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Abstract: Thanks to the advance of novel technologies, such as sensors and Internet of Things (IoT)
technologies, big amounts of data are continuously gathered over time, resulting in a variety of
time series. A semi-supervised anomaly detection framework, called Tri-CAD, for univariate time
series is proposed in this paper. Based on the Pearson product-moment correlation coefficient and
Dickey–Fuller test, time series are first categorized into three classes: (i) periodic, (ii) stationary, and
(iii) non-periodic and non-stationary time series. Afterwards, different mechanisms using statistics,
wavelet transform, and deep learning autoencoder concepts are applied to different classes of time
series for detecting anomalies. The performance of the proposed Tri-CAD framework is evaluated by
experiments using three Numenta anomaly benchmark (NAB) datasets. The performance of Tri-CAD
is compared with those of related methods, such as STL, SARIMA, LSTM, LSTM with STL, and
ADSaS. The comparison results show that Tri-CAD outperforms the others in terms of the precision,
recall, and F1-score.

Keywords: anomaly detection; autoencoder; deep learning; Internet of Things; sensors; time series;
wavelet transform

1. Introduction

Anomaly detection involves identifying data that do not conform to the pattern as
expected [1,2]. It is also known as outlier detection [3,4] or novelty detection [5]. The
research of anomaly detection can be traced back to the 18th century when Bernoulli
commented on the widespread practice of discarding discordant data in the absence of
a priori information in 1777 [6,7]. Undoubtedly, anomaly detection has attracted much
research attention, bring about plenty of research results that can be utilized in various
applications. Typical applications of anomaly detection research include outlier detec-
tion for big data [8], Internet of Things (IoT) [9], wireless sensor networks (WSNs) [10],
network anomaly/intrusion/attack detection [11–16], anomaly detection for manufactur-
ing [17–21], video surveillance anomaly detection [22,23], road network/highway traffic
anomaly detection [24,25], credit card fraud identification [26,27], insurance fraud de-
tection [28], ECG (electrocardiogram) monitoring [29], suspicious financial transaction
detection [30], social media rumor detection [31], and so on.

Thanks to the advances of novel technologies, such as sensor technologies and infor-
mation and communication technologies, big amounts of data are continuously gathered
over time. Data that are recorded chronologically constitute a time series. Typical examples
of time series include the following gathered data: hourly temperatures of a machine, daily
stock prices of a company, weekly interest rates, monthly sales of a store, and yearly GDP
(gross domestic product) of a nation. Time series anomaly detection is very important; it
is one of fundamental time series analysis tasks. Many studies have focused on such a
research field in the last decades. The readers are referred to the survey papers [32–35] for
details.
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Time series can be categorized into two types: univariate time series and multivariate
time series. The former can be regarded as a sequence of scalar values, whereas the latter as
a sequence of multi-dimensional vectors. This paper focuses on univariate time series and
proposes a semi-supervised anomaly detection framework, called Tri-CAD (standing for
tri-class anomaly detection), for such time series. Tri-CAD is semi-supervised, as explained
below.

Anomaly detection methods can be broadly categorized into three types: supervised,
unsupervised, and semi-supervised methods. A supervised method takes datasets that
have data labeled as normal or abnormal (anomalous) to train or model a classifier. An
unsupervised method takes unlabeled data as input under the assumption that the majority
of data are normal. Data are identified as abnormal if they fit least to the rest of data. A semi-
supervised method takes datasets of normal data as input to train a model representing
the normal behavior of data. Test data are then fed into the trained model to check if they
deviate from the normal behavior of data. If so, they are regarded as abnormal. Tri-CAD
is semi-supervised in the sense that it takes the first D (say, D = 1000) data of time series
as input under the assumption that the first D data are normal. Tri-CAD adopts this
assumption because of the following practical considerations. Time series associated with
well-functioning systems usually contain a large amount of normal data. Abnormal data
are very rare; they are even never observed or kept in time series. Specifically, Tri-CAD
takes the first D data as training data (also called normal data), and the rest of the data are
taken as test data.

By the first D data, Tri-CAD divides time series into three classes according to the
Pearson product-moment correlation coefficient [36] and Dickey–Fuller test [37]. The three
classes of time series are (Class 1) periodic time series, (Class 2) stationary time series, and
(Class 3) non-periodic and non-stationary time series. Afterwards, different approaches
using statistics and deep learning mechanisms are applied to different classes of data to
detect anomalies. Tri-CAD further divides first D data into overlapping sliding windows
for calculating specific statistic characteristics, which in turn are used for calculating the
mean µ and the standard deviation σ of all sliding windows of data. The same sliding
window is applied to the test data for calculating the same statistic characteristics. A test
datum is assumed to be anomalous if its associated statistic characteristic c of the sliding
window deviates from the mean µ over a certain factor λ of the standard deviation σ (i.e.,
|c − µ| > λσ). Note that different λ value corresponds to different occurrence probability
of such an anomalous datum. For example, λ = 3 corresponds to 0.2699796% of occurrence,
λ = 3.890592 corresponds to 0.01% of occurrence, λ = 4.417173 corresponds to 0.001% of
occurrence, and λ = 6 corresponds to 0.0000001973% of occurrence.

For dealing with periodic time series data, the moving averages of skews per period
are calculated. The mean and standard deviation of the moving averages of the normal
D data are derived. If the moving average of a test datum deviates too much from the
mean, an anomaly is assumed to occur. For tackling stationary time series data, the means
of the data in two sliding time windows are calculated. One window is larger and called
the global window; the other is smaller and called the local window. The ratio of the
two means is subsequently calculated for each pair of windows. Similarly, an anomaly
is assumed to happen if the ratio corresponding to a test datum deviates too much from
the ratio mean of normal data. For non-periodic and non-stationary time series, the data
are first processed with the discrete wavelet transform (DWT) [38] to be time–frequency
coefficients. The coefficients are in turn used to train a deep learning autoencoder (AE)
model [39] that can reconstruct the coefficients with low reconstruction errors. Likewise, if
a reconstruction error deviates from the error mean significantly, then it is assumed that an
anomaly occurs.

This research applies three Numenta anomaly benchmark (NAB) [40] real-world
datasets to evaluate the performance of Tri-CAD in terms of the precision, recall, and F1-
score. It also compares Tri-CAD with related methods, such as the SARIMA [41], STL [42],
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LSTM [43], LSTM with STL [44], and ADSaS [44] methods. The comparisons show that
Tri-CAD outperforms the others in all three datasets.

The contribution of this research is threefold. First, it proposes the Tri-CAD framework
to perform anomaly detection by first classifying time series into different classes, and
then applying different anomaly detection methods that are suitable for different classes of
data. Second, it implements the Tri-CAD framework and applies the implementation to
real-world datasets to validate the concept of the framework. Third, this research conducts
performance evaluation to show that Tri-CAD has the best performance when compared
with other related methods.

Note that this paper is an extended version of two research papers [45,46]. The Tri-
CAD framework is similar to that proposed in [45]. However, it will be shown later that
Tri-CAD has a significant difference from the framework proposed in [45]. Moreover,
Tri-CAD also integrates an anomaly detection mechanism called wavelet autoencoder
anomaly detection (WAAD), proposed in [46]. Nevertheless, it will be shown later that
Tri-CAD adopts a different threshold setting strategy when employing WAAD.

The rest of this paper is organized as follows. Section 2 introduces some background
knowledge. The proposed univariate time series anomaly detection framework is elabo-
rated on in Section 3. The performance of the proposed Tri-CAD framework is evaluated
and compared with those of related methods in Section 4. Section 5 finally concludes the
paper.

2. Background Knowledge
2.1. Time Series and Related Models

A time series X = (x1, x2, . . . ) is a sequence of observations (or data) ordered chrono-
logically, where xt is recorded at a specific time point t, where t is a positive integer [47].
It is usually assumed that time points are equally separated. Based on the properties of
observations, we have two types of time series. On the one hand, if observations of a time
series are scalar values, then the time series is a univariate time series. On the other hand,
if observations are multi-dimensional vectors, then the time series is a multivariate time
series. This paper focuses on univariate time series; therefore, we use “time series” to stand
for “univariate time series” in the following context.

Time series can be either stationary or non-stationary. According to [47], the definition
of a stationary time series is given below. A time series X is strictly stationary if the
probability distribution of X does not change with time shifts. In other words, for every m
and n, the distributions of Y = (x1, . . . , xn) and Z = (x1+m, . . . , xn+m) are the same, where Y
and Z are subsequence of X. A time series X is weakly stationary if its mean E(·), variance
Var(·), and covariance Cov(·) do not change by time shifts. In other words, for every m and
n, E(Y) = E(Z) = a constant µ, Var(Y) = Var(Z) = a constant σ2, and Cov(Y, Z) = γ(|m − n|)
for some function γ(·). In this paper, a time series is assumed to be stationary if it is weakly
stationary. The next subsection will show how to use the Dickey–Fuller test to check the
stationarity of a time series.

Stationary time series can be easily formulated by the auto-regressive (AR) [48],
moving average (MA) [48], and auto-regressive and moving average (ARMA) [48] models,
whereas non-stationary time series can be properly formulated or processed by the auto-
regressive integrated moving average (ARIMA) [48] model and the seasonal auto-regressive
integrated moving average (SARIMA) [41] model, and the seasonal-trend decomposition
based on LOESS (STL) method [42]. Below, the models and the method are described one
by one.

Let X = (x1, x2, . . . ) be a stationary time series and xt in X be an observation recorded
at a specific time point t, where t is a positive integer. In consideration of p earlier lags xt−1,
xt−2, . . . , xt−p and the white noise (or random error) et at time t with the zero mean and a
bounded variance, xt can be formulated according to the auto-regressive AR(p) model, as
shown in (1).

xt = a1 xt−1 + a2 xt−2 + . . . .+ ap xt−p + et, (1)
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where p is the order and a1, a2, . . . , ap are coefficients or parameters of the AR model.
In consideration of the random error et at time t and q pervious random errors et−1,

et−2, . . . , et−q, the deviation of xt from the mean µ of the whole series can be formulated
according to the moving-average MA(q) model, as shown in (2).

xt − µ = et + b1 et−1 + b2 et−2 + . . . .+ bq et−q, (2)

where q is the order and b1, b2, . . . , bq are coefficients or parameters of the MA model.
In consideration of p earlier lags xt−1, xt−2, . . . , xt−p, q pervious random errors

et−1, et−2, . . . , et−q, and the random error et, xt can be formulated according to the auto-
regressive and moving-average ARMA(p, q) model, as shown in (3).

xt − (a1 xt−1+ a2 xt−2+ . . . .+ap xt−p) = et+b1 et−1+b2 et−2+ . . . .+bq et−q, (3)

where p is the order and a1, a2, . . . , ap are coefficients of the AR model, and q is the order
and b1, b2, . . . , bq are coefficients of the MA model. By introducing the lag operator L,
where Lxt = xt−1, and L(Lxt) = L2xt = xt−2, . . . , and so on, we can rewrite ARMA(p, q)
according to (4).

(1−
p

∑
i=1

aiLi )xt = (1 +
q

∑
i=1

biLi )et (4)

Let X = (x1, x2, . . . ) be a non-stationary time series and xt in X be an observation
recorded at a specific time point t, where t is a positive integer. As X is not stationary,
it cannot be formulated by AR, MA, or ARMA models. However, Box and Jenkins [49]
suggested that differencing a non-stationary time series one or more times can make it
stationary. To be specific, by differencing the non-stationary time series X for d times, X
can still be properly formulated by the ARIMA(p, d, q) model, as described below. Note
that (1 − L)xt = xt − xt−1 = first-order difference, and (1 − L)d xt = dth-order difference. We
have the following Formula (5).

(1−
p

∑
i=1

aiLi )(1− L)dxt = (1 +
q

∑
i=1

biLi )et (5)

The Box–Jenkins approach leads to the ARIMA model to formulate a non-stationary
time series. It has three steps [48], as elaborated below.

Step 1: Determining the order d of differencing to make the time series stationary:
This step can be achieved by repeatedly differencing the time series and by applying

the Dickey–Fuller test to check whether or not the time series has become stationary. The
Dickey–Fuller test will be descried later in the next subsection.

Step 2: Identifying the model:
This step can be achieved by applying the auto correlation function (ACF) and the

partial auto correlation function (PACF) to determine which model is most suitable to
formulate the time series. Possible models are AR(p, d), MA(d, q), and ARMA(p, d, q).

Step 3: Estimating the parameters:
No matter which of AR(p, d), MA(d, q), and ARMA(p, d, q) is determined in the

previous step, it is a linear regression model. Therefore, this step can be achieved by
applying optimization mechanisms, such as the maximum likelihood estimator, to find
model coefficients just like finding linear regression coefficients [50].

As just mentioned, the ARIMA model formulates the time series trend with three trend
parameters: the auto-regression order p, the difference order d, and the moving average
order q. By adding four seasonal parameters, the SARIMA (seasonal auto-regressive
integrated moving average or seasonal ARIMA) model further considers the seasonal
component by adding four seasonal parameters: the seasonal auto-regressive order P, the
seasonal difference order D, the seasonal moving average order Q, and the number m of
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time points for a single seasonal period. A SARIMA model is specified as SARIMA(p, d,
q)(P, D, Q)m. In addition to d-order differencing of ARIMA, seasonal ARIMA or SARIMA
also includes the m-order seasonal differencing to reduce the seasonal component. Please
refer to [41] for the details of adding seasonal differencing terms for the SARIMA model.

Below, the STL method [42] is introduced, where STL stands for “seasonal-trend
decomposition based on LOESS” and LOESS stands for “locally estimated scatterplot
smoothing”. The STL method decomposes a time series into three components, the trend,
seasonality, and remainder. A trend shows a persistent increasing or decreasing tendency
in data, seasonality indicates seasonal effects over a fixed period of time, and the remainder
corresponds to the data noise. Specifically, the STL method runs iteration by iteration to
decompose time series by finding the data trend and seasonal data trend with the help of
the smoother LOESS [51]. The basic idea of LOESS is that a function can be well fitted in a
small neighborhood by a low-order polynomial. LOESS runs fast and fits data properly,
which in turn makes STL run fast and well.

One can rely on the STL method to decompose a time series and focus on the remainder
for accurately spotting anomalies in the time series, as shown in [44]. As also shown in [44],
one can rely on the SARIMA model to formulate a time series, either stationary or non-
stationary, for spotting anomalies in the time series. By combining the STL method and
the SARIMA model, the ADSaS method can achieve good anomaly detection performance.
The ADSaS method was proposed in [44], where ADSaS stands for “anomaly detection
with SARIMA and STL”. The method can collectively well consider four performance
criteria of the anomaly detection system, which are accuracy, speed, the model size, and
domain universality. SARIMA can perform time-series forecast accurately, and STL can
perform time-series decomposition well. As the ADSaS method integrates SARIMA and
STL, it has good anomaly detection performance.

2.2. Pearson Correlation Coefficient

The Pearson correlation coefficient (PCC), or Pearson product-moment correlation
coefficient (PPMCC), was proposed by Pearson in 1895 [36] for measuring the linear
correlation between two variables X and Y. Let X and Y be two time series. The PCC of X
and Y, denoted by Cor(X, Y) or ρX,Y, is formulated according to (6).

Cor(X, Y) =
Cov(X, Y)

σXσY
, (6)

where Cov(X, Y) is the covariance of X and Y, σX is the standard deviation of X, and σY is
the standard deviation of Y.

Cor(X, Y) can be used to measure the linear correlation between X and Y. Its value
ranges between +1 and −1, where +1 indicates the totally positive linear correlation,
−1 indicates the totally negative correlation, and 0 indicates no linear correlation between
X and Y.

2.3. Dickey–Fuller Test

Dickey and Fuller proposed the Dickey–Fuller (DF) test or the unit root test in 1979 [37]
for checking the stationarity of time series on the basis of the auto-regressive model. As
mentioned earlier, a time series is stationary if its mean, variance, and covariance do not
vary with time. The DF test has the null hypothesis that a unit root is present in the
auto-regressive model of a time series. Note that if a unit root exists for an auto-regression
model of a time series, then the series is non-stationary. For example, let the simple AR(1)
auto-regressive model of a time series be xt = a1 xt−1 + et. The time series is non-stationary
if a1 ≥ 1; on the contrary, it is stationary if a1 < 1. Note that a unit root is present if a1 = 1.
Therefore, the DL test is under the null hypothesis that a1 is equal to 1 (or the model has
the root equal to the unity) and the alternative hypothesis that a1 < 1 (or the model has the
root not equal to the unity). In summary, if the null hypothesis is rejected, then the time
series is stationary; otherwise, the time series is non-stationary.
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Below, in this paper, the DF test is executed by setting the p-value threshold to be
0.0005, as taken by the ADSaS method [44]. When the p-value returned by the test is less
than the threshold of 0.0005, the null hypothesis is rejected and the time series is assumed
to be stationary; otherwise, the null hypothesis is accepted and the time series is regarded
as non-stationary.

2.4. Discret Wavelet Transform

Wavelet transform (WT) utilizes wavelets as the basis for decomposing signals or
time series, where wavelets are functions that are defined over a finite interval of time
and whose average value is zero [38]. Wavelets are also called mother wavelets. They
are exemplified by Haar, Meyer, Morlet, and Daubechies, among others. WT is a very
well-known and useful tool for extracting the time–frequency features of a time series.

Let ψ(t) be a mother wavelet. The child wavelet ψa,b(t) of ψ(t) is defined according to
(7).

ψa,b(t) =
1√
a
+

(
t− b

a

)
(7)

where a is the dilation (scaling) parameter and b is the transition (shifting) parameter.
High-scaled child wavelets correspond to lower frequencies and are used as low-pass
filters. On the contrary, low-scaled child wavelets correspond to higher frequencies and are
used as high-pass filters.

WT can be divided into two categories, the discrete wavelet transform (DWT) and the
continuous wavelet transform (CWT). Below, the DWT, which is adopted by this research,
is introduced. As shown in Figure 1, the DWT consists of high-pass filters (HPFs) and
low-pass filters (LPFs), both along with down sampling filters (DSFs). Time series data
first go through high-pass filters to generate detail coefficients (denoted as cD) to represent
high-frequency components of data. Moreover, time series data go through low-pass
filters to generate approximation coefficients (denoted as cA) to represent low-frequency
components of data. Afterwards, detail coefficients are retained, whereas approximation
coefficients are further decomposed again into high- and low-frequency components until
a specific number of decompositions is reached. Finally, all retained detail coefficients and
the last approximation coefficients altogether constitute the result of the DWT.
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Figure 1. The process of the discrete wavelet transform.

2.5. Autoencoder

The autoencoder (AE) [39] is a special type of artificial neural network (ANN) whose
input and output (or label) are identical. An ANN consists of layers of artificial neurons,
each of which can take input vector x, compute and output f (wxT+b), where f (·) is an
activation function (e.g., a hyperbolic tangent function), w is a weight vector, xT is the
transposition of x, and b is a bias vector. Figure 2 illustrates the architecture of a simple
AE. As shown in Figure 2, the AE has the encoder, code, and decoder parts. It is divided
into front layers, a middle layer, and rear layers. The front layers can be regarded as the
encoder, whereas the rear layers as the decoder. The middle layer constitutes the code,
which can be used as a latent representation of the input. The middle layer associated with
the code usually has much fewer neurons than the input layer. An AE can thus be used to
reduce the dimensionality of input data. Specifically, the code of the AE can be regarded as
the dimensionality reduction result or feature extraction result of the input data.
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In general, an AE constructs a code by encoding the input into the code. It reconstructs
the input by decoding the code back to the input. The difference between the input and the
reconstructed input is called the reconstruction error. Well-known methods, such as error
backpropagation and gradient descent, and different optimizers like adaptive moment
estimation (Adam), can be used to optimize (or minimize) reconstruction errors.

3. Proposed Anomaly Detection Framework

The proposed anomaly detection framework, Tri-CAD, for univariate time series
is introduced in this section. As shown in Figure 3, Tri-CAD first classifies time series
into three classes: (Class 1) periodic, (Class 2) stationary, and (Class 3) non-periodic and
non-stationary time series. The classification is based on the Pearson product-moment
correlation coefficient [36] and Dickey–Fuller test [37]. The threshold settings in Figure 3 for
the Pearson product-moment correlation coefficient ρ and the Dickey–Fuller test p-value
will be described later. The first D (say, D = 1000) data are assumed to be normal and
are used for the classification. Below, in this paper, the set of the first D data is called the
normal dataset or the training dataset, whereas the set of the rest of the data is called the
test dataset.
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Figure 3. The proposed anomaly detection framework.

Tri-CAD first relies on the normal dataset to divide time series into three classes. Then,
different schemes that use statistics, wavelet transform, and the autoencoder are applied to
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different classes of time series. The schemes are applied to the normal dataset to generate
statistic and deep learning features of the time series. Afterwards, the same schemes are
applied to the test dataset to generate statistic and deep learning features. Finally, the
concept of standard deviation is applied for anomaly detection. Specifically, if the statistic
and deep learning features of the normal dataset and the test dataset have a large difference
that exceeds a certain threshold, defined by the standard deviation concept, anomalies
are assumed to occur. How Tri-CAD performs the classification and anomaly detection is
described below for each class of time series.

3.1. Periodic Time Series Anomaly Detection

Tri-CAD adopts the Pearson correlation coefficient for checking whether a time series
is periodic. As shown in Figure 4, two consecutive equal-sized sub-time series Y and Z of
size w, w ≤ D/2, are first derived from the D data of the normal dataset. Next, the Pearson
product-moment correlation coefficient Cor(Y, Z) is derived for any possible value of w.
The maximum Cor(Y, Z) value ρ and the corresponding value w are then obtained. If the
value ρ is greater than a pre-specified threshold (e.g., 0.98), the time series is considered to
be periodic with the period of w.
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windows to check the periodicity of time series.

When the time series is determined to be a periodic time series with the period w,
a sliding time window of size w is applied to the D data of the normal dataset, and the
skewness of every time window of data is derived. Skewness is a measure of the symmetry
of a distribution. The skewness of a time series X of n data is defined according to (8).

γ(X) =
n

(n− 1)(n− 2) ∑
x∈X

(
x− µX

σX

)3
(8)

where µX and σX are the mean and standard deviation of X, respectively. Tri-CAD adopts
skewness for detecting anomaly because skewness is sensitive to the removal of outliers
(anomalies), as shown in [52]. After obtaining the skewness values of all sliding windows
for the D data of the normal dataset, the moving averages of k pervious skewness values
are derived. Finally, the mean µ and the standard deviation σ of the moving averages
of skewness values are derived. Then, a similar process is applied to the test dataset.
Specifically, a sliding time window of size w is also applied to all data in the test dataset,
and the skewness value of every time window of data is derived. For a test data point x, the
moving average of k pervious skewness values is derived and is regarded as its anomaly
score sx. Its standard anomaly score (SAS) λx is then calculated according to (9).

λx =
|sx − µ|

σ
(9)

Note that the SAS λx of a data point x is the measurement of how far x’s anomaly
score sx deviates from µ in terms of σ. As shown earlier, a different λx value corresponds
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to different occurrence probability of such a data point. For example, λx = 4.417173
corresponds to 0.001% of occurrence. If the SAS λx exceeds a pre-specified deviation
threshold τ and λx is increasing (i.e., x’s SAS is larger than the SAS of x’s previous data
point), then the data point x is assumed to be anomalous.

3.2. Stationary Time Series Anomaly Detection

After Tri-CAD judges a time series not to be periodic, it employs the Dickey–Fuller
test [37] with the p-value threshold of 0.0005, which is also taken in [44], to check whether
a time series is stationary. This is achieved under the null hypothesis that a unit root exists
in an autoregressive model of the time series. If the p-value returned by a test is less than
the threshold of 0.0005, the time series is assumed to be stationary. As mentioned earlier,
the D data of the normal dataset are taken for the Dickey–Fuller test.

When the time series is determined to be stationary, Tri-CAD calculates the means of
the data within a large global sliding time window and a small local sliding time window,
as shown in Figure 5. The global window and the local window have the same ending time
point. Furthermore, the size (say, 100) of the global window is much larger than the size
(say, 5) of the local window. For a data point x, the means of its global window and local
window are first calculated, which are denoted as Gmeanx and Lmeanx, respectively. Then,
x’s anomaly score sx is calculated according to (10).

sx =

∣∣∣∣Gmeanx − Lmenax

Gmeanx

∣∣∣∣ (10)
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Figure 5. A large global sliding time window and a small local sliding time window of a stationary
time series for calculating the ratio of data means.

The anomaly scores of the D data in the normal dataset and their mean and standard
deviation are calculated. Afterwards, for a test data point x with the anomaly score sx, its
SAS λx is calculated according to Equation (9). Similarly, if λx is increasing and exceeds a
pre-specified threshold, the data point x is regarded as anomalous.

3.3. Non-Periodic and Non-Stationary Time Series Anomaly Detection

A time series is regarded to be non-periodic and non-stationary if it is judged to be
neither periodic nor stationary. For non-periodic and non-stationary time series, Tri-CAD
adopts WT to extract the time–frequency features of the time series and then uses the
AE to encode and then decode the time–frequency features. For WT and AE to execute
properly, the standardization mechanism is used to standardize the original time series
data so that the data follow the standard normal distribution with the mean of 0 and the
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standard deviation of 1. The standardization is performed by transforming each data value
according to (11).

x′i =
xi − µ

σ
(11)

where xi is the original data value; x′i is the standardized data value; and µ and σ are the
mean and the standard deviation of the original data, respectively.

Tri-CAD applies DWT and AE to the D data of the normal dataset. To be more specific,
a moving sliding time window of size ws (say ws = 60) is used to get ws data to go through
DWT with Haar as the mother wavelet to get ws DWT coefficients. The ws coefficients
are then taken as the input to train the AE model. The stride of the moving sliding time
window is 1. So, there are D – ws + 1 sliding windows of data taken as the training data to
train the AE model. The reconstruction errors of the AE are obtained, and the mean µ and
the standard deviation σ of the errors are calculated.

The AE neural network structure is shown in Figure 6. The sizes of the input layer
and the output layer are both ws (say, 60). The numbers of neurons in the hidden layers
are 32, 16, 8, 4, 2, 4, 8, 16, and 32, respectively. The code has the dimension of 2, as the
number of neurons in the middle layer is 2. The encoder takes the scaled exponential linear
unit (SELU) function as the activation function, whereas the decoder takes the hyperbolic
tangent (Tanh) function as the activation function. The error function (or loss function)
is the mean square error (MSE), and the optimizer is the adaptive moment estimation
(Adam). To avoid overfitting, the early stop mechanism is used. Specifically, a part of the
training dataset is split out to be the validation data set. The training process of the AE
model proceeds epoch by epoch. Once the MSE value of the validation data starts to rise,
the training stops, so that the AE model does not fit the training data too closely to avoid
the overfitting problem.
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Similarly, Tri-CAD applies WT and AE to every data point x in the test dataset.
The AE reconstruction error is assumed to be the anomaly score of x, and the SAS λx is
derived according to Equation (9). Likewise, if λx is increasing and exceeds a pre-specified
threshold, the data point x is regarded as anomalous.

3.4. Treshold Setting

As mentioned earlier, Tri-CAD is a semi-supervised anomaly detection framework
and thus does not rely on labels to train models for detecting anomalies. Likewise, Tri-CAD
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does not depend on labels to set the threshold of detecting anomalies. Tri-CAD actually
assumes that the first D data are normal, and derives the mean µ and the standard deviation
σ of certain features of the D data. It then checks if the standard anomaly score λx of a test
data point x exceeds a certain deviation threshold τ (i.e., if λx > τ × σ). If so, the data point
x is assumed to be anomalous; otherwise, x is assumed to be normal.

The deviation threshold τ plays the role of making the anomaly detection more
sensitive or less sensitive. We can thus set different levels of sensitivity based on the
deviation threshold τ. For example, setting τ to be 2.575829, 3.290527, 3.890592, 4.417173,
4.891638, 5.326724, 5.730729, and 6.109410 can make the framework have eight sensitivity
levels of anomaly detection, so that 1%, 0.1%, 0.01%, 0.001%, 0.0001%, 0.00001%, 0.000001%,
and 0.0000001% of data are detected as anomalies. Certainly, if the framework can obtain
some data labels in advance, then the deviation threshold τ can be set as an optimized
value to make the anomaly detection have the best performance.

3.5. Predecesors of Tri-CAD

As mentioned earlier, the proposed Tri-CAD framework is similar to the framework
proposed in [45]. However, the two frameworks are different. Specifically, Tri-CAD first
checks whether a time series is periodic. It then checks whether the time series is stationary
or non-stationary. On the contrary, the framework proposed in [45] first checks if a time
series is stationary. It then checks whether or not the time series is periodic. Checking that
a time series is periodic can be done more definitely and clearly than checking that a time
series is stationary. Hence, Tri-CAD can achieve more definite classification of time series
than the framework proposed in [45].

As also mentioned earlier, Tri-CAD integrates an anomaly detection mechanism,
WAAD, proposed in [46]. WAAD is used for detecting anomalies in non-periodic and
non-stationary time series. It first applies the DWT to the time series of a sliding time
window to obtain wavelet transform coefficients. It then uses an AE to encode and decode
(reconstruct) these coefficients. WAAD detects anomalies by monitoring the reconstruction
error between the original and reconstructed coefficients for every time window. An
anomaly is assumed to occur if the error meets specific conditions. In Tri-CAD, WAAD
is improved by replacing the reconstruction error with the standard anomaly score. If
the standard anomaly score is increasing and exceeds a pre-specified threshold, then an
anomaly is assumed to occur. In practice, the improved WAAD has better performance
than the original WAAD. It also has the merits that the standard anomaly score threshold
value can be set intuitively.

4. Performance Evaluation and Comparison

The NAB (Numenta anomaly benchmark) [40] is used for evaluating the prediction
performance of the proposed Tri-CAD framework. NAB contains many labeled time
series datasets, which are either artificial or real-world time series. The datasets have
entries containing timestamps and values. The timestamp is of the format “yyyy-mm-dd
hh.mm.ss” representing the year, month, day, hour, minute, and second. The difference of
adjacent timestamps is fixed; however, such a difference varies for various datasets. An
entry is labeled as anomalous if its timestamp is specified explicitly in a separate file. As Tri-
CAD is for semi-supervised anomaly detection, it does not rely on labels to train anomaly
detection models. The labels are used only for the purpose of performance evaluation.

This paper applies three real-world time series for performance evaluation. The
applied time series are (a) “NAB NYC taxi”, the data of taxi passenger counts in the New
York city; (b) “NAB CPU Utilization”, the CPU utilization data from Amazon Web Services
(AWS); and (c) “NAB Machine Temperature”, the data from a temperature sensor attached
to a machine component.

The performance measurements are precision, recall, and F1-score of the prediction,
whose definitions are shown in (12)–(14), respectively. In the definitions, TP (true positive)
represents the number of anomalies that are truly (or correctly) detected as anomalies,
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FP (false positive) represents the number of normal data that are falsely (or incorrectly)
detected as anomalies, TN (true negative) represents the number of normal data that are
truly detected as normal data, and FN (false negative) represents the number of anomalies
that are falsely detected as normal data.

precision = TP/(TP + FP) (12)

recall = TP/(TP + FN) (13)

F1-score = 2 × precision/(precision + recall) (14)

The NAB time series have labels given on the basis of anomaly windows [40]. Specif-
ically, the entire time series is divided into time windows of a fixed window size (fws).
Note that different NAB datasets have different window sizes. If one or more anomalies
appear in a time window, the time window is labeled as an anomaly window; otherwise, it
is labeled as a normal window. Note that a labeled anomaly corresponds to an anomaly
window whose center is the labeled anomaly.

Figures 7–14 show the performance evaluation results of Tri-CAD using the three NAB
datasets with the deviation threshold set as 3.89, 8, and 8.35, respectively. The performance
evaluation is also conducted for different training dataset sizes and different WT sliding
time window sizes. Specifically, the NYC taxi dataset and the CPU utilization dataset
are assumed to have training datasets with a small size of 500 or a large size of 1000 (i.e.,
D = 500 or 1000). The machine temperature dataset is assumed to have training datasets
with a small size of 1000 or a large size of 2000 (i.e., D = 1000 or 2000). Moreover, the
machine temperature dataset is also assumed to have WT sliding window sizes of a small
size of 30 or a large size of 60 (i.e., ws = 30 or 60). In Figures 7–14, the anomaly windows
are marked with pink strips, whereas detected anomalies are marked with red dots. If
anomalies are claimed to be detected in an anomaly window by the proposed framework,
then TP is increased by one. On the contrary, if anomalies are claimed to be detected in a
normal window, then FP is increased by one. Note that all anomalies in a time window
altogether increase a count by one. Similarly, if no anomaly is claimed to be detected in
an anomaly window, then FN is increased by one. After TP, FP, and FN are derived, the
precision, recall, and F1-score can be evaluated accordingly.
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and WT window size ws = 60: (a) the standardized time series and anomaly points and (b) standard anomaly scores and
anomaly windows.

It can be observed from Figures 7–14 that Tri-CAD has similar performance results for
different training dataset sizes and different WT sliding window sizes. Tri-CAD has the best
performance (i.e., 1.0) in terms of the precision, recall, and F1-score either for small or large
training dataset sizes. It also has best performance (i.e., 1.0) either for small or large sliding
window sizes. However, when the window sizes are not within the range between the
small value and the large value, Tri-CAD does not work with high performance. Certainly,
such window sizes should be avoided and their associated figures are not shown in this
paper to save space.

The evaluation results of the proposed framework Tri-CAD are compared with those
of related methods, namely the STL, SARIMA, LSTM, LSTM with STL, and ADSaS. Note
that the related methods may have anomaly window sizes that are different from those set
by NBA datasets. The performance comparisons for the three NAB time series are shown
in Table 1, where the best performance measurements are shown in boldface. Note that the
“NAB NYC Taxi” dataset is periodic, the “NAB CPU” dataset is stationary, and the “NAB
Machine Temperature” dataset is non-periodic and non-stationary. By Table 1, we can see
that the proposed framework Tri-CAD has the best performance in all measurements like
the precision, recall, and F1-score for all datasets. This is because related methods try to
improve anomaly detection performance by integrating various models, each of which is
suitable for a different class of time series. On the contrary, the proposed framework first
classifies time series into different classes and then utilizes a specific scheme to perform
anomaly detection for a specific class of time series. As it is more likely to perform better
by applying a special scheme to a special class of time series, the proposed framework thus
outperforms others.
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Table 1. Comparisons of the proposed framework Tri-CAD and related methods.

Time
Series Class

Fixed
Window

Size (fws)
Metrics STL

only
SARIMA

only
LSTM
only

LSTM
with STL ADSaS

Proposed
Framework

Tri-CAD
NAB
NYC
Taxi

Class 1 206
Precision

Recall
F1-score

0.533
0.889
0.667

0.000
0.000
0.000

0.176
0.333
0.231

0.161
1.000
0.277

1.000
1.000
1.000

1.000
1.000
1.000

NAB
CPU

Utilization
Class 2 200

Precision
Recall

F1-score

0.800
1.000
0.889

0.143
0.250
0.182

0.833
1.000
0.909

0.308
1.000
0.471

1.000
0.250
0.400

1.000
1.000
1.000

NAB
Machine
Temper-

ature

Class 3 566
Precision

Recall
F1-score

0.250
0.222
0.235

0.000
0.000
0.000

0.049
0.222
0.080

0.059
0.625
0.108

1.000
0.500
0.667

1.000
1.000
1.000

Time series Class 1: periodic; Class 2: stationary; Class 3: non-periodic and non-stationary.

5. Conclusions

This paper proposes a semi-supervised anomaly detection framework, called Tri-CAD,
for univariate time series with statistics and autoencoder deep learning technologies. The
Pearson correlation coefficient and the Dickey–Fuller test are used to classify time series
into three classes: the periodic, the stationary, and the non-periodic and non-stationary time
series. Different schemes are then applied to different classes of time series for performing
anomaly detection properly.

Three NAB datasets are applied to performance evaluation of the proposed Tri-CAD
framework for different training dataset sizes and different WT sliding time window sizes.
It is observed that Tri-CAD has the best performance of 1 in terms of the precision, recall,
and F1-score either for the small or the large training dataset sizes. It also has the best
performance of 1 either for the small or the large WT sliding window sizes. The evaluated
performance results of Tri-CAD are compared with those of related methods, namely, the
STL, SARIMA, LSTM, LSTM with STL, and ADSaS. The comparisons show that Tri-CAD
outperforms the others in terms of the precision, recall, and F1-score for all three datasets.

In the future, we plan to employ a nonparametric Bayesian approach [53] and/or a
method using online clustering [54] to set the anomaly detection threshold values. We also
plan to apply the proposed framework to more datasets to achieve more comprehensive
performance evaluation. Furthermore, we will try to apply the design concept of the
proposed univariate time series anomaly detection framework to multivariate time series
that are much complex than univariate time series.
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