techniques have been proposed to solve the curse of dimen-
sionality problem. They are based on a specific search method [11], such as the sequential
selection [12], meta-heuristic (for example [13,14]), and local search [15]. The filter method
is based on evaluating features using a criterion function that is relatively independent
of classification such as distance [16], information [17], and dependency [18]. It could be
based on information gain, Fisher score, variance threshold, chi-square test, correlation
coefficient, and others [11]. Most (if not all) of the filter FS methods can be found in several
statistical and ML software such that Weka, R, and SPSS. The embedded methods consist of
applying FS in the learning process. The data are not divided into training and testing sets
because they do not optimize an objective function or performance of a machine learning
algorithm or a model like wrapper methods do. However, they focus on the use of a
basic model constructing metrics during the learning. These methods are mainly based
on the Least Absolute Shrinkage and Selection Operator (Lasso) technique combined with
the Linear Regression method (for example, [19,20]). The other approaches can comprise
outlier detection, which consist of detecting and removing abnormal features in order to
reduce the dimensionality and enhance the quality.

The aforementioned FS methods have some limitations. The wrapper FS are efficient
but time-consuming [21,22]. The filter FS techniques are efficient and not computationally
expensive. However, they are affected by the multicollinearity [23,24]. The embedded FS
methods are not well investigated compared to wrapper and filter FS methods due to their
complex structure. The limitations of FS methods are deeply illustrated in Section 3.

To overcome these limitations, this article proposes novel FS techniques stimulated by
outlier detection where the outliers cover a small part of the dataset.

Outlier detection involves searching for data objects that are different from standard
data [25]. It is mainly required in numerous applications, including fraud detection, image
processing, intrusion detection, public safety and security, and industry damage detection.

In this article, the irrelevant features represent the outliers, and the dataset is represented
as a matrix. The matrix is then transposed so that the rows represent the features (the
attributes) and the columns stand for the samples. Thus, the outliers will be found in the
samples of the transposed dataset, which are the features set of the original dataset.

Outlier detection is performed using the Projection Pursuit (PP). The PP approach
comprises looking for low dimensional linear projections that reveal potential outlying
observations. Finding interesting projections is performed through the optimization of
a specific function called a projection index (or PP index). The concept of this proposal
is defined in Section 4. PP has successfully been applied to the search for outliers [26,27],
which is performed by assuming data normality and that the data not following the model
are outliers.

The present study focuses on developing FS based on outlier detection using PP called
Projection Pursuit based Feature Selection (PPFS). To the author’s knowledge, only one
study used outlier detection for FS [28] but without PP. It involved feature ranking and
isolation forest, which is different from this proposal. Therefore, this proposal is a new
of its kind. The contribution of PPFS is described in the following section along with the
research objectives.
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To validate this model, nineteen real-word datasets obtained from repositories are
used along with three classifiers, including the k-Nearest Neighbors, Support Vector Ma-
chine, and Random Forest. Four classification measures are utilized, namely the accuracy,
precision, F1 measure, and recall to confirm the results and compare them with those
obtained with the state-of-the-art techniques.

The article is structured as follows. Section 2 illustrates the contributions and the
research objectives of this study. Section 3 surveys the existing works related to the four
FS categories and addresses their limitations. Section 4 describes PP and the PP indices
used in this study. Section 5 discusses the optimization methods applied to the PP indices.
Section 6 presents the methodology followed in this study. Section 7 investigates the
experimentation results, including the comparison study along with a deep discussion
illustrating the results, the advantages and the limitations of this study, in addition to
the research impacts. Section 8 concludes this work and presents some perspectives and
future work.

Figure 1. Feature selection categories.

2. Contributions and Research Objectives

The contribution is fourfold:

1. Suggesting a new FS method based on PP, a well-known outlier detection technique.
2. Providing a one-stage approach based on detecting and removing outliers that corre-

spond to the irrelevant features.
3. Discovering relevant features using optimization methods based on common bio-

inspired algorithms, algorithms (GA) and a variant of PSO (Tribes).
4. Providing a software-based outlier-detection method to determine and remove the

non-relevant features.

This study aims at achieving the following objectives.

1. Investigate the limitations of the existing FS techniques.
2. Develop a new model for FS based on PP (called PPFS) to enhance the classifica-

tion accuracy.
3. Propose four different PPFS methods based on two optimization methods (GA and

Tribes) and two PP indices (Kurtosis and Friedman).
4. Suggest the use of EPP-Lab to select the non-relevant features.
5. Investigate a statistical analysis to show that the four PPFS methods are equivalent

and their results are statistically significant compared to the state-of-the-art methods.
6. Perform a comparison study with the state-of-the-art methods to confirm the efficiency

of the proposed model.

3. Review of Related Literature

This section describes the recent related work regarding the four FS categories.
Four subsections were presented, Wrapper FS methods, Filter FS, Embedded FS, and
outlier FS methods.

3.1. Wrapper Feature Selection Methods

In the following, the most recent wrapper FS are discussed.
For the wrapper FS based meta-heuristics, the authors in [13] developed a new FS

based on a Quantum Whale Optimization Algorithm. Four classifiers were used: Decision
Tree (C4.5), Support Vector Machine with a linear kernel, k-Nearest Neighbors (k-NN),
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and Linear discriminant classifier with 13 datasets. The results revealed that the proposed
method performed better than the state-of-the art methods, with an average accuracy rate
achieving 88.57%. While in [14], the authors proposed a new FS using Whale optimization
algorithm, the k-NN classifier was utilized to assess the effectiveness of the suggested
method using different UCI datasets. A comparison study was addressed using GA, PSO,
and Ant Lion optimizer wrapper FS methods along with five standard filter FS techniques.
The results indicated that the mutation enhanced the results for most datasets.

In sequential search, the authors of [12] proposed sequential forward search (SRS) and
sequential backward search (SBS) approaches combined with two optimization methods
called AdaBoost and Bagging algorithms. The Decision Tree and the Naïve Bayes classifiers
along with thirteen UCI datasets were used to assess the model using ten-fold cross
validation. The results showed that the SFS combined with the Bagging technique achieved
a higher accuracy of 89.60%.

For the Wrapper FS based local search, the authors of [15] proposed an FS method
based on Greedy Search (IG) for Sentiment analysis. The Multi-nomial Naïve Bayes classifier
was applied to four Amazon reviews and nine public datasets. The classification accuracy
rate reached an average of 90.74% and 96.45% for each type of datasets, respectively.

3.2. Filter Feature Selection Methods

In the following, the most recent filter FS studies from the three categories (distance,
information, and dependency) are presented.

The authors of [16] proposed a new filter FS technique based on the dependency
concept using Discriminative Correlation Filter (DCF) for visual object tracking. Many
benchmark datasets were used to measure the effectiveness of the proposed method, along
with the Deep Neural Network. The comparison results confirmed the dominance of the
proposed FS over the existing techniques. The study [18] used the concept of distance. The
authors suggested a new filter FS using an artificial immune system. They minimized the
intra-class distance and maximized the inter-class distance in the defined regions. Then, a
comparison study was successfully performed with a global and local FS algorithms using
UCI and synthetic datasets. The obtained results were encouraging. Another study mainly
based on the information concept [17]. It consists of analyzing several filter FS methods.
Twenty-two filter FS were presented such as oneR, Variance, permutation, Info gain, Gain
ratio, and others. The authors compared their performance in terms of predictive accuracy
and run time. They applied the k-NN, the Logistic Ridge Regression, and SVM classifiers
to determine the accuracy of each filter FS method. They concluded that there is no best
filter FS method for all the datasets.

3.3. Embedded Feature Selection Methods

In the following, the most recent embedded FS studies are presented.
The authors in [19] suggested a new embedded FS method related to within-class

and the least-squares loss function. This study aimed at recommending a treatment to
avoid or decelerate the progress of dementia disease. An SVM classifier based on the
one-versus-one class was used. In addition, ten-fold cross-validation was reiterated for
each classification. The Medical Reasoning Image (MRI) dataset was utilized. The proposed
embedded method reduced the number of features to 24 over 90 reaching a classification
accuracy of 81.9%. In another study [20], the authors developed a new embedded FS
method to transform the multi-label FS problem into several single-label ones considering
the correlation among labels as an evaluation measure. The authors used five bioinformatics
datasets. Three classifiers based on multi-label were utilized, including Multi-Label k-NN,
Binary Relevance, and Classifier Chain. The proposed methods were compared to X2-
based maximal, Multi-label embedded FS, and filter multi-label FS. The proposed method
surpassed the compared methods.
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3.4. Outlier Feature Selection Methods

To the author’s knowledge, only one research study has been found that conducted on
reducing the dimensionality by eliminating the outliers. In other words, they performed
the outliers’ detection and elimination in the feature set [28]. The concept was based on
feature ranking and isolation forest. The one-class SVM, the local outlier factor and IFOR
were employed. In addition, several synthetic and real-world datasets were utilized to
validate the efficiency of the proposed FS. A comparison study was introduced using
several FS and outlier detection methods such as Laplacian, variance, and kurtosis. The
results showed that the proposed FS was similar to kurtosis but better than Laplacian and
the variance. Many other studies combined FS to outlier detection to strengthen the FS
approach. For example, the authors in [29] suggested a novel FS method combined with an
outlier detection technique and classification to identify the attacks. Other studies used FS
methods to detect outliers. For example, the authors of [30] aimed to develop an outlier
detection approach based on FS and association rules. In [31], the authors proposed a
new FS method for unsupervised outlier detection. The authors used the inter and intra
distance along with recursive backward elimination to extract the outliers.

3.5. Discussion

Many wrapper, filter, and embedded FS were proposed. However, several studies
addressed their limitations:

• The wrapper FS methods are time consuming [21,22] because the learning steps and
the cross-validation are repeated many times.

• The filter FS methods suffer from the multicollinearity; only one feature is randomly
selected from a set of highly correlated features. This selection might negatively affect
the result, for example, in gene expression [23,24].

• The embedded FS methods are not well investigated due to their complex structure.
• The hybrid wrapper-filter FS techniques [12,32] are two-stage approaches and thus

require more knowledge in addition to their time-consuming nature.
• The only work presenting the outlier-based FS method [28] used feature ranking and

isolation forest. It is a random-based approach that makes the attributes selection and
the location of the best split for building the isolation forest unclear [33].

• The combination of wrapper FS with outlier detection [21,29] is a two-stage approach
that works by reducing the features and then removing the outliers. This approach is
time consuming due to the limitation of wrapper FS. In addition, the knowledge of
wrapper FS and outlier detection are both required.

• Some studies [30,31,34] performed the outlier detection using FS methods, which is
the opposite of this proposed study.

To show the significance of this study, the difference between the PPFS methods and
the related works is described in Table 1.

Table 1. Difference between the existing studies and the proposed approaches.

Related Work PPFS

[28] Outlier-based FS using Outlier-based FS using PP
feature ranking and isolation forest
[28] Outlier-based FS is a random- based on PSO and GA
based approach optimization methods
Filter FS based on specific measures based on PP that finds interesting
(Distance, Correlation, . . . ) projections by optimizing the PP index
Wrapper FS based on AI methods Based on PP
or a combination of methods
Embedded FS based on the Lasso Based on PP and optimization methods
combined with the Linear Regression
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4. Projection Pursuit

PP belongs to the same family of the Principal Component Analysis (PCA) method.
The central target of PP is to look for linear projections (combinations of variables) that
reveal interesting structures in multidimensional and large data [35,36]. These projections
are in one, two, or three dimensions. The interesting projections are found through the
optimization of the projection index using a robust optimization algorithm capable of
determining the optimum as well as the local optima that can also reveal hidden interesting
projections [27]. The PP indices are categorized according to the search purpose, for
example, detecting outliers or finding clusters. In this research study, the interesting
projections are those that detect outliers. Huber [35] and Jones and Sibson [36] showed that
the Gaussian distribution is the least interesting one, while the most interesting structures
are those that bear a minimum resemblance to the Gaussian distribution. Sometimes the
outliers can form a small cluster, PP can also identify unbalanced clusters, and it considers
the smallest one as outliers.

Before going through the details of PP, it is necessary to introduce the principal idea
of this study. The concept of this proposal is to detect the outliers in the feature set
instead of the data objects. To do this, the dataset matrix must be transposed. Given the
mathematical definition, let us denote by X an (P× N) dataset matrix, and X′ an (N × P)
transposed dataset matrix, where the rows represent the features (N features) and the
columns stand for the observations or the samples (P observations). It is worth knowing
that the transposed matrix is used in PP (instead of the original dataset matrix) to find out
the optimal projection that reveal the outliers (i.e., the irrelevant features). This research
study considers a one-dimensional projection that can be defined as P-dimensional vector
called a. The coordinates of the projected data are presented as an N-dimensional vector w
such that

w = X′a (1)

where X′ is the transposed dataset matrix and a is the projection vector.
Therefore, finding the projection vector a is just optimizing the PP index I(a). For more

details about PP, one can refer to [27,37].
In this research work, two well-known PP indices dedicated to the search of out-

liers [27,38] are proposed, including the kurtosis index [39] and Friedman index [40].
The detection of the outliers is univariate.

4.1. Friedman Index

This index pertains to the polynomial based family indices. It measures the difference
between the Gaussian distribution and the distribution of the projected data using expan-
sions based on orthogonal polynomials introduced by Friedman [40]. The maximization of
this index leads to finding the optimal projection. It is expressed as follows:

I(a) =
m

∑
j=1

[
2j + 1

2
]

(
1/N

N

∑
i=1

[Lj[2φ(aTX′i)− 1]

)2

(2)

where the recursive definition of Legendre polynomials Lj is: L0(r) = 1, L1(r) = r,
L2(r) = 1

2 (3r2 − 1), Lj(r) = 1
j (2j− 1)rLj−1(r)− (j− 1)Lj−2(r) for j = 3, . . .

The number of terms m is set to 3 according to the recommendations in [40,41]. φ be
the cumulative distribution function of an N(0, 1) random variable.

X′ is the transposed dataset matrix and N is the number of samples. X′i is a P-
dimensional vector representing the sample i of the transposed dataset matrix X′, i = 1, . . ., N
and P is the number of features.

4.2. Kurtosis Index

This index is the fourth moment of the projected data proposed by Peña and Prieto [39].
The authors stressed that maximizing the kurtosis index of the projected data leads to
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identifying outliers. This index is based on the bimodality that split the data into two
clusters. Maximizing this index means getting unbalanced clusters, the smallest one is
considered as outliers. It is defined as:

I(a) =
N

∑
i=1

(aTX′i)
4 (3)

where X′i is a P-dimensional vector representing the sample i of the transposed dataset
matrix X′, i = 1, . . ., N, N is the number of samples and P is the number of features. a is
the projection vector.

5. Optimization Methods

To optimize the PP indices defined above, bio-inspired algorithms are used because
of their success in finding different optimal values of the indices. GA and Tribes are
investigated. These techniques are very suitable in the resolution of PP [27], and they are
implemented in EPP-Lab [38]. The investigated methods are described below. For more
details, one can refer to [38].

5.1. Genetic Algorithms

Genetic Algorithm (GA) is an evolutionary algorithm inspired by the natural evolution
developed by Holland [42]. GA relies on three bio-inspired operators, including selection,
crossover, and mutation. It involves a population of candidate solutions called individuals.
An individual (or a solution) is a set of genes. In this study, it is characterized by an array
of real numbers. More precisely, it represents the projection vector. A population is a set
of individuals. The individuals are randomly initialized, searching for better solutions
(close to the optimum) in the search space. At each iteration, every individual is assessed
based on an objective function (PP index in this study). Then, the most suitable individuals
are designated from the existing population using the tournament selection with three
individuals. After that, the individuals are modified by applying the recombination and
mutation operators to produce a novel population. The recombination consists of merging
the information of two existing individuals (parents) to produce new individuals (offspring).
In this study, two-point crossover is operated in the whole population with a probability
equal to 0.65. It involves randomly selecting one part (of equal-size) from two parents to
generate two offsprings. The two offsprings will have the same genes (real numbers) as the
two parents, except for those of the selected part. Later, all the individuals are mutated
with a probability equal to 0.05 by randomly selecting one gene and substituting it with a
random real number. This population is involved in the following iteration of the algorithm.
In this study, the algorithm terminates after reaching a maximum number of iterations.
The algorithm that summarizes the GA mentioned above can be found in [27,38].

5.2. Particle Swarm Optimization

PSO is a population-based stochastic optimization technique, developed by Kennedy
and Eberhart [43]. It is inspired by the behavior of a bird. In PSO, the potential solutions
are called particles and form the swarm. The initial particles are randomly generated. They
are assessed using the fitness function (or the objective function). The swarm direction is
dominated by the movement of the best particle, i.e., the particle with the best performance.
The position of the particle is calculated according to its best position achieved so far
(called pbest) and the velocity. This calculation also includes the best position of the best
particle of the swarm (called global best or gbest) or the best position of the neighbor
particle (called the local best or lbest) if the neighborhood notion is applied. The notion
of the neighborhood is related to the search purpose. Moreover, the movement of the
particles depends on some parameters such as the maximum velocity (Vmax) or the
inertia parameter. Both parameters are set to prevent a quick displacement of the particles
and maintain the exploration of the search space. More details about PSO can be found
in [38,44].
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5.3. Tribes

Tribes is a PSO version suggested by Clerc [45]. It is a free parameter method and
differs from the original PSO. A particle (or a solution) consists of an array of real numbers
which represents the projection vector in this study. The swarm is a set of particles. Unlike
PSO, the swarm is divided into subsets of particles called Tribes. The particles and Tribes
are linked to ensure the recognition of both the best particle in each tribe and the best
particle of the swarm. Contrary to PSO, this method does not require the computation of the
velocity: the displacement of the particles in the problem domain uses specific movement
strategies related to independent Gaussian or hyperspherical probability distributions
with or without noise. It can been noted that this method is highly recommended for the
search of local optima [45]. This is due to its structure, allowing simultaneous exploration
of numerous potential regions around local optima before meeting the global optimum.
The Tribes method is described in [44,45]. This method does not involve parameters. The
fitness function is the PP index to be optimized. The algorithm of this technique can be
found in [38,44].

6. Methodology

The present study is based on four main stages described as follows.

6.1. Outlier Detection

The detection of the outliers is univariate. First, let us represent the dataset as a matrix.
The dataset matrix is transposed so that the rows represent the features (the attributes) and
the columns are the samples. This is because the outliers can be found in the feature set
of the original dataset (samples of the transposed dataset). Figure 2 shows an example of
PPFS processing.

Figure 2. An example of PPFS Processing.

After transposing the dataset matrix, the PP index is chosen (either Friedman or
Kurtosis) as well as the optimization method (either GA or Tribes). Then, the number
of iterations and the number of runs are set (defined in the next section). Later, the
optimization is applied to find the best projection a (see Section 4) associated with the best
value of the PP index I(a). The next step is to determine the outliers. For that, purpose
the coordinate of the projected data are calculated according to Equation (1). In order to
point out an observation (in the transposed dataset matrix) as an outlier, the rule based
on k-sigma principle was applied. In fact, an observation is considered as an outlier when
its distance to the mean is larger than 3 times the standard deviation of the projected data.
Thus, the parameter k is set to 3 based on the recommendation of [37,38].

The optimization methods are performed several times (number of runs) to ensure
that the obtained result is the best and cannot be changed. When selecting the best
projection and determining the outliers, a threshold is set to confirm the outlying status
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of the recognized outliers. This threshold is set to half the number of runs. In fact, the
proposed framework checks how many times these observations were detected as outliers
throughout the runs. Thus, each outlier is associated with the frequency number showing
how many times it was detected as outlier. In case of the previous example displayed
in Figure 2, the last observation of the transposed matrix can be considered as an outlier
because it is far from data points as displayed in Figure 3.

Figure 3. Representation of the transposed matrix of the above example.

By applying PPFS, suppose that the number of runs is set to 100, and the two samples
number 8 and 9, from the previous transposed dataset matrix example (see Figure 2) are
detected as outliers. Therefore, the proposed technique will detect these two outliers with
the number of times they were recognized as outliers after performing 100 runs. The sample
number 8 will not be detected as an outlier, or it will be detected but with a frequency
number less than the threshold (=50), while sample 9 will be detected with a frequency
greater than 50 as it is considered as outlier. This frequency number ensures the status
(outlier or not) of each observation. In this study, an outlier is confirmed if it is detected
more than the fixed threshold (half the number of runs). The list of confirmed outliers
corresponds to the non-relevant features in the original dataset.

Outlier Detection Using EPP-Lab

The extraction of the outliers is performed using EPP-Lab software available at
https://www.researchgate.net/project/Projection-Pursuit (accessed on 22 July 2021) or
https://github.com/fischuu/EPP-lab (accessed on 22 July 2021).

After the transposed dataset matrix is uploaded in EPP-Lab, the PP index is chosen
(either Friedman or Kurtosis) as well as the optimization method (either GA or Tribes)
from the EPP-Lab software. Then, the number of iterations and the number of runs are set
(defined in the next section). Figure 4 shows the EPP-Lab interface used for this purpose.

After running, the best projection, the best values of the PP index obtained throughout
the runs, and the projected data are provided. EPP-Lab allows the user to set the k
parameter of the sigma rule. The software provides a list of detected outliers and the
number of times (the frequency) they are detected as outliers. The functioning of EPP-Lab
is described in [38].

https://www.researchgate.net/project/Projection-Pursuit
https://www.researchgate.net/project/Projection-Pursuit
https://github.com/fischuu/EPP-lab
https://github.com/fischuu/EPP-lab
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Figure 4. Outlier detection interface using EPP-Lab [37].

6.2. Feature Selection

This stage involves removing the outliers obtained from the original dataset and
keeping only the relevant features. Considering the previous example, feature 6 will be
removed from the feature set of the original dataset, as shown in Figure 2. Therefore, the
new dataset (after removing the irrelevant features) will be used in the classification phase.

6.3. Classification

This stage involves performing the classification of the dataset before and after re-
moving the outliers (reducing the data dimentionality) using three classifiers, k-Nearest
Neighbors (k-NN), Support Vector Machine (SVM), and Random Forest (RF) with ten-fold
cross-validation. The reason behind the choice of these classifiers is that k-NN is the
simplest classifier that is recommended for small datasets [46], while SVM and RN are well
known for their efficiency in tackling large datasets [46,47].

6.4. Validation

The last step consists of validating the classification model using four classification
measures including the accuracy, precision, recall, and F1 measure.

Figure 5 summarizes the four steps that define the proposed approach including trans-
posing the dataset, detecting the outliers using EPP-Lab, FS, classification and evaluation.
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Figure 5. Projection Pursuit-based feature-selection approach.

7. Experimentation Results

The proposed outlier detection-based FS techniques (PPFS) were tested using a Dell
XPS 9343 with an Intel core TM i7-5500U CPU 2.40 GHz and 8 GB RAM. In the following
experimentation, 19 datasets (described in Table 2) were used to validate the effectiveness
of this study. The first nine datasets are from the UCI repository (https://archive.ics.
uci.edu/ml/datasets.php (accessed on 14 January 2021)). The next eight datasets are
from (https://www.openml.org/search?q=australian&type=data (accessed on 14 January
2021)). Finally, August_senate_polls (August S.P) dataset is taken from https://data.world/
fivethirtyeight/august-senate-polls (accessed on 14 January 2021), and Fifa2019 is from
https://www.kaggle.com/karangadiya/fifa19 (accessed on 14 January 2021). August S.P
contains polls from 1990 to 2016, the results of the election related to each poll, and the
average error of each poll. This dataset is composed of three classes. The Fifa2019 dataset
is composed of more than 13,000 instances and 80 attributes. An extensive preprocessing
operation was applied to this dataset. Then, two classes were created in the body_type
attribute, namely Lean and Normal, using R programming language.

As EPP-Lab software is used for outlier detection, only the number of iterations and
the number of runs are set. All the parameters related to GA (set in EPP-Lab [38]) were not
changed. This is why no validation phase for setting the parameters of GA is needed. In
fact, for GA, the population is randomly generated with 50 individuals. The tournament
selection was used with three individuals. The crossover was employed with two points,
and the probability equals 0.65. The mutation is applied to all individuals with a probability
0.05. As stated before, the Tribes method does not require parameters. For the initialization
phase, the EPP Lab randomly generates an initial solution (population) for each method.
The numbers of iterations and runs are set to 100 according to the recommendations of [38].

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
https://www.openml.org/search?q=australian&type=data
https://data.world/fivethirtyeight/august-senate-polls
https://data.world/fivethirtyeight/august-senate-polls
https://www.kaggle.com/karangadiya/fifa19
https://www.kaggle.com/karangadiya/fifa19
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The number of runs guarantees that the obtained results (the removed outliers) cannot
be improved. It also allows determining the number of times a feature is detected as an
outlier. The threshold that confirms the outlying status is then set to 50 (see Section 6.1).
For more details, one can refer to [38,44].

Table 2. Datasets used in this study.

Dataset Features Sample Classes

1 Breast cancer 10 699 2
2 Sonar 60 208 2
3 Waveform 40 5000 3
4 Wine 13 178 3
5 Liver Disorder 6 345 2
6 Spam 57 4601 2
7 Diabetes 8 768 2
8 Vehicle 18 847 4
9 Ionosphere 34 351 2

10 Climate 20 540 2
11 WDBC 30 569 2
12 Australian 14 690 2
13 Stock 9 950 2
14 Glass 9 214 2
15 Segment 19 2310 7
16 Heart 13 270 2
17 Colon 2000 62 2
18 August S.P 10 595 3
19 Fifa2019 80 13,000 2

Table 3 shows the parameters’ values.

Table 3. Parameter Setting for GA.

Parameter Value

Population size 50
Number of individuals in the tournament selection 3

Crossover type 2-points
Tournament Probability 0.65

Mutation Probability 0.05
Number of iterations 100

Number of runs 100

In the classification stage, three classifiers are applied: Support Vector Machine (SVM)
with a Linear kernel, the k Nearest Neighbors (k-NN), and the Random Forest (RF). R
(version 3.5.1) is used for the classification step. The datasets are split into training (70%)
and testing (30%). The split was done randomly by R using the “createDataPartition”
function from the caret library. To validate the parameter setting of the classifiers, ten-fold
Cross-Validation, repeated ten times, is applied to the training set. The accuracy with the
largest value is used to select the optimal training model. The optimal model with its best
parameters’ values is then used in the testing stage. The training and validation accuracy
values are omitted to save space. The training set is centered and scaled.

For the k-NN classifier, several values of k were tested (between 5 and 200) for each
dataset. For the RF classifier, the number of attributes used for splitting at each node in the
tree was studied. The optimal training model was selected using the values (0.1, 0.8, 2, 6,
10). For the SVM classifier, the cost parameter was investigated, which is considered as
the essential parameter for building the best useful model. After several experiments, the
values (0.5, 1, 1.25, and 2) were used to select the optimal training model. Table 4 shows
the obtained accuracy values for SVM using the four aforementioned values of the cost for
the Breast Cancer dataset after applying PPFS-GAF. The final value used for the model was
cost = 0.5. Note that this parameter setting approach was applied to the three classifiers
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before and after applying the four PPFS methods for all the datasets. Therefore, to save
space, only Table 4 is shown.

Table 4. Parameter Setting for SVM after applying PPFS-GAF for the Breast Cancer dataset.

Cost Accuracy Kappa

0.50 0.9658872 0.9248802
1.00 0.9652069 0.9233597
1.25 0.9645266 0.9218380
2.00 0.9645266 0.9218380

7.1. Projection-Pursuit-Based Feature-Selection Techniques

The four PPFS methods include PP based on Friedman index and the GA optimization
method (called GAF), PP based on Friedman index and the Tribes optimization method
(called TF), PP based on Kurtosis index and the GA optimization method (GAK), and PP
based on Kurtosis index and the Tribes optimization method (called TK). After detecting
the outliers using each PPFS method, they were removed, and then the three classifiers
were applied to determine the accuracy, precision, recall, and F1 measures for all the
datasets, as explained in the Methodology section. Prior to starting the experiments, the
features were numbered, starting from 1, according to their appearance in the dataset.
For example, if a dataset had four features, then the features were numbered from 1 to 4
starting with the first feature in the dataset until the last one. Table 5 displays the number
of outliers detected by each approach (column 4) for each dataset. In addition, the features
detected as outliers and the number of times (over 100 runs) they were recognized as such
(frequency) are shown in column 3. The last column yields the running time of PPFS to
find out the outliers.

Most of the outliers are commonly revealed by the four approaches as shown in
Column 3. Moreover, their frequency values are greater than the threshold (half of the
number of runs = 50). For example, for the Diabetes dataset, the features 1, 2, 5, and 7 were
detected as outliers by both PPFS-GAF and PPFS-TF. However, the features 2 and 7 were
detected by the four PPFS methods. In addition, these features were recognized as outliers
more than 68 times over 100 runs. Hence, the four features can be considered non-relevant
and were removed from the dataset to perform the classification. The positive point in this
result is that the four PPFS methods provide almost similar outputs. This fact confirms the
consistency of the proposed study. The small difference can be explained by the behavior
of the projection indices as well as the effect of the optimization methods. The Kurtosis
index split the data into two unbalanced clusters, and the smallest one is considered to
comprise outliers. The Friedman index detects the outliers by weighting distances in the
center of the Normal distribution rather than in the tails [40]. For the optimization methods,
GA is well-known in finding the best solution (the optimum or close to the optimum),
whereas the Tribes is dedicated to finding local optima as well as the optimum. Therefore,
combining these two optimization methods along with both PP indices does not yield
exactly the same result; however, the accuracy and the different measures (precision, recall,
and F1) provided by each classifier for the four approaches are slightly different for the
used datasets. For the experiment time, EPP-Lab is fast when combining Tribes and the
Kurtosis index [39]. The shortest average time noticed with the smallest dataset (Wine,
178 samples) was 79 ms using TK and 162 ms using TF. With the largest dataset, Fifa2019,
there were 13,000 samples and 80 features, while Colon had 62 samples and 2000 features.
TK for Fifa2019 spent an average of 12 s 580 ms, whereas TF took an average of 44 s 143 ms.
TK for Colon was 1 s 654 ms, and TF was 6 s 443 ms. Again, the running time does not
show a major difference (see Table 5).
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Table 5. The features (outliers) detected by the four proposed PPFS methods for the 19 datasets.

Dataset Proposed PPFS Feature Number (Frequency) Outliers Number Time

Breast Cancer

PPFS-GAF 1(97), 3(80), 6(81), 10(81) 4 245 ms
PPFS-GAK 1(97) 1 130 ms

PPFS-TF 1(97) 1 497 ms
PPFS-TK 1(97) 1 401 ms

Liver disorder

PPFS-GAF 1(100), 2(78), 6(99) 3 82 ms
PPFS-GAK 1(100), 6(100) 2 42 ms

PPFS-TF 1(98), 2(63), 6(87) 3 164 ms
PPFS-TK 1(98), 6(98) 2 115 ms

Sonar

PPFS-GAF 1(96), 2(94), 3(91), 19(75), 20(98), 21–29(100), 30(97), 49(84),
50–52(97), 53–55(98), 56–60(99) 27 359 ms

PPFS-GAK 1(100), 2(97), 3(72), 20(96), 21–29(100), 30(98), 50–60(100) 24 115 ms

PPFS-TF
1(94), 2(90), 3(79), 4(51), 19(57), 20(79), 21(89), 22(91),

23(95), 24(96), 25(97), 26(99), 27(100), 28(100), 29(95), 30(89),
49(80), 50–60(98)

23 510 ms

PPFS-TK 1(88), 2(73), 20(67), 21(90), 22(97), 23–25(100), 26(99), 27(100),
28(99), 29(98), 30(90), 50(91), 51(94), 52(95), 53–60(95) 23 207 ms

Wine

PPFS-GAF 4(64), 5(64), 13(98) 3 82 ms
PPFS-GAK 13(100) 1 32 ms

PPFS-TF 13(98) 1 162 ms
PPFS-TK 13(100) 1 79 ms

Spam

PPFS-GAF 5(60), 16(54), 21(52), 26(56), 46(52), 55(50) 6 7 s 13 ms

PPFS-GAK 57(100) 1 3 s 259 ms

PPFS-TF 2(55), 19(53), 21(56), 27(67), 42(52), 45(61), 46(53), 55(53),
56(57), 57(60) 10 8 s 14 ms

PPFS-TK 56(93), 57(100) 2 3 s 241 ms

Waveform

PPFS-GAF 1(84), 2(75), 10(88), 11(88), 12(82), 20(80), 21(91) 7 3 s 758 ms
PPFS-GAK 1(76), 2(64), 10(63), 11(75), 12(63), 13(53), 20(59), 21(78) 8 1 s 627 ms

PPFS-TF 1(79), 2(63), 10(83), 11(90), 12(71), 20(64), 21(79) 7 5 s 1 ms
PPFS-TK 1(71), 10(52), 11(71), 12(55), 15(50), 21(74) 6 2 s 759 ms

Vehicle

PPFS-GAF 6(100), 12(100), 15–16(100) 4 95 ms
PPFS-GAK 6(100), 12(100), 15–16(100) 4 34 ms

PPFS-TF 6(100), 9(62), 12(100), 15–16(100) 5 182 ms
PPFS-TK 6(100), 12(100), 15–16(100) 4 114 ms

Diabetes

PPFS-GAF 1(90), 2(95), 5(84), 7(94) 4 232 ms
PPFS-GAK 2(100), 7(100) 2 127 ms

PPFS-TF 1(93), 2(99), 5(68), 7(97) 4 451 ms
PPFS-TK 2(98), 7(86) 2 351 ms

Ionosphere

PPFS-GAF 1(98), 8(57), 13(50), 14(56), 15(60), 17(51), 18(71), 20(85), 24(65),
26(67), 27(52), 28(58) 12 310 ms

PPFS-GAK 1(98), 3(81), 5(84), 7(73), 9(58), 20(65), 24(66), 26(50), 28(67) 9 133 ms

PPFS-TF 1(81), 8(51), 10(54), 13(59), 14(51), 15(65), 17(57), 18(62), 19(56),
20(63), 21(52), 24(65), 26(53), 28(55) 14 420 ms

PPFS-TK 1(98), 3(86), 5(77), 7(57), 24(55), 28(62) 6 206 ms

Climate

PPFS-GAF 1(81) 1 257 ms
PPFS-GAK 2(93), 3(100) 2 112 ms

PPFS-TF 2(88), 3(92) 2 398 ms
PPFS-TK 2(82), 3(100) 2 398 ms

WDBC

PPFS-GAF 2(53), 3(73), 4(68), 14(70), 22(64), 23(74), 24(66) 7 386 ms
PPFS-GAK 4(100), 24(100) 2 163 ms

PPFS-TF 4(85), 24(86) 2 574 ms
PPFS-TK 4(100), 24(86) 2 267 ms

Australian

PPFS-GAF 2(86), 3(81) 2 247 ms
PPFS-GAK 2(100), 3(60) 2 136 ms

PPFS-TF 2(99) 1 386 ms
PPFS-TK 2(98) 1 229 ms

Stock

PPFS-GAF 3(91), 5(80), 7(88), 8(82) 4 213 ms
PPFS-GAK 3(100), 5(99), 6(94), 7(100), 8(100) 5 114 ms

PPFS-TF 3(98), 5(97), 7(99), 8(95) 4 339 ms
PPFS-TK 3(99), 5(83), 6(78), 7(100), 8(89) 5 193 ms
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Table 5. Cont.

Dataset Proposed PPFS Feature Number (Frequency) Outliers Number Time

Glass

PPFS-GAF 3(51), 7(51) 2 121 ms
PPFS-GAK 5(100) 1 54 ms

PPFS-TF 5(100) 1 203 ms
PPFS-TK 5(100) 1 119 ms

Segment

PPFS-GAF 1(56), 2(56), 14(76), 16(62) 4 937 ms
PPFS-GAK 1(100), 2(100) 2 470 ms

PPFS-TF 1(100), 2(99), 12(57), 14(98), 16(85), 17(60) 6 1 s 622 ms
PPFS-TK 1(99), 2(100) 2 901 ms

Heart

PPFS-GAF 4(98), 5(95), 8(94) 3 96 ms
PPFS-GAK 4(100), 5(100), 8(100) 3 41 ms

PPFS-TF 4(100), 5(100), 8(99) 3 161 ms
PPFS-TK 4(98), 5(100), 8(99) 3 82 ms

Colon

PPFS-GAF 2(62), 6(52), 10(54), 16(55), 24(58), 30(55), 42(64), 46(64), 50(55),
58(52), 64(50), 236(67), 332(61), 610(79), 712(59), 1612(59), 1754(76) 17 7 s 181 ms

PPFS-GAK

1(100), 2(100), 4(100), 6(100), 8(100), 10(100), 12(100), 14(100),
16(100), 18(100), 20(100), 22(100), 24(100), 26(100), 28(100), 30(100),
32(100), 34(99), 36(100), 38(100), 40(100), 42(100), 44(100), 46(100),
48(99), 50(100), 54(100), 56(100), 58(100), 60(100), 64(100), 70(100),

72(92), 76(99), 78(99), 80(99), 82(99), 84(84), 86(100), 92(100),
98(57), 100(57), 102(57), 104(57), 206(99), 236(100), 332(100),

610(98), 712(100), 1612(85), 1754(99)

51 839 ms

PPFS-TF

1(98), 2(96), 4(96), 6(95), 8(95), 10(96), 12(100), 14(94), 16(97),
18(93), 20(96), 22(92), 24(95), 26(95), 28(93), 30(96), 32(93), 34(88),
36(93), 38(94), 40(96), 42(95), 44(96), 46(94), 48(73), 50(97), 54(95),
56(87), 58(93), 60(92), 64(96), 70(75), 72(76), 76(86), 78(86), 80(86),

82(86), 84(73), 86(93), 92(93), 98(52), 100(52), 102(52), 104(52),
206(86), 236(97), 332(97), 610(87), 712(95), 1612(66), 1754(88)

51 6 s 443 ms

PPFS-TK

1(100), 2(100), 4(100), 6(99), 8(99), 10(100), 12(100), 14(100), 16(99),
18(99), 20(100), 22(98), 24(100), 26(98), 28(99), 30(100), 32(98),

34(95), 36(98), 38(99), 40(98), 42(99), 44(98), 46(99), 48(85), 50(100),
54(100), 56(99), 58(97), 60(99), 64(99), 70(94), 72(81), 76(87), 78(87),

80(87), 82(87), 84(83), 86(99), 92(99), 98(51), 100(51), 102(51),
104(51), 206(88), 236(97), 332(98), 610(87), 712(97),

1612(72), 1754(91)

51 1 s 654 ms

August S.P

PPFS-GAF 3–4(100) 2 221 ms
PPFS-GAK 1(100), 3–4(100) 3 123 ms

PPFS-TF 1(100), 3–4(100) 3 388 ms
PPFS-TK 1(100), 3–4(100) 3 274 ms

Fifa2019

PPFS-GAF 5(61), 6(76), 8(83), 9(86), 17(82), 18(84), 80(67) 7 43 s 952 ms
PPFS-GAK 1(100) 1 21 s 483 ms

PPFS-TF 1(75), 5(65), 6(79), 8(72), 9(83), 17(75), 18(74), 80(70) 8 44 s 143 ms
PPFS-TK 1(100) 1 12 s 580 ms

Table 6 presents the accuracy, precision, recall, and the F1 values of each classifier
before and after applying PPFS methods (columns 3–6 for k-NN, columns 7–10 for SVM,
and columns 11–14 for RF). The PPFS methods have globally improved the classification
accuracy compared to the accuracy obtained without applying FS. The accuracy obtained
using k-NN (resp. SVM and RF) indicates an improvement rate ranging between 0.08
and 6.79 for 9 datasets, while the accuracy for SVM and RF were 0.36–12.9 and 0.01–12.7,
respectively, for 16 datasets each. This result is explained by the fact that k-NN is not
always efficient with large and noisy datasets. The classification accuracy of the datasets
that is not enhanced with k-NN achieved a significant improvement rate with the other
classifiers. This is the case for Wine, Spam, August S.P, Diabetes, Australian, Glass, and
Ionosphere datasets.



Appl. Sci. 2021, 11, 6769 16 of 28

Table 6. The classification results obtained after (and before) applying the PPFS approaches using KNN, SVM, and RF classifiers for the 19 datasets.

Datasets PPFS
k-NN SVM RF

Accu Prec Rec F1 Accu Prec Rec F1 Accu Prec Rec F1

Breast C.
Without 95.22 95.68 97.08 96.38 98.09 99.26 97.81 98.53 94.64 97.73 94.16 95.91

PPFS-GAF 97.61 97.83 98.54 98.18 96.17 97.08 97.08 97.08 95.22 96.35 96.35 96.35
PPFS-GAK/PPFS-TF/PPFS-TK 95.22 95.68 97.08 96.38 98.56 100 97.81 98.89 97.61 98.53 97.81 98.17

Sonar

Without 70.97 70.27 59.09 54.20 69.35 66.67 84.85 74.67 82.26 84.38 81.82 83.08
PPFS-GAF 75.81 71.43 90.91 80.00 82.26 80.56 89.68 47.32 88.71 88.24 90.91 89.55
PPFS-GAK 66.13 63.64 84.85 72.73 80.65 81.82 88.00 48.18 72.58 76.67 69.70 73.02

PPFS-TF 75.81 71.43 90.91 80.00 80.65 83.87 85.64 49.48 80.65 80.00 84.85 82.35
PPFS-TK 67.74 64.44 87.88 74.36 69.35 68.42 94.61 41.97 80.65 86.21 75.76 80.65

Liver D.

Without 63.11 64.86 80.00 71.64 76.70 75.00 90.00 81.82 63.11 67.74 70.00 68.85
PPFS-GAF 69.90 68.35 90.00 77.70 65.05 67.14 78.33 72.31 71.84 75.41 76.67 76.03
PPFS-GAK 66.02 65.43 88.33 75.18 73.79 73.91 85.00 79.07 71.84 75.41 76.67 76.03

PPFS-TF 69.90 68.35 90.00 77.70 65.05 67.14 78.33 72.31 71.84 75.41 76.67 76.03
PPFS-TK 66.02 65.43 88.33 75.18 73.79 73.91 85.00 79.07 71.84 75.41 76.67 76.03

Wine
Without 98.08 98.41 97.78 98.04 92.31 91.69 93.09 92.26 98.08 98.41 98.15 98.23

PPFS-GAF 98.08 98.41 98.15 98.23 96.15 95.24 97.10 95.92 100 100 100 100
PPFS-GAK/PPFS-TF/PPFS-TK 96.15 96.83 96.49 96.48 96.15 96.03 96.49 96.10 100 100 100 100

Spam

Without 90.72 92.45 92.22 92.34 92.68 93.49 94.50 93.99 96.01 95.89 97.61 96.74
PPFS-GAF 88.69 90.09 91.39 90.74 93.04 93.02 95.69 94.34 93.76 93.50 96.41 94.94
PPFS-GAK 89.41 90.59 92.11 91.34 93.62 93.90 95.69 94.79 95.00 94.75 97.13 95.92

PPFS-TF 90.72 90.78 94.26 92.49 93.04 94.71 94.26 94.48 95.43 95.52 97.01 96.26
PPFS-TK 89.99 90.49 93.30 91.87 93.04 93.53 95.10 94.31 95.36 94.99 97.49 96.22

Waveform

Without 86.06 83.95 84.52 83.77 86.39 86.39 86.38 86.37 85.46 85.41 85.54 85.35
PPFS-GAF/PPFS-TF 82.45 82.38 83.51 81.89 83.79 83.76 83.77 83.67 80.65 80.59 80.86 80.24

PPFS-GAK 82.12 82.07 82.85 81.48 81.65 81.63 81.55 81.57 81.12 78.89 79.04 78.50
PPFS-TK 81.99 81.90 83.80 81.32 81.45 81.42 81.36 81.35 81.78 81.72 81.98 81.49

Vehicle
Without 67.46 67.84 65.92 66.73 79.76 80.10 79.74 79.75 73.02 73.41 71.57 72.35

PPFS-GAF/PPFS-GAK/PPFS-TK 70.24 70.61 69.73 70.13 83.33 83.52 83.10 83.27 74.60 74.98 73.67 74.10
PPFS-TF 73.02 73.30 72.04 72.40 79.36 79.57 78.81 79.10 76.98 77.28 76.00 76.51



Appl. Sci. 2021, 11, 6769 17 of 28

Table 6. Cont.

Datasets PPFS
k-NN SVM RF

Accu Prec Rec F1 Accu Prec Rec F1 Accu Prec Rec F1

Diabetes
Without 72.17 77.22 81.33 79.22 80.00 81.71 89.33 85.35 75.65 78.66 86.00 82.17

PPFS-GAF/PPFS-TF 67.39 70.72 85.33 77.34 81.30 82.42 90.67 86.35 76.96 82.55 82.00 82.27
PPFS-GAK/PPFS-TK 65.65 69.83 83.33 75.99 81.30 82.42 90.67 86.35 76.52 81.17 83.33 82.24

Ionosphere

Without 87.50 83.64 89.19 85.45 89.42 86.35 90.59 87.89 91.35 90.26 90.77 90.50
PPFS-GAF 87.50 84.25 88.24 85.69 80.77 77.81 79.43 78.47 94.23 93.71 93.71 93.71
PPFS-GAK 81.73 76.14 83.75 77.96 90.38 87.70 91.29 89.08 93.27 92.96 92.46 92.70

PPFS-TF 84.62 79.59 87.14 81.62 80.77 78.42 79.17 78.76 90.38 87.70 91.29 89.08
PPFS-TK 84.62 79.59 87.14 81.62 81.73 74.93 86.79 77.04 91.35 90.86 90.39 90.62

Climate
Without 91.92 50.00 NaN NaN 87.58 58.16 58.16 58.16 91.92 50.00 NaN NaN

PPFS-GAF 91.93 50.00 NaN NaN 91.93 50.00 NaN NaN 91.93 50.00 NaN NaN
PPFS-GAK/PPFS-TF/PPFS-TK 91.93 50.00 NaN NaN 91.93 50.00 NaN NaN 90.68 49.32 45.91 45.91

WDBC
Without 92.94 91.13 93.83 92.21 94.71 93.18 95.60 94.18 94.71 93.84 94.77 94.27

PPFS-GAF 95.29 93.98 96.03 94.85 93.53 92.25 93.84 92.94 94.71 94.49 94.21 94.34
PPFS-GAK/PPFS-TF/PPFS-TK 98.24 97.95 98.27 98.10 98.24 97.96 98.28 98.10 95.29 94.63 95.25 94.92

Australian
Without 85.92 84.97 86.93 85.45 84.95 85.25 84.86 84.89 85.92 86.55 86.18 85.91

PPFS-GAF/PPFS-GAK 83.50 82.88 83.66 83.14 85.92 86.55 86.18 85.91 86.89 86.27 87.26 86.59
PPFS-TF/PPFS-TK 83.50 82.88 83.66 83.14 85.92 86.55 86.18 85.91 86.89 86.27 87.26 86.59

Stock
Without 91.90 92.02 92.16 91.90 81.69 81.85 82.14 81.66 95.07 95.17 95.21 95.07

PPFS-GAF/PPFS-TF 95.42 95.43 95.42 95.42 83.10 82.83 84.33 82.85 96.48 96.48 96.48 96.48
PPFS-GAK/PPFS-TK 95.42 95.39 95.46 95.42 86.62 86.43 87.30 86.51 95.42 95.37 95.52 95.41

Glass
Without 69.84 71.56 69.61 69,01 53.96 45.68 44.58 44.52 74.60 65.74 76.79 66.49

PPFS-GAF 57.14 54.43 54.21 54.19 60.32 52.66 53.33 52.17 69.84 65.24 66.45 65.65
PPFS-GAK/PPFS-TF/PPFS-TK 60.32 61.09 60.08 59.29 69.84 63.14 66.46 63.65 87.30 88.14 85.76 86.54

Segment

Without 94.81 94.81 94.78 94.75 94.66 94.66 94.77 94.68 97.83 97.84 97.86 97.84
PPFS-GAF 89.18 89.18 89.18 89.09 86.58 86.58 86.69 86.58 94.37 94.37 94.37 94.37

PPFS-GAK/PPFS-TK 90.33 90.33 90.46 90.37 89.47 89.47 89.80 89.45 92.50 92.50 92.78 92.50
PPFS-TF 87.88 87.88 87.89 87.77 85.14 85.14 85.60 85.15 91.34 91.34 91.54 91.36
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Table 6. Cont.

Datasets PPFS
k-NN SVM RF

Accu Prec Rec F1 Accu Prec Rec F1 Accu Prec Rec F1

Heart
Without 80.25 79.72 80.13 79.87 81.48 81.39 81.23 81.30 83.95 83.61 83.82 83.70

PPFS-GAF/PPFS-GAK/PPFS-TF/PPFS-TK 81.48 81.39 81.23 81.30 82.72 83.33 82.97 82.69 87.65 88.06 87.59 87.61

Colon
Without 77.78 66.67 87.50 67.86 72.22 70.83 69.48 69.90 77.78 75.00 75.00 75.00

PPFS-GAF 72.22 66.67 68.46 67.27 83.33 87.50 83.33 82.86 83.33 83.33 81.17 81.93
PPFS-GAK/PPFS-TF/PPFS-TK 77.78 75.00 75.00 75.00 83.33 79.17 82.31 80.36 77.78 70.83 76.78 72.31

August S.P
Without 68.38 66.97 66.20 66.58 55.37 54.65 50.78 52.65 94.92 94.69 94.95 94.82

PPFS-GAF 65.54 64.65 62.48 63.54 56.5 52.20 50.96 51.57 97.18 97.07 96.87 96.97
PPFS-GAK/PPFS-TF/PPFS-TK 62.71 60.40 58.84 59.61 61.02 57.68 56.70 57.18 95.48 95.82 94.68 95.25

Fifa2019

Without 60.04 50.03 51.93 37.93 60.09 50.00 NAN NAN 59.43 50.07 50.48 40.49
PPFS-GAF 60.12 50.09 57.34 37.90 60.09 50.00 NAN NAN 59.22 49.93 49.58 40.50

PPFS-GAK/PPFS-TK 60.70 49.94 47.08 38.14 60.85 50.00 NAN NAN 59.98 50.26 51.28 42.01
PPFS-TF 60.10 50.09 56.98 37.91 60.08 50.00 NAN NAN 60.08 50.00 31.38 NAN
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The PPFS methods also managed well for the Fifa2019 dataset even though the
accuracy remains below 70%. This dataset is large and required massive preprocessing
efforts. However, PPFS methods did not enhance the accuracy of the Waveform and
Segment datasets using the three classifiers because Waveform contains 40 features, all of
which include noise, especially the last 19, which are all noise, and Segment contains many
instances of noise. PPFS did not remove all these noise features.

Moreover, considering the results of the three classifiers, the classification accuracy
of some datasets was enhanced, but they remained below or around 70%. This is the
case of Liver D., Vehicle (enhanced only once reaching 83.33%), Diabetes (enhanced only
once reaching 81.30%), Glass, and Fifa2019. To improve the results, it recommended
to preprocess the datasets and/or apply centering and sphering procedure [37] before
peforming PPFS.

The four proposed PPFS methods provided approaching accuracy, precision, recall,
and F1 values for each dataset. This confirms the consistency of PPFS again. Figure 6 shows
the number of times each PPFS method enhances the classification accuracy (compared to
that obtained without applying any FS method) using the three classifiers for all datasets.
As displayed in this figure, GAF and GAK performed well at 36 and 37 times, respectively,
using the three classifiers. In fact, GAF enhanced the accuracy 10 times with k-NN, 12 times
with SVM, and 14 times with RF. TF and TK yielded similar results (34 times). On the other
hand, the SVM classifier performed well with all the PPFS methods for all the datasets.
It enhanced the results 58 times. The RF is a comparative classifier as it enhanced the
accuracy results 48 times using the PPFS for all the datasets. The k-NN does not perform
well with large datasets. It improved the accuracy 35 times using all the PPFS methods
for all the datasets. Consequently, SVM can be considered as the classifier providing the
best results.

Figure 6. Performance rate (represented in the y axis) of each PPFS method using each classifier for
all the datasets.

7.2. What Is the Best PPFS Technique?

It is necessary to show that the results of the PPFS approaches are equivalent. To do
this, the non-parametric statistical test “Friedman” was employed with a significance
level of 0.01. This test is conducted with the best classification accuracy obtained by SVM
for all the datasets after performing PPFS. The test does not adopt a normal distribution
assumption [48].

It is worth knowing that the Friedman test [48] is different from the Friedman index
used in PP [40]. The Friedman index is defined in Section 4, and Friedman test shows the
existence of a significant statistical difference between the methods.

The Friedman test provides two main results, the p-value and the effect size. If the
obtained p-value is less than the significance level (0.01), then the statistical hypothesis
(that the PPFS methods are equivalent) is rejected. The effect size has a value ranging
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between 0 (corresponding to no relationship) and 1 (stating an ideal relationship). The
Friedman test resulted in χ2(2) = 6.68 and p_value = 0.0204 > 0.01, with an effect size
W = 0.172. According to the p_value, the hypothesis is not rejected. Moreover, the effect
size is small. Consequently, there is no statistical difference between the PPFS methods.
The obtained PPFS results are equivalent.

Figure 7 displays the boxplot of the accuracy obtained by SVM after using the PPFS
methods for all the datasets. The y-axis represents the minimum, first quartile, median,
third quartile, and maximum value of the accuracy values. As indicated, the four PPFS
have a similar median (the line inside the box) equal to 83.3 for GAF, TF, and TK, 83.5 for
GAK. As the p_value = 0.0204 > 0.01, the dissimilarity between the median values are
not statistically significant. This confirms that the PPFS techniques are equivalent and that
their results are statistically significant. Furthermore, the mean values of the four PPFS do
not show a significant difference. The lowest value was provided by GAF (82.0), whereas
the highest mean was obtained by GAK (84.2). TF yielded 82.6 and TK 83.3.

Figure 7. Boxplot of the accuracy obtained by SVM after applying PPFS methods for all the datasets.
The y-axis represents the minimum, first quartile, median, third quartile, and maximum value of the
accuracy values.

7.3. Comparison Study

The comparison study was performed based on three wrapper and five filter-based
FS methods. Unfortunately, the existing embedded FS methods did not use the available
datasets or apply clustering techniques (instead of classification techniques). Furthermore,
the related work applying outlier detection to select the relevant features did not use the
available data, and their evaluation measures are different from those used in this article.

The first comparison study consisted of applying the Correlation (CFS), Principal
Component Analysis (PCA), Gain ratio, the Mutual Information, and Gini index FS tech-
niques. The reason behind this choice is that PCA belongs to the same family of the PP
and the other FS are well-known filter FS methods. The implementation of the filter FS
techniques was performed using both FSelector and FSinR R packages [11]. The Gain ratio,
Mutual Information, and Gini index were applied using the Sequential Forward Selection
(FSF) search method as it provided better results than Sequential Backward Selection (SBS)
and Breadth First Search (BFS). In addition, the FSF search method was the fastest.

Table 7 displays the classification accuracy obtained by SVM (as it is the best classifier
in this study) after applying the four PPFS methods along with the five filter FS for all the
datasets. As shown in this table, the four PPFS outperformed all the Filter FS for 15 datasets
(over 19 datasets). The accuracy improvement rate ranges between 0.76% and 30.64%.
However, PCA managed well in eliminating the noisy features of Waveform dataset. In
addition, it enhanced the accuracy of Sonar dataset despite its correlated features. This is
due to its process in projecting the feature space into a new low-dimensional feature space



Appl. Sci. 2021, 11, 6769 21 of 28

without being affected by the noise or high correlation. Furthermore, CFS also improved
the accuracy of Sonar dataset. This is done thanks to the concept of removing the correlated
features. Besides, Mutual Information and Gini Index outperformed the PPFS methods
when tackling the Spam dataset. Moreover, CFS, Gain ratio, Mutual Information, and Gini
index (resp. CFS) yielded similar results to the four PPFS methods when handling the
Climate (resp. Heart) dataset. For the Colon dataset, the last three FS methods did not
manage to find the relevant features. For the running time, the five filter FS are similar
to PPFS in terms of speed, except when handling Spam, Colon, and Fifa2019. For these
datasets, the filter FS took an average of 12 min and 10 s compared to PPFS, which took an
average of 7 s.

Table 7. The Classification accuracy provided by SVM Classifier after applying the 4 PPFS, CFS, and PCA feature selec-
tion techniques.

SVM Accuracy PPFS-GAF (%) PPFS-GAK (%) PPFS-TF (%) PPFS-TK (%) CFS (%) PCA (%) GainRatio (%) MutualInfo (%) GiniIndex (%)

Breast Cancer 96.17 98.56 98.56 98.56 95.80 94.96 90.90 85.65 85.65
Liver Disorder 65.05 73.79 65.05 73.79 58.12 59.83 59.22 58.25 53.40

Sonar 82.26 85.58 86.06 87.98 90.76 93.28 53.23 77.42 77.42
Wine 96.15 96.15 96.15 96.15 63.38 78.87 80.77 88.46 88.46
Spam 93.04 93.6 93.04 93.62 85.76 86.41 83.47 96.61 96.61

Waveform 83.79 81.65 83.79 81.45 34.43 98.36 69.85 66.18 66.18
Vehicle 83.33 83.33 79.36 83.33 65.87 73.02 53.97 48.41 55.56

Diabetes 81.30 81.30 81.30 81.30 78.70 77.73 73.91 73.91 73.91
Climate 91.93 91.93 91.93 91.93 91.93 91.48 91.93 91.93 91.93
WDBC 95.29 98.24 98.24 98.24 95.29 93.67 90.59 91.18 91.18

Autralian 83.50 83.50 85.92 85.92 79.13 85.51 61.65 63.59 63.59
Stock 95.42 95.42 83.10 86.62 75.00 82.74 84.15 84.50 84.50
Glass 60.32 69.84 69.84 69.84 65.07 64.49 65.08 65.08 65.08

Segment 86.58 89.47 89.47 85.14 58.83 82.29 51.80 75.90 74.31
Heart 82.72 82.72 82.72 82.72 82.72 81.85 77.78 55.56 55.56

Ionosphere 80.77 90.38 80.77 81.73 82.69 88.03 75.00 64.42 64.42
Colon 83.33 83.33 83.33 83.33 81.73 80.65 - - -

August S.P 56.50 61.02 61.02 61.02 44.07 52.19 44.06 48.59 48.59
Fifa2019 60.09 60.85 60.08 60.85 60.09 60.08 60.09 60.09 60.09

To show the statistical significance of the obtained results, the same experiment
discussed in Section 7.2 was performed. It aimed to show the existence of a significant
statistical difference between the methods. As the PPFS methods are equivalent, only GAK
was used. Table 8 displays the mean and median of the accuracy values obtained by SVM
classifier after applying GAK and the five filter FS methods. These results are visually
shown in Figure 8. As indicated, the median and the mean of GAK are greater than those
of the four filter methods, but slightly different from those of PCA. Moreover, the Friedman
test was applied with a confidence level of 0.01. The p_value achieved 0.00994 < 0.01,
χ2(2) = 15.1, with an effect size W = 0.168 (small effect), which means that there is no
relationship. Thus, the statistical hypothesis (the methods are not statistically different) is
rejected since the p_value is less than the significant level and the effect size is small.

This result indicates that the methods are statistically different.
Now, to demonstrate the differences between each pair of methods, the Friedman test

was followed by the pairwise Wilcoxon signed-rank test. Table 8 (see the first line) pointed
out the p_value calculated between GAK and the filter methods. As displayed, GAK, CFS,
and PCA are competitive methods. This is because the hypothesis is not rejected (GAK
is statistically different from CFS and PCA) due to the p_value not being less than the
significance level 0.01. However, GAK is better than Gain Ratio, Mutual Information, and
Gini index FS methods, since their p-value is less than 0.01. Consequently, GAK outperforms
Gain Ratio, Mutual Information, and Gini index, but it is competitive with PCA and CFS.
This result is again confirmed with the medians and the means computed in Table 8.
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Table 8. The statistical test results of GAK and the 5 filter FS using 18 datasets.

PPFS-GAK CFS PCA GainRatio MutualInfo GiniIndex

p_Value - 0.043 0.325 0.007 0.008 0.009
Median 84.5 76.8 82.5 71.9 70.0 70.0
Mean 84.3 72.6 80.3 70.4 72.0 72.0

Figure 8. Boxplot of the accuracy obtained by SVM after applying GAK and the 5-filter FS for all the
datasets. The y-axis represents the minimum, first quartile, median, third quartile, and maximum
value of the accuracy values.

The second comparison study involved comparing PPFS approaches with three
wrapper-based FS methods published in [14], named Enhanced Whale Optimization Algo-
rithm (WOA-CM), GA, and PSO using k-NN. Note that GA is also employed in GAF and
GAK, and Tribes is one variant of PSO used in TF and TK. Table 9 and Figure 9 show the
classification accuracy obtained by k-NN after applying PPFS techniques along with the
three wrapper methods using eight UCI datasets. The PPFS approaches outperformed the
wrapper FS methods on five datasets. However, only WOA outperformed the four PPFS
methods with an improvement of 5.06% for Ionosphere, 13.12% for Colon, and 16.09%
for the Sonar datasets. In addition, the three wrapper FS outperformed the four PPFS
methods when handling the Colon dataset. The reason behind this success is that WOA
is mainly based on the exploration and exploitation concepts leading to the global search.
This aspect allowed WOA to find out the optimal solutions for the Waveform, Colon, and
Sonar datasets in revealing the important features despite the noise and high correlation
containing in these datasets.

Since the number of datasets used in this comparison study is small (eight datasets),
the result of the statistical tests (Friedman or Wilcoxon) might be inaccurate [48]. Therefore,
their results were omitted. However, the median and the mean of the accuracy values
obtained by k-NN after applying GAF, WOA, PSO, and GA were calculated and displayed
in Table 10. In addition, the Boxplot of these four methods was presented in Figure 10.
As displayed, the mean and the median of the accuracy values obtained by GAF are higher
than those obtained by PSO and GA, but somewhat similar to WOA. Therefore, it is worth
mentioning that GAF yielded results better than or comparable to the aforementioned FS.
Therefore, PPFS methods are competitive methods.
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Table 9. The classification accuracy provided by the k-NN classifier after applying the four PPFS, WOA, PSO, and GA
feature selection.

kNN/ PPFS PPFS-GAF (%) PPFS-GAK (%) PPFS-TF (%) PPFS-TK (%) WOA (%) PSO (%) GA (%)

Breast Cancer 97.61 96.85 96.85 96.85 96.83 95.4 95.5
Sonar 75.81 66.13 75.81 67.74 91.9 74.0 72.6

Wave F. 82.45 82.12 82.45 81.99 75.33 76.1 76.7
Wine 98.08 96.15 96.15 96.15 95.90 95.0 93.30

WDBC 95.29 98.24 98.24 98.24 97.10 94.10 93.80
Heart 81.48 81.48 81.48 81.48 80.70 78.40 82.20

Ionosphere 87.50 81.73 84.62 84.62 92.56 84.30 83.40
Colon 72.22 77.78 77.78 77.78 90.90 84.30 83.40

Figure 9. The classification accuracy (presented in the y axis) provided by k-NN classifier after
applying the four PPFS, WOA, PSO, and GA feature selection.

Table 10. The statistical results of GAF, WOA, PSO, and GA using 4 datasets.

PPFS-GAF WOA PSO GA

Median 86.5 88 84 83
Mean 86.5 86.8 84.8 85

Figure 10. Boxplot of the accuracy obtained by k-NN after applying PPFS-GAF, WOA, PSO, and
GA for 8 datasets. The y-axis represents the minimum, first quartile, median, third quartile, and
maximum value of the accuracy values.
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7.4. Discussion

Many experiments were performed in this paper to fulfill the four reseach objec-
tives. Firstly, the related works were deeply investigated to bring out their limitations.
Consequently, the first objective was achieved.

To prove the efficacy of these four PPFS, nineteen datasets and three classifiers were
utilized. The first experiment consists of showing the detected outliers for the nineteen
datasets using the four FS methods. It was shown that the PPFS methods provide equivalent
results in terms of the detecting outliers. In addition, the detection frequency of most of the
outliers reached 80% using the four PPFS methods. This confirms that they are outliers.
To show that the detected outliers correspond to non-relevant features, classification was
performed on the datasets before and after applying the four PPFS methods. The results
showed that the classification performance along with the precision, the recall, and the
F1 measure were superior when applying PPFS. The k-NN achieved an improvement,
reaching 6.79 for 11 datasets. The SVM and RN enhanced the results of 16 datasets, with an
improvement reaching 12.91 and 12.4, respectively. Hence, SVM was selected as the best
classifier for this study. Although the proposed PPFS did not improve the accuracy of the
Waveform and Segment datasets, they enhanced the classification accuracy for most of the
datasets. This allowed the second and third objectives to be realized.

On the other hand, the success of this study could not be realized without the utiliza-
tion of EPP-Lab software. Therefore, EPP-Lab is efficient in detecting the non-important
features. This software is open-source and can be used as a desktop application in any
environment. This is the fourth objective of the present study.

One of the main experiments performed in this article was to show that the four
presented PPFS methods provide equivalent results. This was carried out through the
Friedman test. The test’s result indicated that the p-value is greater than the significace level
and that the effect size is small. Consequently, the hypothesis is not rejected, and hence the
difference between the PPFS results is not statistically significant. This experiment realized
the fifth objective.

To demonstrate that the four PPFS are competitive FS methods, two comparison
studies were performed. The first comparison included applying five filter FS methods
(CFS, PCA, Gain Ratio, Mutual Information, Gini Index) using all the datasets. The results
showed that CFS was superior to the four PPFS methods when testing only the Sonar
dataset. PCA was also superior to the four PPFS methods when testing both the Waveform
and Sonar datasets. Again, Mutual Information and Gini Index outperformed the PPFS for
the Spam dataset. As stated previously, these three datasets have noise and high correlation,
which negatively affect PPFS in enhancing the classification accuracy. These limitations
deserve further investigation. The classification accuracy results of PPFS-GAK and the five
Filter FS methods were used to compute the Friedman and pairwise Wilcoxon tests. The
statistical results show that GAK is superior to Mutual Information, Gain Ratio, and Gini
Index but equivalent to PCA and CFS.

The second comparison involved comparing PPFS with three wrapper FS methods,
called WOA, PSO, and GA, using eight datasets. The four PPFS methods performed
better than the three wrapper FS using five datasets. However, WOA surpassed all the
FS methods using Sonar, Waveform, and Colon datasets. Again, the PPFS methods failed
in enhancing the accuracy of these three datasets. Like the first comparison study, the
statistical analysis validated the significant results of the PPFS methods. Finally, the last
objective was achieved by demonstrating the efficiency of the PPFS methods. To sum up,
the aforementioned experiments successfully carried out the research objectives of this
study.

In the following, the research impacts, the advantages, and the limitations of PPFS
methods are discussed.

7.4.1. Research Impacts

The research impacts of PPFS methods are important and deserve to be addressed:
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• They contribute to the scientific society by providing a new PPFS model that over-
comes the limitations of the existing FS methods.

• They provide four FS techniques that enhance the classification accuracy by an average
of 6.64%.

• They contribute to technological development by providing EPP-Lab software han-
dling FS.

• They contribute to decision making by providing four PPFS methods yielding different
but equivalent results

7.4.2. Advantages and Liminations of PPFS

The present research has six main advantages.

• PPFS methods are competitive and efficient FS methods.
• The four PPFS methods are different but provide similar results. The user can either

apply all of them and choose the suitable result or use only one of them.
• PPFS methods can be used directly through EPP-Lab software.
• The EPP-Lab can be used to avoid the parameter setting of the optimization methods.
• PPFS methods provide a list of outliers, and their frequency allows validating the non-

relevant features.
• EPP-Lab is an open-source desktop application, downloadable in any environment.

In spite of the previous advantages, PPFS have two limitations.

• PPFS failed to find the non-significant features when most of the features are highly
correlated or include noise.

• PPFS methods do not work well when the dataset is binary (the values of features’
vectors are either 0 or 1)

8. Conclusions

The present study proposed four FS methods based on outliers detection using the
Project Pursuit. Two PP indices along with two AI optimization methods were used to find
the optimal projections that reveal the outliers. The proposed PPFS methods were validated
using three classifiers and 19 datasets. They yielded promising results.Moreover, these
methods were successfully compared with three Wrapper FS methods on eight datasets.
They also yielded the best or equivalent accuracy against five Filter FS techniques on
15 datasets (among 19 datasets). Statistical analysis was performed and showed that PPFS
are equivalent, and their results are statistically significant. It is also demonstrated that
PPFS are comparative with PCA, CFS, and WOA. Therefore, our assumption to consider
the outlier detection methods for revealing the irrelevant features from a dataset to increase
the classification accuracy was validated. For the computation time, PPFS was faster than
the five Filter FS methods when handling large datasets (Colon, Spam, and Fifa2019).

However, no computation time was reported for the three wrapper FS methods.
Furthermore, PPFS yielded promising results in handling a large dataset reaching 13,000 in-
stances (Fifa2019 dataset) and 2000 features (Colon dataset). The only limitation of this
study is not getting the best result when dealing with the Waveform and Segment dataset.
Hence, some future research directions are suggested:

• Make the dataset spherical before seeking the outliers [27] to reduce the noise.
• Use another optimization method such as PSO, which is already available in EPP-Lab.
• Use large datasets reaching 30,000 features to test the extent of PPFS in enhanc-

ing accuracy.
• Explore other PP indices such as Friedman Turkey and Discriminant indices.
• Investigate other Machine Learning classifiers.
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Abbreviations
All the abbreviations used in this paper are defined below.

FS Feature Selection
PP Projection Pursuit
PPFS Project Pursuit based Feature Selection
AI Artificial Intelligence
GA Genetic Algorithms
PSO Particle Swarm Optimization
EPP-Lab Exploratory Projection Pursuit Laboratory
PPFS-GAF Projection-Pursuit-based Feature Selection

using Genetic Algorithm and Friedman index
PPFS-GAK Projection-Pursuit-based Feature Selection

using Genetic Algorithm and Kurtosis index
PPFS-TF Projection-Pursuit-based Feature Selection

using Tribes and Friedman index
PPFS-TK Projection-Pursuit-based Feature Selection

using Tribes and Kurtosis index
LASSO Least Absolute Shrinkage and Selection Operator
LR Linear Regression
CV Cross Validation
k-NN K-Nearest Neighbor
SVM Support Vector Machine
RF Random Forest
PCA Principal Component Analysis
CFS Correlation Feature Selection
WOA Whale Optimization Algorithm
Accu Accuracy
Prec Precision
Rec Recall
mutualInfo Mutual Information
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