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Abstract: Research on flourishing public bike-sharing systems has been widely discussed in recent
years. In these studies, many existing works focus on accurately predicting individual stations
in a short time. This work, therefore, aims to predict long-term bike rental/drop-off demands at
given bike station locations in the expansion areas. The real-world bike stations are mainly built-
in batches for expansion areas. To address the problem, we propose LDA (Long-Term Demand
Advisor), a framework to estimate the long-term characteristics of newly established stations. In
LDA, several engineering strategies are proposed to extract discriminative and representative features
for long-term demands. Moreover, for original and newly established stations, we propose several
feature extraction methods and an algorithm to model the correlations between urban dynamics
and long-term demands. Our work is the first to address the long-term demand of new stations,
providing the government with a tool to pre-evaluate the bike flow of new stations before deployment;
this can avoid wasting resources such as personnel expense or budget. We evaluate real-world
data from New York City’s bike-sharing system, and show that our LDA framework outperforms
baseline approaches.

Keywords: bike sharing system; expansion areas; category clustering; batches prediction

1. Introduction

A prominent sharing economy business model, the bike-sharing systems, has emerged
in recent years as a popular way of public transportation [1]. For society, a bike-sharing
system meets the theme of sustainable development because of convenience, lower prices,
and environmental protection [2,3]. Consequently, many bike-sharing systems are being
established to satisfy the need. One example of a bike-sharing system is Citi Bikes, with
more than 85,000 active users [4].

Distributing a suitable bicycle network structure can not only connect the system of
urban traffic and commuting but reduce the greenhouse effect. However, constructing
unwanted stations in a bike-sharing system will cause environmental damage and resource
waste. The framework presented in the paper aims to assist the government and planners
in predicting bike demands at a macroscopic level in advance, i.e., evaluating and verifying
whether new stations meet the needs of the public.

Research on bike-sharing systems has been widely studied in recent years. Some
works [5–8] depend completely on station-based historical records and features, and their
target is to make predictions for already established stations. The works of [9,10] aim to
predict the demand in hours or only during rush hour. The work of [11] defines functional
zones [12,13] and then predicts that the demand for bike expansion is the most relevant one
to our work. Unfortunately, their mobility trip data in the expanded system is inapplicable
for our long-term scenario, as it is also regarded as future data in the prediction stage.
Different from previous works, we commit to long-term demand prediction, which is faced
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with two challenges. First, mobility and meteorology data used in previous works are
unavailable in expansion areas, for example, taxi usages, temperature, wind speed, etc.
Moreover, we cannot directly apply the methodology of existing works, which focus on
short-term demand prediction for a single station, since they usually have enough training
data but lack future events [5]. Second, the real-world bike stations are mainly built-in
batches for expansion areas. However, the different geographical characteristics between
regions make the prediction task hard.

To tackle these challenges, we propose a robust framework called LDA (Long-Term
Demand Advisor) to predict long-term (e.g., six months) demand in newly established bike
regions. Apart from the short-term prediction, which is highly affected by emergencies
and other temporal factors [6,7], the proposed long-term prediction can not only reduce
inaccuracies resulted from unpredictable social events or traffic accidents but also advise
decision-makers on where to build new stations. This framework aims to provide govern-
ments with a preliminary estimation of the amount of bike usages in the following periods
(e.g., half-year) in the new regions of a city, given merely the locations of the bike stations.
Our contributions are as follows:

• To the best of our knowledge, this is the first work to predict long-term bike demand
in batches for expansion areas.

• A G-clustering algorithm, a hierarchical POI clustering method to cluster POI cat-
egories, is proposed in this work, and it is shown to be effective. Experiments
carried out on real-world datasets prove that our LDA framework outperforms
baseline approaches.

2. Overview

We propose a robust framework called LDA (Long-Term Demand Advisor) to predict
long-term (e.g., six months) demand in newly established bike regions. We first extract
spatial and temporal features from multi-source open data, then apply our proposed
G-clustering algorithm to measure the geographical characteristics and urban correlations
in a city. The G-clustering algorithm takes the surrounding locations of the target candidate
location into consideration to make a better prediction. Moreover, we extract the urban
factors correlated with the long-term demand of sharing bikes, such as POIs (Point of
Interests), road structure, and time. On the other hand, features from existing neighbor
stations and future stations that have an overlapping operating period are also applied
to new bike stations predictions since they will influence the number of demands and
transit behaviors.

Our work focuses on long-term prediction, e.g., six months, since the short-term
prediction (e.g., one month) is too difficult to predict and not worth studying in practice
due to initially unstable environments. Moreover, the long-term effectiveness of stations
seems worth investigating to aid in the government’s decision and urban planning. For the
reasons above, we consider that the predictions of no less than six months are relatively
appropriate for urban decision-making. Figure 1 shows our proposed LDA framework,
which consists of two major components: data preprocessing and batch prediction.

Data preprocessing. We first collect government open data and fetch others from
Facebook Place API. We also record the latitude and the longitude of all bike stations.
Next, we extract spatial features for each station, including nearby station features, seasons,
number of POIs and number of check-ins, popular spots, number of intersections, and the
length of bike routes based on the parameter r of the reachable station region. Finally, the
proposed G-clustering algorithm is applied to cluster categories, and all of the extracted
features are prepared to be fed into prediction models. Numerical data normalization, data
cleaning, and missing data imputation are also applied to all features.

Batch prediction. We observe that new stations are sometimes constructed in batches
in the real world. For example, the bike station deployment of New York from 2013 to
2017 can be mainly divided into four stages. Each stage contains at least 97 stations to
be established in a newly expanded area. After data preprocessing, we split stations into
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original ones and the others in batches according to their month of establishment. From
Batch 1 to Batch n (n = 3 for the NYC example) predictions, stations established before
the corresponding period are set as training sets, and those in the period are testing sets.
Finally, a strong prediction model can be applied to finish n batches of predictions.
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3. Methodology

In this section, we introduce (a) our proposed G-clustering algorithm, (b) extracted
features correlated with rental/drop-off demand, and (c) demand prediction. We define
notations used in this paper in Table 1. Problem definitions and our proposed framework
are explained in Section 3.1.

Table 1. Notations used in this paper.

Notations Descriptions

S The station set S = {S1, S2, . . . Sn}
C The category set C = {CT1, CT2, . . . CTm}

POI The POI set POI = {P1, P2, . . . Pl}
R The bike route set R = {R1, R2, . . . Rk}

n, m, l, k Number of stations/categories/POIs/bike routes
Si The feature set of ith station

Si·rent Rental demand for Si six months after the establishment
Si·drop Drop-off demand for Si six months after the establishment

Si·lat Latitude of Si
Si·long Longitude of Si
Si·date The established date (e.g., operating date) of Si

CS (Si, Sj) Cosine similarity between Si and Sj
Pl×m Category matrix corresponding to POIs

3.1. Preliminary and Problem Definition

Definition 1. Reachable Station Region. Considering how far a resident is willing to move and to
get appropriate modeling of spatial factors, we define r as the radius of the farthest influencing area
of a new station. In other words, when considering a location to build a new bike station, we propose
to set a Euclidean distance r to extract the neighbor characteristics and features. Figure 2 gives an
example. Si is the target location, and we extract the density of our pre-defined POIs, which may be
correlated with bike demands within the region.
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Definition 2. Nearby Stations. For the target location of a new station, we extract its top-k nearest
stations whose establishment dates are earlier than the corresponding nearby stations. Three features
of corresponding nearby stations are considered in our work: the difference of establishment dates,
the number of cumulative demands, and the Euclidean distance between the target location and the
nearby stations.

Definition 3. Bike Route Structure. We consider the road length of bike routes and the number
of intersections in road structure as features to improve the demand prediction effectiveness. The
reason that we consider the road length of bike routes is because a bike station might have a great
demand in the long-term if its surrounding environment contains many bike routes, which are
convenient for riders to travel by taking bikes. The high number of intersections might also indicate
a traffic hub with significant human mobility, leading to increased potential bike flows.

In Figure 3, there are three kinds of bike routes, and a bike route Ri is composed of
multiple intersections (red points) and road segments (black dotted lines). Those route
segments and intersections within the reachable station region of Si are needed to be
included. That is, the features extracted from R1, R2, and partial of R3 in Figure 2 should be
taken into consideration.
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Figure 3. Examples of bike route intersection.

Definition 4. Season. The period after building a station will span multiple seasons, and all of
them should be considered since the commuting behavior of people will change with seasons. For
each target station, we calculate how many months it will operate in each season. Spring is defined
as the months from March to May, and the season changes every three months.

Definition 5. Category Vector Pi for Each POI. A POI Pi may have more than one corresponding
category defined in Facebook Place API. Then, we define Pi as:

Pi = {pi, j} (1)

where pi,j = 1, if Pi belongs to CTj; or 0, otherwise.
Where CTj is the jth element in the category set defined by Facebook.
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Problem Definition. Rental/Drop-off demand prediction. Given k new bike station
locations SN = {S1, S2, . . . , Sk}, we want to predict the rental/drop-off demands of each
station six months after its establishment; that is, Si rent/Si drop defined in Table 1.

3.2. G-Clustering

Since thousands of corresponding categories for POIs exist in certain regions, it is
impractical to perform a one-to-one clustering for mapping a single category to a class.
Therefore, we propose G-clustering to allocate categories into classes, where the character-
istics of each category are similar to those of all the other categories in the same class. The
G-clustering is inspired by the Gini coefficient [14], which is an index proposed by Corrado
Gini to judge the fairness of annual income distribution according to the Lorenz curve. In
order to apply the concept of the Lorenz Curve in our work, we modify the definition of it,
which is illustrated in Figure 4. The Gini coefficient is equal to the area ratio between A
and (A + B), and it is also equal to 2A since the sum area of A and B is 0.5.
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We apply this index to evaluate the distribution for each category in several regions
clustered by geographical locations in the given problem space, and thus categories with
similar distribution into the same clusters. The pseudocode for the G-clustering algorithm
is depicted in Algorithm 1.

Algorithm 1 G-Clustering Algorithm

Input: C, POI, P;
Output: CCD;
1. Cluster POI into D1 clusters: C1, C2, C3 . . . CD1 by DBSCAN according to POI geographical
locations;
2. Initialize HD = 0;
3. for i = 1 : m do
4. for j = 1: l do
5. if pj,i == 1 then
6. hi,Cd

+= 1;
7. end for
8. Initialize CCD = {CC0, CC1, . . . CCl};
9. for k = 1: m do
10. Category_point = CVF (hk);
11. idx = [10* Category_point] − 2;
12. CCidx append category k;
13. end for
14. function CVF (array A)
15. A_norm = normalized(A);
16. category_value_point = (1 − gini(A_norm)) + gini(A_norm)

log10(sum(A_norm))+1 ;
17. return category_value_point

The proposed G-clustering is composed of three parts: initialization (line 1), con-
struction for heat matrix (line 2 to 7), clustering for categories (line 8 to 13). First, POI is
clustered into D1 clusters, where D1 is adjustable and set to 20 in our evaluation. Next, a
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heat matrix HD =
{

hi,j
}

is constructed with hi,j representing the number of the ith category
in the jth cluster according to P. Meanwhile, Cd refers to the corresponding cluster result
of the jth POI in line 1. We divide each category into different groups according to its
value point; the result CCD is returned once all categories are run through and assigned to
a certain cluster. Each item in CCD indicates a set of the same level categories; meanwhile,
we set l = 6 in the following evaluation.

Line 14 to 17 is a function that calculates the category value point. In this function, the
Gini coefficient is applied to measure the distribution of each category in different clusters.
The more even the distribution is, the closer this index gets to 0 (closer to the blue line in
Figure 4); otherwise, it gets closer to 1 (closer to the red line in Figure 4). The function in
lines 14 to 17 is designed to determine whether a category is indicative or not. The more
even the distribution, the higher the value point, and the less indicative the category is. On
the other hand, we also apply K-means to reallocate POI into D2 clusters as described in
line 1, where D2 is set to 20 in our evaluation, and all other steps for G-clustering are left
the same. The two types of clustering results are listed in Table 2.

Table 2. Results of G-clustering.

POI Categories

DBSCAN K-Means

Cluster 1 Reptile Per Store, Boat/Sailing,
Instructor, Night Market

Archery Shop, Night Market, Squash
Court

Cluster 2 Art Gallery, Local Business, Arts and
Entertainment Consulate and Embassy

Cluster 3 Elementary School, Language School,
Lawyer and Law Firm

Art Gallery, Airport Lounge, Airport
Terminal, Cruise Line

Cluster 4 Travel Service, Video Game, Junior
High School, Public Swimming Pool

Surfing Spot, Landmark and Historical
Place, College and University

Cluster 5 Music Video, Skate Shop, Football
Stadium Education Company

Junior High School, Lawyer and Law
Firm, Taxi Service

Cluster 6 Aquarium, Diagnostic Center, Drive-In
Movie Theater

Public Swimming Pool, Bus Station,
Supermarket, Pizza Place

Cluster 7 Fitness Venue, Hockey Arena, Retail
Bank Gas Station, Catholic Church

We list several representative categories in each cluster to explain the effectiveness
of the G-Clustering algorithm. In the left column of Table 2 (DBSCAN), categories more
evenly distributed in the area such as Fitness Venues and Retail Banks are clustered in the
same class since these types of POIs have no obvious regional characteristics. In other
words, there is no excessive demand from these categories in specific districts. On the
contrary, the number of Night Markets and Art Galleries is obviously larger in certain
areas and thus may be regarded as indicative categories in the prediction. A similar trend
can also be found in the right column of Table 2 (K-means). The small difference between
DBSCAB and K-means clustering results in some categories being clustered in different
hierarchies. For example, Art Galleries and Junior High Schools are in different clusters,
which might be due to their different local characteristics. The clustering results will then
be used as important categorical features for the bike stations.

3.3. Feature Extraction

We divide all features into six categories based on their data sources. They are I.#POI
and #Checkins, II. Nearby station features, III. Popular spots, IV. G-clustering, V. Bike route
structure, VI. Season. In the experiment, we will evaluate the effectiveness of these six
categories. In Table 3, we give an overview of features.
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Table 3. All Features and their Descriptions.

Features

Feature Name Description

POIs #POIs in Facebook

check-ins # check-ins in Facebook

Nearby station features
The difference of establishing dates, the number of cumulative

demands, and the Euclidean distance between the target location
and their nearby stations

G-clustering (DBSCAN) Category clustering results by applying DBSCAN

G-clustering(K-means) Category clustering results by applying K-means

Bike route structure Sum of total route length and the number of intersections of bike
routes in the reachable region of the station

Season Operating seasons

I. #POI and #Checkins. The number of POIs (Point-Of-Interests) and check-ins can
be indicated as the level of prosperity in an area and therefore results in a higher frequency
of bike demands. We extract #POI and #Checkin’s based on Facebook API.

II. Nearby station features. A new station is usually highly related to the nearby
stations due to spatial effect and human mobility. Three features of top-k nearby stations
are considered in our work: the difference in establishing dates, the number of cumulative
demands, and the Euclidean distance between the target location and their nearby stations.
If a nearby station is built later than the target location, the number of cumulative demands
will be set as zero. After extraction, we obtain a total of 3 k features for nearby stations.
Such a large number might dominate the prediction result of the classifier. Therefore, PCA
(Principal Component Analysis) is applied to reduce feature dimensions.

III. Popular spots. We define popular types of POIs (e.g., over 1000 stores in New
York) specifically, calculating the number of corresponding types of POIs and check-ins of
each station in its reachable station region.

IV. G-clustering. We perform the G-clustering algorithm to use the clustering result
as our features. We set two kinds of clustering methods in step 1 of G-clustering: one is
DBSCAN, and the other is K-means.

IV-D. Category clustering results applying DBSCAN.
IV-K. Category clustering results applying K-means.
V. Bike route structure. The more bike routes near a station, the higher the probability

the bikes will be rented for convenience. We then calculate the sum of total route length
and the number of intersections of bike routes in the reachable region of station Si.

VI. Season. Seasons will greatly affect people’s willingness to ride a bike. For example,
users tend to rent a bike in spring rather than in winter, so data in December is obviously
less than in May. According to Definition 4, if station Si starts operating in May, then the
number of months in the following six months from spring to winter is 1, 3, 2, 0.

3.4. Batches Prediction

Constructing a bike-sharing system in most cities can be realized in several steps
(batches). First, the government sets up a large number of bike station locations in the down-
town area where lots of commercial buildings and tourist attractions are located, spreading
out to nearby regions in the following months, perhaps with a short lull. However, as the
frequency of shared bikes and new users increases, the government needs to distribute a
wider range of bike locations to satisfy users’ demand, and therefore the area expands to
the suburbs and even empty districts in the city center to relieve excessive demand.

Definition 6. Batches Prediction. Our work focuses on batch prediction; in other words, site
prediction established in later stages in the suburbs or border zones, which are also defined as
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expansion areas in this paper. We propose to utilize EMA (Exponential Moving Average) to
determine the periods of batches given a continuous time interval. The EMA is a type of average
that applies weighting factors that decrease exponentially to the past. We define a batch that exists
if the EMA values of month demands are continuously not less than a given threshold for several
months. Figure 5 shows the EMA distribution that we perform using 2, 3, and 6 months as the
average units. For example, if we define the threshold as 30 using the two months average of EMA
for New York City, we can then identify three batches(peaks) from 2013 to 2018. The corresponding
periods of the first, second and third batches of NYC are shown in Table 4. Our framework provides
the government the estimation of the demands of newly established stations through given locations,
and this can also be applied to the expansion of other facilities.
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Table 4. Data source and detailed contents.

New York Citi Bike System

Time Span

Origin Batch 1 Batch 2 Batch 3

June 2013~June
2015

August
2015~September

2015

August
2016~September

2016

September
2017~October

2017

# Stations 329 121 127 97

Facebook Place API

# Check-ins 175+ billion
# POI Categories 1279

New York Bike Route

# Intersections 26,868
Total Length 1300+ km

In this work, we mainly use XGBoost [15] to make the prediction for each batch. Apart
from XGBoost in this work, other machine learning approaches can also be applied under
our framework. We will compare their effectiveness in our experiments.

4. Experiments

To evaluate the performance of our framework, we conduct experiments on a real-
world dataset from New York Citi Bike. Details of multi-source open data are in Table 4.
Bike station data are collected from June 2013 to November 2018, and stations operating
for less than six months, or with a monthly average demand of less than 300, are removed.
Batches can be realized as the time period of a relatively large number of bike stations
construction. Stations with established dates from June 2013 to July 2015 are the origin.
From Batch 1 to 3 prediction, we divide stations in the training set and testing set according
to their established date. For instance, in Batch 2 prediction, stations established earlier
than August 2016 are training data, and the other stations established during August 2016
to September 2016 are testing data. We retrieve multi-source open data from Citi Bike (the
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bike-sharing system in New York), bike routes data, and Facebook Place API. Detailed
datasets are listed in Table 4. The settings for radius r of the reachable station region are
500 m, and we extract the top-15 nearby station features in our experiment.

4.1. Experimental Settings

We evaluate the effectiveness of different combinations of feature sets, which are listed
in Table 5. A single factor is not listed due to the low performance; however, important
factors such as I and II are included in each set.

Table 5. Feature set combination.

Feature
Set

Features

I + II III IV-D IV-K V VI

A � �
B � �
C � � � �
D � � �
E � � � �
F � � � � �
G � � � � �

CC-XGB � � � � � �

4.1.1. Baselines

The framework proposed in our work is denoted as Category Clustering applying
eXtremeGradient Boosting (CC-XGB). XGBoost [15] is regarded as one of the most power-
ful techniques in the public transportation domain.

Regressors such as RF (Random Forest), LR (Linear Regression), and SVR (Support
Vector Regression) are used in comparison; NN (Neural Network) is also included as a
predictor. Moreover, the following compared baselines according to historical average
demand are used to verify the performance of our models.

HA (History Average). History rental/drop-off average of stations whose established
months are earlier than the predicted station Si.

HSA (History Similarity Average). History rental/drop-off average of stations whose
established month is earlier and is in the top-five high cosine similarity with the predicted
station Si.

HSW (History Similarity Weight). Let Si,1 ∼ Si,5 be the top-five high cosine similarity
stations to the predicted station Si.

HSW(Si) =
∑5

k=1(Si·rent) ∗ CS(Si, Si,k)

∑5
k=1 CS(Si, Si,k)

(2)

HSC (History in the Same Cluster). History rental/drop-off average of stations whose
established months are earlier in the same DBSCAN cluster with station Si.

HNN (History Nearest Neighbors). History rental/drop-off average of stations whose
established month is earlier and distance in the top-k nearest with the predicted station Si.

4.1.2. Evaluation Metric

Since bike demands vary dramatically due to many factors, RMSLE (Root Mean
Squared Logarithmic Error) is a more appropriate metric to adopt.√√√√ 1

N

N

∑
i=1

(
log((Si·rent/drop)−

(
log
(
(Si·rent′/drop′

)))2 (3)

Si·rent/drop is the ground truth of demand in six months of Si, and Si·rent′/drop′ is
the corresponding prediction result of the ground truth.
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4.2. Batch Prediction Results
4.2.1. Overall Comparison

In this part, we show the effectiveness of the proposed LDA and the comparison to
the baselines.

Results of Baselines: Figure 6a,b represent the baseline results of rental and drop-
off, respectively. Baselines without machine learning such as HA, HSA, and HSW are
worse than regression or NN results. CC-XGB, our proposed framework, defeats the
second-best with an average of 0.2 to 0.3 approximately in RMSLE, whether in a rental or
drop-off situation.
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Results of Feature Combination: Figure 7a,b represent the results of the different
combinations of features in rental and drop-off, respectively. The result of feature set
E without features of category clustering in Figure 7b has poor performance evidently,
confirming that G-clustering is effective. No one always performs better between IV-D
and IV-K; one reason may be due to slight differences in clustering results. Though the
differences in the batches are not obvious, CC-XGB performs much better than other feature
sets in batch 2 and 3, confirming the applicability of our framework.
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drop-off one.

Analyze for Batches: Under the prediction result of CC-XGB, our proposed frame-
work, RMSLE decreases from Batch 1 to 3 in drop-off mode; yet results in Batch 3 are worse
than in Batch 2 in rental mode. We infer that the demand for renting bikes downtown is
more stable than in other areas; in other words, users are less willing to rent a bike from
newly established stations, making the prediction difficult. On the other hand, the drop-off
demand is hard to predict for the first batch stations.
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4.2.2. Region Size Setting for Extracted Features

In our experiment, the reachable station region is set as 500 m (Figure 1 (left)) for
the appropriate number of POIs and check-ins. In this part, we would like to compare
how different radiuses affect the results. Features I, III, and V are related to the reachable
station number. Experiments are conducted from 300 m to 1000 m in Figure 8. As shown
in Figure 8, a larger radius does not necessarily mean a better prediction result. We can
observe that in Figure 8, 500 m is a superior radius region for a target station to extract
corresponding features since the RMSLE for three batches are relatively low when r = 500 m.
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4.2.3. Feature Importance (FI)

Figures 9–11 show the feature importance for Batch 1 to Batch 3, and the detailed
features whose importance is ranked in the top five are listed aside. Figure 9a, Figure 10a,
and Figure 11a show rental feature importance, while Figure 9b, Figure 10b, and Figure 11b
show drop-off feature importance. Overall, the nearby station features are extremely
important in prediction since they have the highest scores in all situations; in particular,
the score gap is more significant in Batch 3 (Figure 11a,b), explaining that nearby stations
are highly correlated to newly established stations. The feature importance obtained from
G-clustering is all ranked in the top five in those five figures (top-6 in Figure 11a), proving
that our idea of clustering categories is reasonable and useful.

4.2.4. Prediction of Different Periods

Our work focuses on long-term prediction, e.g., six months, since the short-term
prediction (e.g., one month) is too difficult to predict and not worth studying in practice
due to initially unstable environments. The experiments conducted on one, three, six and
nine month(s) in Figures 12 and 13 have shown that the six months’ prediction has the
best performance. The nine months case is worse than the six months. The reason comes
from the data instead of our model. In our dataset, we observe that there are some new
stations built surrounding the existing stations after six months so that the demands of
some stations in a certain batch were influenced by new stations. The prediction then
would become not so accurate. For batch 1, batch 2, and batch 3, the RMSLE of six months
is the lowest comparing to one month, three months, and nine months. In batch 1, the gap
between six-month and others for rental is from 0.02 to 0.31, and the gap for drop-off is
from 0.07 to 0.36. In batch 2, the gap between six-month and others for rental is from 0.07
to 0.2, and the gap for drop-off is from 0.01 to 0.11. In batch 3, the gap between six-month
and others for rental is from 0.09 to 0.2, and the gap for drop-off is from 0.03 to 0.09.
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4.3. Random Prediction Results

Similar to works focusing on predicting demand through splitting data into the
training set and testing set without considering established time, we also repeat the same
steps in our experiment to verify the usefulness of our LDA framework. In other words,
we conduct the prediction experiment of rental/drop-off demand 10,000 times through
randomly divided stations and return the average RMSLE result (Figure 14). The result
of CC-XGB still performs the best. However, our superiority is not so apparent since our
proposed features are relatively suitable for batch prediction rather than random prediction.
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5. Discussion of the Results

In this research, we are facing the demand prediction problem of real-world bike-
sharing systems. In the previous experiments, we can observe that two important fac-
tors in LDA settings are worth discussing, considering real-world applications. One
is batch deployment. Another is the prediction time period. These two factors are
mutually high-correlated.

Discussion of batch deployment: In the past, existing works usually aimed to predict
human flows for each individual station in a short time, such as next hour, next day,
and next 1–3 days. However, in real-world applications, we claim that predicting long-
term demands for station deployment is also critical for urban planning and construction.
Therefore, we propose an LDA framework, which can help governments or transportation
companies to make decisions for deploying bike-sharing services in a smart city. We have
observed that the real-world bike stations are mainly built-in batches for expansion areas
in modern cities. That is, we can use only the historical demand data from previously
deployed areas for prediction. The batch consideration in the LDA framework confirms
that our work is the first to address the long-term demand of new stations for future batch
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stations, providing the government with a tool to pre-evaluate the bike flow of new stations
before deployment. LDA can avoid wasting resources such as personnel expense or budget.

Discussion of prediction periods: In Section 4.2.4, our experiment shows that the six
months’ prediction has the best performance. The reason is we observe that in the New
York Citi bike sharing system there are some new stations built surrounding the existing
stations after six months so that the demands of some stations in a certain batch were
influenced by new stations. However, we believe our proposed LDA framework is also
helpful for making decisions using the prediction results of periods that are more than six
months since the prediction error is mainly from the crawled future data. To conclude, our
LDA framework can work as a web service to assess the effectiveness of new bike stations
for expansion areas in different cities.

6. Related Work

Impacts of bike-sharing systems. Many studies analyzed the impact of bike-sharing
systems on different aspects of society. The work of [16] mentioned that bike-sharing
programs have significantly positive externalities, including the economy, the environment,
and health-related externalities. Moreover, introducing bike-sharing systems gives an
opportunity to organize public transport interchanges better [17]. Shared bicycles facilitate
allow getting to stops and stations for those who do not own a private bike. Additionally,
bike-sharing gives more flexibility–shared bicycles users are not burdened with the threat
of theft or an obligation to service the bicycle. The study of [18] developed a spatial Agent-
based model to simulate the use of bike-sharing services and other transport modes in
Taipei city. The simulation results indicate that free use of bike-sharing to connect the transit
system can be more sustainable with 1.5 million US dollars in transportation damage cost
saved per year and 22 premature deaths further prevented per year due to mode shift to
cycling and walking based on the business. The work of [19] demonstrated the importance
of user-interface (UI) design, social influence, and new media in affecting users’ awareness
of and attitude towards uncivilized behaviors, which in turn improve their intention of
bike-sharing services use.

The emergence of dockless bike-sharing services has revolutionized bike-sharing
markets in recent years. The work of [20] suggested that the dockless design of bike-
sharing systems significantly improves users’ experiences at the end of their bike trips.
However, the availability and usage rates of dockless bike-sharing systems imply that they
may seriously affect individuals’ subjective well-being by influencing their satisfaction
with their travel experiences, health, and social participation, which requires further
exploration. The work of [21] mentioned that, as Chinese enterprises already invest heavily
in Europe, it is crucial for policymakers to introduce rules that would counteract potentially
negative consequences of the introduction of a new system of bike-sharing and support
positive effects.

Behavior analysis in bike-sharing systems. The behavior patterns of users in bike-
sharing systems are also worth exploring. The estimation results of [22] show that de-
scriptive norm, conformity tendency, and past behavior are important factors that affect
both e-bike riders’ intention to violate traffic rules and accident proneness. The work
of [23] found that perceived ease of use positively influences the attitude towards the
systems and the use intention. Therefore, the bike-sharing operating companies should
carefully design the usage procedures to make them as simple as possible. The work of [24]
adopted machine learning to show that speed, travel distance, and the number of parks
and recreational facilities seem to be critical spatial predicting factors of the travel choice
in bike-sharing systems. Moreover, considering the impact of COVID-19 on bike-Sharing
systems, the work of [25] indicated that usage bike-sharing is more likely to become a more
preferable mobility option for people who were previously commuting with private cars as
passengers and people who have already registered users in a bike-sharing system. The
bike-sharing systems have proved in the study of [26] to be more resilient than the subway
system, with a less significant ridership drop and an increase in its trips’ average duration.



Appl. Sci. 2021, 11, 6748 15 of 17

The work of [27] shows that a high availability rate, a low price, and a large difference in
travel time between bike-sharing and other travel modes make potential customers more
likely to use a bike-sharing program by modeling a different aspect of travel behavior:
heterogeneous time-sensitive customers.

Bike station deployment. Research on bike-sharing systems is becoming more and
more prevalent worldwide; topics covered range from site selection to rebalancing bike
distribution. The works of [28,29] try to figure out the best locations for bike stations from
candidate sites. The work of [30] proposes a mixed model to minimize fixed construction
costs and variable operational costs. Research combining probability and simulation such
as in [31] develops a probabilistic model to infer future demand, and the work of [32]
adopts Monte Carlo to predict the over-demand probability in each bike station cluster. On
the other hand, the works of [8,33–35] focus on bike imbalance and rebalancing problems,
proposing methods to transfer bikes between stations.

Bike demand analysis and prediction. In all bike-related problems, the most widely
studied is bike demand or traffic flow prediction. The studies of [22,36] have identified
the importance of natural environmental factors such as temperature, precipitation, and
humidity on cycling activities across different cities. At the feature level, studies [5,37]
consider a single factor instead of multiple aspects features and thus may neglect represen-
tative elements. Other works collect historical data such as public transportation pattern
records [38], crowd flow [39], meteorology data [7,8,40], and so on. Clustering methods
applied to bike stations are more and more common in recent works since bike stations
share partially similar regional characteristics and will reduce the variance and improve
prediction accuracy. The difference between these works is what the cluster is based on.
The works of [7,9,32,41] cluster stations according to bike transition pattern records, geo-
graphical locations, bike usage, etc. The study of [42] employs SimRank to calculate the
similarities between stations and then adopts the density clustering algorithm OPTICS.

However, the works above are not applicable for our scenario since they rely on
the historical mobility data and therefore are unavailable for batch prediction in newly
established stations in expansion areas. Furthermore, they mostly aim to predict demand in
a relatively short period from hourly [11,43], rush hours [9], to weekends and holidays [32],
and thus cannot be applied to our long-term prediction.

7. Conclusions

In this paper, we propose a framework consisting of spatial and temporal features to
predict long-term rental/drop-off demand in newly established stations, e.g., in expansion
areas. Specifically, we extract features from multi-source open data, propose G-clustering,
and apply regression models to predict the demand of stations in three batches according
to the established periods. Experiments carried out in the New York Citi bike sharing
system demonstrate that our framework for long-term prediction in expansion areas is
applicable and outperforms baselines. In the future, we aim to analyze more factors, such
as transfer probability from downtown to the suburbs and deal with unusual events to
improve predicting accuracy.
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