
applied  
sciences

Article

Kernel-Based Phase Transfer Entropy with Enhanced Feature
Relevance Analysis for Brain Computer Interfaces

Iván De La Pava Panche 1,* , Andrés Álvarez-Meza 2 , Paula Marcela Herrera Gómez 3 ,
David Cárdenas-Peña 1 , Jorge Iván Ríos Patiño 1 and Álvaro Orozco-Gutiérrez 1

����������
�������

Citation: De La Pava Panche, I.;

Álvarez-Meza, A.; Herrera Gómez,

P.M.; Cárdenas-Peña, D.; Ríos Patiño,

J.I.; Orozco-Gutiérrez, Á.

Kernel-Based Phase Transfer Entropy

with Enhanced Feature Relevance

Analysis for Brain Computer

Interfaces. Appl. Sci. 2021, 11, 6689.

https://doi.org/10.3390/app11156689

Academic Editor: Gabriele Cervino

Received: 2 June 2021

Accepted: 19 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Automatic Research Group, Universidad Tecnológica de Pereira, Pereira 660003, Colombia;
dcardenasp@utp.edu.co (D.C.-P.); jirios@utp.edu.co (J.I.R.P.); aaog@utp.edu.co (Á.O.-G.)

2 Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia;
amalvarezme@unal.edu.co

3 Psychiatry, Neuroscience and Community Research Group, Universidad Tecnológica de Pereira,
Pereira 660003, Colombia; p.herrera@utp.edu.co

* Correspondence: ide@utp.edu.co

Abstract: Neural oscillations are present in the brain at different spatial and temporal scales, and
they are linked to several cognitive functions. Furthermore, the information carried by their phases
is fundamental for the coordination of anatomically distributed processing in the brain. The concept
of phase transfer entropy refers to an information theory-based measure of directed connectivity
among neural oscillations that allows studying such distributed processes. Phase TE is commonly
obtained from probability estimations carried out over data from multiple trials, which bars its
use as a characterization strategy in brain–computer interfaces. In this work, we propose a novel
methodology to estimate TE between single pairs of instantaneous phase time series. Our approach
combines a kernel-based TE estimator defined in terms of Renyi’s α entropy, which sidesteps the need
for probability distribution computation with phase time series obtained by complex filtering the
neural signals. Besides, a kernel-alignment-based relevance analysis is added to highlight relevant
features from effective connectivity-based representation supporting further classification stages in
EEG-based brain–computer interface systems. Our proposal is tested on simulated coupled data and
two publicly available databases containing EEG signals recorded under motor imagery and visual
working memory paradigms. Attained results demonstrate how the introduced effective connectivity
succeeds in detecting the interactions present in the data for the former, with statistically significant
results around the frequencies of interest. It also reflects differences in coupling strength, is robust to
realistic noise and signal mixing levels, and captures bidirectional interactions of localized frequency
content. Obtained results for the motor imagery and working memory databases show that our
approach, combined with the relevance analysis strategy, codes discriminant spatial and frequency-
dependent patterns for the different conditions in each experimental paradigm, with classification
performances that do well in comparison with those of alternative methods of similar nature.

Keywords: transfer entropy; kernel methods; Renyi’s entropy; connectivity analysis; phase interactions

1. Introduction

Neural oscillations are observed in the mammalian brain at different temporal and
spatial scales [1]. Oscillations in specific frequency bands are present in distinct neural
networks, and their interactions have been linked to fundamental cognitive processes such
as attention and memory [2,3] and to information processing at large [4]. Three properties
characterize such oscillations: amplitude, frequency, and phase, the latter referring to the
position of a signal within an oscillation cycle [5]. Oscillation amplitudes are related to
neural synchrony expansion in a local assembly, while the relationships between the phases
of neural oscillations, such as phase synchronization, are involved in the coordination of
anatomically distributed processing [6]. Moreover, from a functional perspective, phase
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synchronization and amplitude correlations are independent phenomena [7], hence the in-
terest in studying phase-based interactions independently from other spectral relationships.
Additionally, phase relationships are linked to neural synchronization and information
flow within networks of connected neural assemblies [8]. Therefore, a measure that aims
to capture phase-based interactions among signals from distributed brain regions should
ideally include a description of the direction of interaction. A fitting framework for such
measure is that of brain effective connectivity [9].

Effective brain connectivity, also known as directed functional connectivity, measures
the influence that a neural assembly has over another one, establishing a direction for their
interaction by estimating statistical causation from their signals [10]. Directed interactions
between oscillations of similar frequency can be captured through measures such as
Geweke-Granger causality statistics, partially directed coherence, and directed transfer
function [9,11]. However, since these metrics depend on both amplitude and phase signal
components, they do not identify phase-specific information flow [8]. The phase slope
index (PSI), introduced in [12], measures the direction of coupling between oscillations
from the slope of their phases; still, it only captures linear phase relationships [13]. In this
context arises the concept of phase transfer entropy, a phase-specific nonlinear directed
connectivity measure introduced in [8]. Transfer entropy (TE) is an information-theoretic
quantity, based on Wiener’s definition of causality, that estimates the directed interaction,
or information flow, between two dynamical systems [14,15]. In [8], the authors first extract
instantaneous phase time series by complex filtering the signals of interest in a particular
frequency, since a signal’s phase is only physically meaningful when its spectrum is narrow-
banded [16]. Such filtering-based approach has also been explored to obtain phase-specific
versions of other information-theoretic metrics such as permutation entropy and time-
delayed mutual information [7,16]. Then, the authors compute TE from the obtained phase
time series. Nonetheless, since conventional TE estimators are not well suited for periodical
variables, in [8] phase TE estimates are obtained through a binning approach performed
over multiple trials simultaneously, in a procedure termed trial collapsing.

Phase TE has found multiple applications in neuroscience, such as gaining insight
into reduced levels of consciousness by evaluating brain connectivity [17], analyzing
resting-state networks [18], and assessing brain connectivity changes in children diagnosed
with attention deficit hyperactivity disorder following neurofeedback training [19]. It
has even been used to detect fluctuations in financial markets data [20]. Nonetheless,
phase TE, estimated as in [8], cannot be employed as a characterization strategy for brain–
computer interfaces (BCI) since they require features extracted on an independent trial
basis, i.e., each trial must be associated with a set of features. Effective connectivity
measures, such as phase TE, can be used to assess the induced physiological variations in
the brain occurring during BCI tasks [21]. Discriminative information may be hidden in
the dynamical interactions among spatially separated brain regions that characterization
methods commonly employed in BCI are not able detect [22]. This information could be
relevant to address issues such as the inefficiency problem in some BCI systems [23]. In
that context, authors in [6] applied a binning strategy to estimate single-trial phase TE
to set up classification systems for visual attention. Nonetheless, binning estimators for
single trial-based estimation of information-theoretic measures exhibit systematic bias [8].
Furthermore, spectrally resolved TE estimation methods that can obtain single-trial TE
estimates have been recently proposed in the literature [24,25]. Yet, phase TE is conceptually
different from them [25], as they are not phase-specific metrics.

Here, we propose a novel methodology to estimate TE between single pairs of in-
stantaneous phase time series. Our approach combines the kernel-based TE estimator we
introduced in [10], with phase time series obtained by convolving neural signals with a
Morlet Wavelet. The kernel-based TE estimator expresses TE as a linear combination of
Renyi’s entropy measures of order α [26,27] and then approximates them through func-
tionals defined on positive definite and infinitely divisible kernel matrices [28]. Its most
important property is that it sidesteps the need to obtain the probability distributions
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underlying the data. Instead, the estimator computes TE directly from kernel matrices that,
in turn, capture the similarity relations among data. It is robust to varying noise levels
and data sizes and to the presence of multiple interaction delays in a network [10]. In this
work, we hypothesize that the above-described estimator could overcome the hurdles other
single-trial TE estimators face when obtaining TE values from instantaneous phase time
series since it would not have to explicitly obtain probability distributions from circular
variables [8]. Additionally, since our primary motivation to introduce a robust phase TE
estimation methodology is the use of such measures in the context of BCI applications, we
also explore a relevance analysis strategy based on centered kernel alignment (CKA) [29].
The CKA-based analysis allows us to identify the set of pairwise channel connectivities
relevant to discriminate between specific conditions, favoring the neurophysiological in-
terpretation of our results and providing an option to avoid carrying out all to all channel
connectivity estimations in practical BCI systems based on phase TE.

We employ simulated and real-world EEG data to test the introduced effective connec-
tivity measure. The simulated data are obtained from neural mass models, mathematical
models of neural mechanisms that generate time series with oscillatory behavior similar to
electrophysiological signals. Obtained results for such data show that the proposed kernel-
based phase TE estimation method successfully detects the direction of interaction imposed
by the model. Indeed, it detects statistically significant connections in the frequency bands
of interest, even for weak couplings and narrowband bidirectional interactions. It also
displays robustness to realistic levels of noise and signal mixing. Regarding the EEG
data, we consider two databases containing signals recorded under two different cognitive
paradigms, consisting of motor imagery tasks and a change detection task designed to
study working memory. Attained classification results demonstrate that our approach
is competitive compared to real-valued and phase-based directed connectivity measures.
Thus, this proposal extends the approach described in [10] by introducing a measure that
captures directed interactions between the phases of oscillations at specific frequencies.
Unlike alternative approaches in the literature, it can be obtained from single trial data,
which allows it to be used as a characterization strategy in BCI applications. In addition,
the results obtained for the EEG data show that our approach, coupled with the CKA-
based relevance analysis, largely outperforms the real-valued kernel-based transfer entropy
in [10] as characterization strategy for cognitive tasks such as working memory.

The remainder of the paper is organized as follows: in Section 2 we formally introduce
the concept of phase TE and our kernel-based approach for single-trial phase TE estima-
tion. We also describe the proposed CKA-based relevance analysis. Section 3 details the
experiments we carried out using simulated and real EEG data in order to evaluate the
performance of our proposal. In Section 4 we present and discuss our results, and finally,
Section 5 contains our conclusions.

2. Methods
2.1. Phase Transfer Entropy

Transfer entropy (TE) is a Wiener-causal measure of directed interactions between two
dynamical systems [14,15]. Given two time series x = {xt}T

t=1 and y = {yt}T
t=1, with t ∈ N

a discrete time index, T ∈ N, the TE from x to y estimates whether the ability to predict the
future of y improves by considering the past of both x and y, as compared to the case when
only the past of y is considered. Formally, TE can be defined as:

TE(x→ y) = ∑
yt ,y

dy
t−1,xdx

t−u

p
(

yt, ydy
t−1, xdx

t−u

)
log

 p
(

yt|ydy
t−1, xdx

t−u

)
p
(

yt|ydy
t−1

)
, (1)

where xdx
t , ydy

t ∈ RD×d are time embedded versions of x and y, D = T − (τ(d− 1)) with
d, τ ∈ N the embedding dimension and delay, respectively; u ∈ N represents the interaction
delay between the driving and the driven systems, and p(·) indicates a probability density
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function [30] (Henceforth, the summation symbol is to be interpreted in an extended way,
that is to say, as a summation or an integral depending on whether the variable is discrete
or continuous). Regarding the time embeddings, we have that xd

t = (x(t), x(t− τ), x(t−
2τ), . . . , x(t− (d− 1)τ)) [31,32]. Furthermore, using the definition of Shannon entropy,
HS(X) = −∑x p(x)log(p(x)), where X is a discrete random variable (x ∈ X), we can also
express Equation (1) as:

TE(x→ y) = HS

(
ydy

t−1, xdx
t−u

)
− HS

(
yt, ydy

t−1, xdx
t−u

)
+ HS

(
yt, ydy

t−1

)
− HS

(
ydy

t−1

)
. (2)

where HS(·, ·), and HS(·) stand for joint and marginal entropies.
In phase TE, the time series x and y are replaced by instantaneous phase time series

θx( f ) ∈ [−π, π]Tt=1 and θy( f ) ∈ [−π, π]Tt=1, obtained from sx = ςxeiθx( f ) ∈ CT and
sy = ςyeiθy( f ) ∈ CT , which contain the complex-filtered values of x and y at frequency f ,
respectively, and with ςx, ςy ∈ RT the amplitude envelopes of the filtered time series [8].
Thus, we have that

TEθ(x→ y, f ) = HS

(
θ

y,dy
t−1 , θx,dx

t−u

)
− HS

(
θ

y
t , θ

y,dy
t−1 , θx,dx

t−u

)
+ HS

(
θ

y
t , θ

y,dy
t−1

)
− HS

(
θ

y,dy
t−1

)
, (3)

where θx,dx
t and θ

y,dy
t are time embedded versions of θx and θy. Note that for the sake of

notation simplicity we have dropped the explicit dependency of the phase time series on f .

2.2. Kernel-Based Renyi’s Phase Transfer Entropy

In [10] we propose a TE estimator based on kernel matrices that approximate Renyi’s
entropy measures of order α. This data-driven approach has the advantage of sidestepping
the need for probability distribution estimation in TE computation. First, we show that TE
can be expressed as

TEα(x→ y) = Hα

(
ydy

t−1, xdx
t−u

)
− Hα

(
yt, ydy

t−1, xdx
t−u

)
+ Hα

(
yt, ydy

t−1

)
− Hα

(
ydy

t−1

)
. (4)

where Hα(X) stands for Renyi’s α entropy, a generalization of Shannon’s entropy [26,27],
defined as

Hα(X) =
1

1− α
log

(
∑
x

p(x)αdx

)
, (5)

with α 6= 1 and α ≥ 0. In the limiting case where α → 1, it tends to Shannon’s entropy.
Then, using the kernel-based formulation for Renyi’s α entropy introduced in [28],

Hα(A) =
1

1− α
log(tr(Aα)), (6)

where A ∈ Rn×n is a Gram matrix with elements aij = κ(xi, xj), κ(·, ·) ∈ R stands for a
positive definite and infinitely divisible kernel function, n for the number of realizations of
X, and tr(·) for the matrix trace; along with the accompanying formulation for the Renyi’s
α entropy of joint probability distributions,

Hα(A, B) = Hα

(
A ◦ B

tr(A ◦ B)

)
=

1
1− α

log
(

tr
((

A ◦ B
tr(A ◦ B)

)α))
, (7)

where B ∈ Rn×n is a second Gram matrix and the operator ◦ stands for the Hadamard
product, we estimate the TEα from x to y as:

TEκα(x→ y) = Hα

(
K

ydy
t−1

, Kxdx
t−u

)
− Hα

(
Kyt , K

ydy
t−1

, Kxdx
t−u

)
+ Hα

(
Kyt , K

ydy
t−1

)
− Hα

(
K

ydy
t−1

)
, (8)
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where the kernel matrices Kyt , K
ydy

t−1
, Kxdx

t−u
∈ R(D−u)×(D−u) hold elements kij = κ(ai, aj).

For Kyt , ai, aj ∈ R are the values of the time series y at times i and j. While for K
ydy

t−1
,

the vectors ai, aj ∈ Rd contain the time embedded version of y, ydy
t , at times i and j,

adjusted according to the time indexing of TE. The same logic holds true for Kxdx
t−u

.
In this study, we hypothesize that the above-described TE estimator, having previ-

ously displayed robustness to common issues that affect connectivity analyses [10], could
overcome many of the problems associated with single-trial phase TE estimation [8]. Hence,
we propose a kernel-based Renyi’s phase TE estimator defined as:

TEθ
κα(x→ y, f ) = Hα

(
K

θ
y,dy
t−1

, K
θx,dx

t−u

)
− Hα

(
Kθt , K

θ
y,dy
t−1

, K
θx,dx

t−u

)
+ Hα

(
Kθt , K

θ
y,dy
t−1

)
− Hα

(
K

θ
y,dy
t−1

)
, (9)

where the kernel matrices Kθt , K
θ

y,dy
t−1

, K
θx,dx

t−u
∈ R(D−u)×(D−u) hold elements analogous to

those of matrices Kyt , K
ydy

t−1
, and Kxdx

t−u
in Equation (8), while replacing the time series x

and y for their instantaneous phase time series θx and θy at frequency f , respectively.

2.3. Phase-Based Effective Connectivity Estimation Approaches Considered in This Study
2.3.1. Phase Transfer Entropy

We obtain phase TE values through three different estimators that allow comput-
ing TE from individual signal pairs. First, the proposed kernel-based Renyi’s phase TE
estimator (TEθ

κα), defined in Equation (9). Second, the Kraskov-Stögbauer-Grassberger
TE estimator (TEθ

KSG), a method that relies on a local approximation of the probability
distributions needed to estimate the entropies in TE from the distances of every data point
to its neighbors [33,34]. Thirdly, an approach termed symbolic TE (TEθ

Sym) that relies on
a symbolization scheme based on ordinal patterns. The symbolization scheme allows
estimating the probabilities involved in the computation of TE directly from the symbols’
relative frequencies [35].

In all cases, θx and θy are obtained by convolving the real-valued time series with a
Morlet wavelet, defined as

h(t, f ) = exp(−t2/2ξ2
t )exp(i2π f t), (10)

where f stands for the filter frequency, ξt = m/2π f is the time domain standard deviation
of the wavelet, and m defines the compromise between time and frequency resolution [8].

2.3.2. Phase Slope Index

The phase slope index (PSI) is an effective brain connectivity measure that assesses
the direction of coupling between two oscillatory signals of similar frequencies [13]. Given
two time series x = {xi}l

t=1 and y = {yi}l
t=1, the PSI is defined as the slope of the phase of

the cross-spectra between x and y:

PSI(x→ y) = =
(

∑
f∈F

C∗xy( f )Cxy( f + d f )

)
, (11)

where Cxy( f ) = Sxy/
√

Sxy, Sxy is the complex coherence, Sxy ∈ C is the cross-spectrum
between x and y, Sxx, Syy ∈ C are the auto-spectrums of x and y, d f ∈ R+ is the frequency
resolution, F stands for the set of frequencies over which the slope is summed, and =
indicates selecting only the imaginary part of the sum [12]. If the PSI, as defined in
Equation (11), is positive, then there is directed interaction from x to y in F. Conversely,
if the PSI is negative, the directed interaction goes from y to x. Note that by definition the
PSI is an antisymmetric measure: PSI(x→ y) = −PSI(y→ x).
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2.3.3. Granger Causality

We also characterize the simulated and EEG data using Granger causality (GC). Like
TE, GC is derived from Wiener’s definition of causality, and the two measures, in their
original forms, are equivalent for Gaussian variables [36]. Briefly, for two stationary time
series x = {xt}T

i=1 and y = {yi}T
t=1, the Granger causality from x to y is defined as:

GC(x→ y) = log
(

var{e}
var{e′}

)
, (12)

where e, e′ ∈ RT−o are vectors holding the residual or prediction errors of two autore-
gressive models, and var{·} stands for the variance operator. The errors in e come from
an autoregressive process of order o that predicts y from its past values alone. On the
other hand, the errors in e′ come from a bivariate autoregressive process of order o that
predicts y from the past values of y and x [11]. If the past of x improves the prediction
of y then var{e} � var{e′} and GC(x → y) � 0, if it does not, then var{e} ≈ var{e′}
and GC(x → y) → 0. In addition, in analogy to the concept of phase TE, we define
GCθ(x → y, f ) = GC(θx → θy), where θx and θy are instantaneous phase time series
obtained by filtering x and y at frequency f , as a measure within the framework of GC that
captures phase-based interactions.

2.4. Kernel-Based Relevance Analysis

When characterizing EEG data through effective brain connectivity measures for
BCI-related applications, two common and related issues can arise. First, all to all channel
connectivity analyses result in a large number of features, many of which may not pro-
vide useful information to discriminate between the conditions of the BCI paradigm of
interest [10]. This can add noise and complexity to any subsequent analysis stage. Second,
estimating such a large number of pairwise channel connectivities can be computationally
expensive, especially for measures such as TE and single-trial TEθ [8], which can hinder
their inclusion in practical BCI systems. Both problems could be addressed by identifying
the set of pairwise channel connectivities that are relevant to discriminate between specific
conditions, which would also lead to a clearer neurophysiological interpretation of the
obtained results [6,10]. To that end, we explore a relevance analysis strategy based on
centered kernel alignment (CKA). CKA allows quantifying the similarity between two
sample spaces by comparing two characterizing kernel functions [29]. First, assume we
have a feature matrix Φ ∈ RN×P, and a corresponding vector of labels l ∈ ZN , with N the
number of observations and P the number of features. For the case of connectivity-based
EEG analysis, each element in Φ holds a connectivity value for a pair of channels, with each
row of Φ containing multiple connectivity values (features) estimated for a single trial
or observation. The corresponding element in l holds a label identifying the condition
associated to that trial. Next, we define two kernel matrices KΦ ∈ RN×N and Kl ∈ RN×N .
The first matrix holds elements kΦ

ij = κΦ(φi, φj) with φi, φj ∈ RP row vectors belonging
to Φ, and

κΦ(φi, φj; σ) = exp

(
−

d2(φi, φj)

2σ2

)
(13)

a radial basis function (RBF) kernel [37], where d2(·, ·) is a distance operator and σ ∈ R+ is
the kernel’s bandwidth. The second matrix has elements kl

ij = κl(li, lj) with li, lj ∈ l, and

κl(li, lj) = δ(li − lj), (14)

a dirac kernel, where δ(·) stands for the Dirac delta. Then, the CKA can be estimated as:

ρ̂(K̄Φ, K̄l) =
〈K̄Φ, K̄l〉F

(〈K̄Φ, K̄Φ〉F〈K̄l , K̄l〉F)1/2 , (15)
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where K̄ ∈ RN×N is the centered version of K, obtained as K̄ = ĨK Ĩ, where Ĩ = I − 1>1/N
is the empirical centering matrix, I ∈ RN×N is the identity matrix, 1 ∈ RN is an all-ones
vector, and 〈K̄, K̄〉F =

√
tr(K̄K̄T) denotes the matrix-based Frobenius norm. Now, for κΦ

we select as distance operator the the Mahalanobis distance

d2
A(φi, φj) =

(
φi −φj

)
ΓΓ>

(
φi −φj

)> (16)

where Γ ∈ RP×Q, Q ≤ P, is a linear projection matrix, and ΓΓ> is the corresponding
inverse covariance matrix. Afterward, the projection matrix Γ is obtained by solving the
following optimization problem:

Γ̂ = arg max
Γ

log(ρ̂(K̄Φ, K̄l ; Γ)), (17)

where the logarithm function is used for mathematical convenience. Γ̂ can be estimated
through standard stochastic gradient descent, as detailed in [38], through the update rule

Γr+1 = Γr − µr
Γ∇Γr (ρ̂(KΦ, Kl)), (18)

where µ ∈ R+ is the step size of the learning rule, and r indicates a time step. Finally,
we quantify the contribution of each feature to the projection matrix Γ̂, which maximizes
the alignment between the feature and label spaces, by building a relevance vector index
$ ∈ RP, whose elements are defined as:

$p =
Q

∑
q=1
|γpq|; ∀p ∈ P, γ ∈ Γ. (19)

$ can then be used to rank the features in Φ according to their discrimination capability.
A high $p value indicates that the p-th feature in Φ, in our case a connection between a
specific pair of channels, is relevant when it comes to distinguishing between the conditions
contained in the label vector l.

3. Experiments

In order to test the performance of our single-trial phase TE estimator we carry out
experiments on simulated data from neural mass models, and on real EEG data, obtained
under motor imagery and visual working memory paradigms. We then compare our results
with those obtained with the alternative approaches for phase-based effective connectivity
estimation detailed in Section 2.3.

3.1. Neural Mass Models

Neural mass models (NMM) are biologically plausible mathematical descriptions
of neural mechanisms [39]. They represent the electrical activity of neural populations
at a macroscopic level through a set of stochastic differential equations [40]. NMMs
allow generating mildly nonlinear time series with properties that resemble the oscillatory
dynamics of electrophysiological signals, such as EEG, and how they change as a result
of coupling between different cortical areas. Therefore, NMMs are useful to study the
behavior of brain connectivity measures that aim to capture such interactions [8,24,40,41].
Figure 1A shows a schematic representation of an NMM with two interacting cortical areas
from which two signals, x and y (see Figure 1B), can be obtained. The parameters C12 and
C21 are known as coupling coefficients, and they determine the strength of the coupling
from Area 1 to Area 2, and from Area 2 to Area 1, respectively. The parameter ν represents
the interaction lag between the two areas, while p1 and p2 are external inputs coming from
other cortical regions.
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Figure 1. (A) Schematic representation of a neural mass model. (B) 1 s long unidirectionally coupled
time series generated by the model. (C) Average power spectrums peaking in the α and lower β

frequency bands.

In this work, we use NMMs to generate interacting time series with known oscil-
latory properties in order to test the performance of the proposed phase TE estimator.
In particular, we test our proposal in terms of its ability to detect directed interactions for
different levels of coupling strength, under the presence of noise and signal mixing, and for
bidirectional narrowband couplings. We proceed as follows: first, we set the model param-
eters describing Areas 1 and 2 as in [40], so as to generate signals with power spectrums
peaking in the α (8 Hz–12 Hz) and lower β bands (12–20 Hz), as depicted in Figure 1C.
Then, in order to generate unidirectionally coupled signals, with interactions from x to
y, we set the parameter C21 to 0 for all simulations. Also, the parameter ν is set to 20 ms,
and the extrinsic inputs p1 and p2 are modeled as Gaussian noise [40]. Afterward, we
generate 50 pairs (trials) of 3 s long signals, using a simulation time step of 1 ms, equivalent
to a sampling frequency of 1000 Hz, for each condition in the three scenarios detailed
in Sections 3.1.1–3.1.3. Next, we select a 2 s long segment from the signals, from 0.5 s to
2.5 s, and downsample them to 250 Hz. Then, we compute connectivity estimates for the
simulated data in the frequency range between 2 Hz and 60 Hz, in steps of 2 Hz. After that,
we obtain net connectivity values, defined as

∆λ(x, y, f ) = λ(x→ y, f )− λ(y→ x, f ), (20)

where λ stands for any of the phase-based effective connectivity measures studied, ex-
cept for the PSI, in which case all subsequent analyses are performed directly on the PSI
values. Lastly, for each condition in the three scenarios and at each frequency evaluated,
we perform permutation tests based on randomized surrogate trials [34,42] to determine
which net couplings or directed connections are statistically significant. The permutation
test employed uses the trial structure of the data to generate surrogate datasets for the null
hypothesis (absence of directed interactions). It does so by shuffling the data from different
trials. The significance level for the tests was set to 3.3× 10−4 after applying the Bonferroni
correction to an initial alpha level of 0.01 in order to account for 30 independent tests, one
for each evaluated frequency per condition.
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3.1.1. Coupling Strength

In order to test the ability of our phase TE estimation method to detect phase-based
directed interactions of varying intensity, we modify the coupling strength between the
simulated signals, x and y, by varying the parameter C12 in the range {0, 0.2, 0.5, 0.8}, with 0
indicating the absence of coupling and 0.8 a strong interaction between the two signals.

3.1.2. Noise and Signal Mixing

To asses the robustness of our proposal to realistic levels of noise and signal mixing,
we do the following: we generate a noise time series η, with the same power spectrum of
x, through the methodology proposed in [8]. Then, we add x and η to generate a noisy
version of x, xη = x + 10−

SNR
20 η, where SNR is the signal to noise ratio. Likewise for y.

Then, we mix xη and yη to simulate one of the effects of volume conduction, by doing
xw

η =
(
1− w

2
)
xη +

(w
2
)
yη, and yw

η =
(
1− w

2
)
yη +

(w
2
)
xη, with w the mixing strength. We

set the parameters SNR and w to 3 and 0.25 respectively, based on the results obtained
in [8] for realistic values of noise and mixing for EEG signals. The coupling coefficient C12
is held constant at a value of 0.5 to simulate couplings of medium strength.

3.1.3. Narrowband Bidirectional Interactions

In this experiment, we aim to evaluate how our proposal deals with bidirectional
interactions of localized frequency content. Particularly, we want to assess its performance
for signals x and y containing a directed interaction from x to y at 10 Hz and an interaction
in the opposite direction, from y to x, at 40 Hz. To generate such signals, first, we modify
the model parameters of Area 2 so that it produces a signal y with a power spectrum
peaking in the γ band [39]. The power spectrum of x remains as before. The coupling
coefficient C12 is again held constant at a value of 0.5. The change in the parameters of
Area 2 leads to strong directed interactions from x to y around 10 Hz and 40 Hz. Then, we
use a Morlet wavelet (Equation (10)) to filter both x and y at those frequencies (10 Hz and
40 Hz). The obtained real-valued narrowband time series are then combined as follows:
x∗ = x10 Hz + y40 Hz and y∗ = y10 Hz + x40 Hz. Next, x∗ and y∗ are added to broadband
noise generated following the same approach described in Section 3.1.2, with an SNR of 6.

3.2. EEG Data

In order to test the performance of our phase TE estimator in the context of BCI,
we obtain effective connectivity features from EEG signals recorded under two different
cognitive paradigms: the first one consisting of motor imagery (MI) tasks and the second
one of a change detection task designed to study working memory (WM). Our aims are
to set up classification systems that allow discriminating between the conditions in each
paradigm, using as inputs relevant directed interactions among EEG signals and then
evaluate their performance in relation to the connectivity measures used to train them.
To those ends, we employ two publicly available databases: the BCI Competition IV
database 2a (http://www.bbci.de/competition/iv/index.html, accessed on 2 June 2021)
and a database from brain activity during visual working memory (https://data.mendeley.
com/datasets/j2v7btchdy/2, accessed on 2 June 2021).

3.2.1. Motor Imagery

Motor imagery (MI) is the process of mentally rehearsing a motor action, such as
moving a limb, without actually executing it [43]. The BCI Competition IV database 2a [44]
comprises EEG data from 9 healthy subjects recorded during an MI paradigm consisting of
four different MI tasks, namely, imagining the movement of the left hand, the right hand,
both feet, or the tongue. Each trial of the paradigm starts with a fixation cross displayed
on a computer screen, along with a beep. At second 2, a visual cue appears on the screen
for a period of 1.25 s (an arrow pointing left, right, down, or up, corresponding to one of
the four MI tasks). The cue prompts the subject to perform the indicated MI task until
the cross vanishes from the screen at second 6. A representation of the paradigm’s time

http://www.bbci.de/competition/iv/index.html
https://data.mendeley.com/datasets/j2v7btchdy/2
https://data.mendeley.com/datasets/j2v7btchdy/2
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course is shown in Figure 2A. Each subject performed 144 trials per MI task. The EEG data
are acquired at a sampling rate of 250 Hz, from 22 Ag/AgCl electrodes (C = 22) placed
according to the international 10/20 system, as depicted in Figure 2B. Next, the data are
bandpass-filtered between 0.5 Hz and 100 Hz. A 50 Hz Notch filter is also applied. For each
subject, the database contains a training dataset and a testing dataset, obtained following
the same experimental paradigm [44]. In this study, we consider a bi-class classification
problem involving the left and right hand MI tasks, so we drop the trials associated with
the feet and the tongue. Afterward, we also drop the trials marked for rejection in the
database itself [44]. Then, for all trials we select a 2 s long time window stretching from
second 3 to second 5 (M = 500 samples), as schematized in Figure 2A. Finally, we compute
the surface Laplacian of each remaining trial through the spherical spline method for source
current density estimation, in order to reduce the deleterious effects of volume conduction
on connectivity analyses [21,45,46].
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Figure 2. (A) Schematic representation of the MI protocol. (B) EEG channel montage used for the
acquisition of the MI database.

3.2.2. Working Memory

The concept of working memory (WM) refers to a cognitive system of limited capacity
that allows for temporary storage and manipulation of information [47]. The database from
brain activity during visual working memory, presented in [48], contains EEG data recorded
from twenty-three subjects, with normal or corrected-to-normal vision, and without color-
vision deficiency, while performing multiple trials of a change detection task [49]. The task
consists of remembering the colors of a set of squares, termed memory array, and then
comparing them with the colors of a second set of squares located in the same positions,
termed test array. A trial of the task begins with an arrow indicating either the left or the
right side of the screen. Then, a memory array appears on the screen for 0.1 s. For every
trial, memory arrays are displayed on both hemifields, but the subject must remember
only those appearing on the side indicated by the arrow cue. Next, after a retention period
lasting 0.9 s, a test array appears. The subject then reports if the colors of all the items in
the memory and test arrays match. The task has three levels according to the number of
elements in the memory array: low memory load (one square), medium memory load (two
squares), and high memory load (four squares). A representation of the above-described
experimental paradigm is depicted in Figure 3A. The color of one of the squares in the test
array differs from its counterpart in the memory array in 50% of the trials. Each subject
performed a total of 96 trials, with 32 trials for each memory load level. The EEG data are
acquired at a sampling rate of 2048 Hz, using 64 electrodes (Biosemi ActiveTwo) arranged
according to the international 10/20 extended system, as depicted in Figure 2B. Besides the
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EEG data, the database provides recordings from four EOG channels and two externals
electrodes located on the left and right mastoids.
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Figure 3. (A) Schematic representation of the WM protocol. (B) EEG channel montage used for the
acquisition of the WM database.

In this study, we perform the following preprocessing steps before any further data
analysis. First, we re-reference the data to the average of the mastoid channels. Next, we
bandpass-filter the data between 0.01 Hz and 20 Hz using a Butterworth filter of order 2.
Afterward, we extract the trial information from the continuous EEG data using a 1.4 s
squared window. Each trial segment starts 0.2 s before the presentation of the memory
array. Then, we perform a visual inspection of the data and discard two subjects (subjects
number 11 and 17) because of the presence of strong artifacts in a very large number of trials.
Subjects number 22 and 23 are reassigned as subjects 17 and 11, respectively. After that,
we remove ocular artifacts from the EEG data by performing independent component
analysis (ICA) on it and then eliminating the components that more closely resemble the
information provided by the EOG data [48]. Then, we discard all incorrect trials, i.e., trials
for which the subjects incorrectly matched the memory and test arrays. Next, we select
32 out of the 64 channels in the EEG data (C = 32), as shown in Figure 3B. Then, we
downsample the data to 1024 Hz, and segment, for each trial, the time window starting
0.3 s after the onset of the memory array and ending just before the presentation of the
test array (see Figure 3A). The 0.7 s long segments (M = 717) cover most of the retention
interval, the period when the subjects should maintain the stimulus information in their
working memories, while leaving out any purely sensory responses elicited immediately
after the presentation of the stimulus. Finally, with the aim of reducing the presence of
spurious connections associated with volume conduction effects, we compute the surface
Laplacian of each trial.

3.2.3. Classification Setup
Feature Extraction

Let Ψ = {Xn ∈ RC×M}N
n=1 be an EEG set holding N trials from either an MI or a WM

dataset, recorded from a single subject, where C stands for the number of channels and
M corresponds to the number of samples. In addition, let {ln}N

n=1 be a set whose n-th
element is the label associated with trial Xn. For the MI database ln can take the values
of 1 and 2, corresponding to right hand and left hand motor imagination, respectively.
Similarly, for the WM database, ln can take the values of 1, 2, and 3 corresponding to low,
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medium, and high memory loads. In both cases, our goal is to estimate the class label from
relevant effective connectivity features extracted from Xn. Because of the results obtained
for the simulated data (see Section 4.1 for details), here we consider features from only
three approaches for phase-based effective connectivity estimation, namely, TEθ

κα, GCθ ,
and PSI. Additionally, we also characterize the data through the real-valued versions of
TEκα and GC.

For the real-valued effective connectivity measures considered, we do the following:
let λ(xc → xc′) be a measure of effective connectivity between channels xc, xc′ ∈ RM.
By computing λ(xc → xc′) for each pairwise combination of channels in Xn we obtain a
connectivity matrix Λ ∈ RC×C. In the case when c = c′, we set λ(xc → xc′) = 0. Then, we
normalize Λ to the range [0, 1]. After performing the above procedure for the N trials, we
get set of connectivity matrices {Λn ∈ RC×C}N

n=1. Then, we apply vector concatenation
to Λn to yield a vector φn ∈ R1×(C×C). Next, we stack the N vectors φn, corresponding to
each trial, to obtain a matrix Φ ∈ RN×(C×C) holding all directed interactions, estimated
through λ, for the EEG set Ψ. A graphical representation of the above-described steps,
as well as of our overall classification setup, is depicted in Figure 4.

EEG data

Ψ

Connectivity
estimation

N
C

CΛn

N

C × C

Φ CKA SVC

Feature
selection Classification

Figure 4. Schematic representation of our overall classification setup.

For the phase-based effective connectivity measures of interest, we proceed in a
similar fashion: let λθ(xc → xc′ , f ) be a measure of phase-based effective connectivity
between channels xc, xc′ at frequency f . By computing λθ(xc → xc′ , f ) for each pairwise
combination of channels in Xn we obtain a connectivity matrix Λ( f ) ∈ RC×C (when c = c′,
we set λθ(xc → xc′ , f ) = 0). For the MI database, we vary the values of f in the range from
8 Hz to 18 Hz, in 2 Hz steps, since activity in that frequency range has been associated
with MI tasks [43]. Then we define two bandwidths of interest ∆ f ∈ {α ∈ [8− 12], βl ∈
[14− 18]}Hz. Afterward, we average the matrices Λ( f ) within each bandwidth, normalize
the resulting matrices to the range [0, 1], and stack them together, so that for each trial
we have a connectivity matrix Λ′ ∈ RC×C×2. Therefore, for the N trials, we get set of
connectivity matrices {Λ′n ∈ RC×C×2}N

n=1. Then, we apply vector concatenation to Λ′n to
yield a vector φn ∈ R1×(C×C×2). After that, we stack the N vectors φn in order to obtain a
single matrix Φ ∈ RN×(C×C×2) characterizing Ψ for the MI data. For the WM we follow the
same steps, only that in this case we vary the values of f in the range from 4 Hz to 18 Hz,
in 2 Hz steps, since oscillatory activity at those frequencies has been shown to play a role in
the interactions between different brain regions during WM [50,51]. Next, we define three
bandwidths of interest ∆ f ∈ {θ ∈ [4− 6], α ∈ [8− 12], βl ∈ [14− 18]} Hz, which leads to a
connectivity matrix Λ′ ∈ RC×C×3 for each trial and ultimately to a matrix Φ ∈ RN×(C×C×3)

characterizing Ψ for the WM data. Note that since the PSI is an antisymmetric connectivity
measure, we only use the upper triangular part of the connectivity matrix associated with
each trial to build Φ.

Feature Selection and Classification

After characterizing the EEG data, either through real-valued or phase-based effective
connectivity measures, we set up a subject-dependent classification system for the MI and
WM databases.

For the MI data, we do the following: Since the MI database has training and testing
datasets, we divide our classification system into a training-validation stage and a testing
stage. For the training-validation stage, we first specify a cross-validation scheme of
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10 iterations. For each iteration, 70% of the trials of the training dataset are randomly
assigned to a training set and the remaining 30% to a validation set. Then, we use CKA
(see Section 2.4) over the connectivity features obtained from the training set to generate
a relevance vector $ ∈ [0, 1]P, where P equals the number of features in Φ. P varies
according to the connectivity measure used to characterize the data. Then, we use $ to
rank Φ. Next, we select a varying percentage of the ranked features, from 5% to 100%
in 5% steps, and input them to the classification algorithm. The features associated with
the highest values of $ are input first, and as the percentage of features increases those
associated with lower values of $ are progressively included. In this work, we use a support
vector classifier (SVC) with an RBF kernel [52]. All classification parameters, including the
percentage of discriminant features, are tuned at this stage through a grid search. We select
the parameters according to the classification accuracy, aiming to improve the system’s
performance. Then, for the testing stage, we train an SVC using the connectivity features
from all trials in the training dataset as well as the parameters found in the previous stage.
Lastly, we quantify the performance of the trained system in terms of the classification
accuracy, obtained after predicting the MI task class labels of the testing dataset from its
connectivity features.

The classification system we set up for the WM data closely resembles the one pre-
viously detailed for the MI data, with three changes. First, the WM database consists
of one set of data for each subject, instead of two, so there is only a training-validation
stage. Second, given the reduced number of trials available for each memory load level,
each of the 10 iterations of the cross-validation scheme follows an 80–20% split for the
training and validation sets (instead of a 70–30% split). Third, since the results provided
by CKA are not stable for the low number of trials available from each subject (27.7 trials
per class, on average), we opted to add an auxiliary cross-validation step, with the same
characteristics as the one described above, and use it to estimate a single relevance vector
$̄, obtained as the average of the relevance vectors of each data split. Then, we use $̄ to
perform feature selection in every iteration of the main cross-validation scheme.

3.3. Parameter Selection

We used in-house Python implementations of the algorithms for all the connectivity
measures studied (The TEθ

κα implementation is available at https://github.com/ide270
4/Kernel_Phase_Transfer_Entropy, accessed on 13 July 2021), except for TEθ

KSG. In that
case, we used the implementation provided by the open access toolbox TRENTOOL, a TE
estimation and analysis toolbox for Matlab [34].

Regarding the selection of parameters involved in the different effective connectivity
estimation methods, we proceeded as follows: For the TE methods, we estimated all
parameters from the real-valued time series, i.e., before extracting the phase time series.
The embedding delay τ was set to 1 autocorrelation time (ACT), as proposed in [31].
The embedding dimension d was selected from the range d = {1, 2, . . . , 10} using Cao’s
criterion [34,53]. Note that for any signal pair, the embedding parameters selected are those
of the driven or target time series, i.e., to estimate TE(x→ y) we use for both time series the
embedding parameters found for y. The interaction delay u was set as the value generating
the largest TE from ranges that varied depending on the experiment: u = {1, 2, . . . , 10}
for the NMMs, u = {1, 4, . . . , 25} for the MI data, and u = {50, 60, . . . , 250} for the WM
data. Note that the meaning of u in terms of the time delay of the directed interaction
between the driving and driven systems is associated with the sampling frequency, e.g., u =
{1, 2, . . . , 10} for data sampled at 250 Hz translates to a time range between 4 ms and 40 ms.
For TEθ

κα we select a value of α = 2, which is neutral to weighting, a convenient choice
when there is no previous knowledge about the values of the α parameter better suited
for a particular application [10,28]. In addition, as kernel function, we employ an RBF
kernel with Euclidean distance (see Equation (13)). The bandwidth σ was set in each
case as the median distance of the data [54]. For TEθ

KSG the Theiler correction window
and the number of neighbors were left at their default values in TRENTOOL, 4 and 1 ACT,

https://github.com/ide2704/Kernel_Phase_Transfer_Entropy
https://github.com/ide2704/Kernel_Phase_Transfer_Entropy
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respectively [34]. For the GC methods the order of the autoregressive models o was selected
from the range o = {1, 3, . . . , 9} using Akaike information criterion [55,56]. Furthermore,
in order to estimate the PSI we employed a sliding window 5 frequency bins long (3 bins
long for the WM data), centered on the frequency of interest. Finally, for all the connectivity
methods involving the extraction of phase time series through Morlet wavelets, we varied
the parameter m (see Equation (10)) from 3 to 10 in a logarithmic scale, according to the
selected frequency of the filter.

4. Results and Discussion
4.1. Neural Mass Models Results

The experiments described in Section 3.1 are intended to assess whether the phase-
based connectivity measures considered in this study correctly detect the direction of
interaction between two time series of known oscillatory properties. Figure 5 presents
the results obtained from such experiments. Namely, column A shows the connectivity
values obtained for different levels of coupling strength, column B compares the con-
nectivities estimated for ideal signals with those of signals contaminated with noise and
mixing, and column C displays the results obtained for bidirectional narrowband couplings.
The rows in Figure 5 correspond to each of the phase-based connectivity measures stud-
ied. The first row contains average PSI values computed on the frequency range between
2 Hz and 60 Hz, while rows two to five display average net connectivity values for TEθ

κα,
TEθ

KSG, TEθ
Sym, and GCθ , respectively. Circled values indicate statistically significant con-

nectivities at a particular frequency, according to a permutation test based on randomized
surrogate trials. The test identifies connectivity values that are, on average, significantly
different from those expected for that connectivity measure applied to non-interacting
signals. For the three experiments involving simulated data from NMMs, we use the PSI as
a comparison standard, since it is a robust and well-stablished measure of linear directed
interactions defined in terms of phase relations [12,13]. Therefore, it is suited to analyze
the coupled, mildly nonlinear time series generated by NMMs.

Regarding the first experiment, which modifies the coupling strength between the
simulated signals, the obtained results (Figure 5, column A) show that all the measures
studied satisfactorily detect the coupling direction of the simulated data. Note that since
we set the NMMs to generate unidirectional interactions from x to y, and because of the
way we defined ∆λ, then all net connectivity values for the simulated coupled signals
should be positive. The same is true for the PSI(x→ y). On the other hand, only the PSI,
TEθ

κα, and GCθ fulfill the criteria for an overall description of the phase-based interactions
present in the data. First, we observe higher net connectivity values at higher coupling
strengths, that is to say, stronger interactions lead to larger connectivity estimates. Second,
for each coupling strength, there are higher net connectivity values around the frequencies
corresponding to the main oscillatory components of the time series generated by the
NMMs, in this case, oscillations in the range between 8 Hz and 20 Hz. Thirdly, there
are statistically significant results for all the coupling strengths explored, except for non-
interacting time series (C12 = 0). TEθ

KSG does not capture statistically significant interactions
for a coupling coefficient value of 0.2, indicating a lower sensitivity to weak couplings.
While TEθ

Sym exhibits a very distorted connectivity profile when compared with the PSI. In
addition, it has much larger standard deviations for all the coupling strengths considered.

The second experiment assesses the robustness of our proposal to realistic levels
of noise and signal mixing, two sources of signal degradation that can lead to spurious
connectivity results. In electrophysiological signals, such as EEG, signal mixing arises
as a result of field spread, while noise is the result of technical and physiological arti-
facts [9,57,58]. The results in Figure 5, column B, show that PSI, TEθ

κα, and GCθ capture
statistically significant interactions in the frequencies of interest for both the ideal (no noise
or signal mixing) and realistic conditions. The smaller connectivity values for the data
contaminated with noise and signal mixing, as compared with the ideal signals, are mostly
explained by the reduction in asymmetry between the driving and driven signals caused by
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mixing [8]. On the contrary, we observe that neither TEθ
Sym nor TEθ

KSG produce statistically
significant results under the realistic scenario, indicating that those estimators are less
robust to signal degradation.
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Figure 5. Obtained results for the experiments performed using simulated data from NMMs. Column (A) shows the
average connectivity values obtained for different levels of coupling strength. Column (B) presents the average connectivity
values estimated for ideal signals and for signals contaminated with noise and signal mixing. Column (C) displays the
average connectivity values obtained for bidirectional narrowband couplings. The rows correspond to each of the net
phase-based effective connectivity estimation approaches considered for the aforementioned experiments. Circled values
indicate statistically significant results at a Bonferroni-corrected alpha level of 3.3× 10−4, according to a permutation test
based on randomized surrogate trials.



Appl. Sci. 2021, 11, 6689 16 of 26

Finally, the third experiment aims to evaluate how our proposal deals with bidirec-
tional interactions of localized frequency content. Because of our experimental setup,
the obtained results should exhibit a positive deflection around 10 Hz in order to capture
the directed interaction from x to y and a negative deflection around 40 Hz to represent
the directed interaction from y to x. Figure 5, column C, shows that both PSI and TEθ

κα

successfully detect the change in the direction of interaction in localized frequency bands,
with statistically significant connectivity values around the frequencies of interest. How-
ever, under this scenario, TEθ

κα is less frequency specific for high-frequency interactions
than PSI, with statistically significant connections present for a large range of frequency
values around 40 Hz. This is probably due to the filtering step involved in the estimation of
TEθ

κα, while PSI is directly defined on the data spectra. Additionally, TEθ
KSG and TEθ

Sym fail

to produce any significant results, while GCθ shows a statistically significant, non-existing
coupling from y to x for frequencies under 10 Hz. Note that, ultimately, the permutation
test indicates whether the connectivity values obtained are unlikely to be the result of
chance and not whether they correctly capture the directed interactions present in the data.
In this case, the statistically significant results mean that GCθ consistently found a directed
interaction from y to x in the range mentioned before.

The results discussed above indicate that the proposed phase TE estimator is able
to detect directed interactions between time series resembling electrophysiological data
for different levels of coupling strength, under the presence of noise and signal mixing
and for bidirectional narrowband couplings. Furthermore, they show that it is competitive
with well-established approaches for phase-based net connectivity estimation, such as
PSI, in the case of weakly nonlinear signals. Lastly, our results also show that commonly
used single-trial TE estimators, such TEKSG and TESym, are ill-suited to measure directed
interactions between instantaneous phase time series.

4.2. EEG Data Results

Table 1 presents the average accuracies achieved by the proposed classification sys-
tems for both the MI and WM databases, for each effective connectivity method studied.
For the MI database, in the training-validation stage, the classifier based on TEθ

κα features
exhibited the highest average performance, closely followed by the one based on GCθ .
In the testing stage, we observe the same overall accuracy ranking, although a smaller drop
in the classification accuracy occurs for TEθ

κα than for GCθ , which points to a better general-
ization capacity by the system trained using features extracted through phase TE. For the
WM database, the classifier trained from TEθ

κα features also displays the highest average
accuracy. However, in this case, there is a large gap in performance between the TEθ

κα-based
classification system and the closest results from an alternative approach. Furthermore,
the results in Table 1 show a consistent improvement in performance between the classifiers
that use real-valued TE estimates and those that are trained from phase TE values. They
also show relatively low accuracies for the classifiers trained using PSI features. We believe
the latter can be explained by two factors. First, by definition, the PSI is unable to explicitly
detect bidirectional interactions. It measures connectivity in terms of lead/lag relations,
which leads to ambiguity regarding the meaning of PSI values close to zero, since they can
be the result of either the lack of interaction or evenly balanced bidirectional connections.
If the relevant information to discriminate among the conditions of a cognitive paradigm
is related to the bidirectionality of interactions, such as those present in WM [50,51], then
the PSI might not be an adequate characterization strategy. Secondly, the PSI, like GC, is a
linear measure; its performance degrades for strongly nonlinear phase relationships.

In the sections below, we detail and further discuss the results obtained for each database.
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Table 1. MI and WM classification results in terms of the classification accuracy for all the effective
connectivity measures considered.

Motor Imagery (acc %) Working Memory (acc %)

Cross-Validation Testing Cross-Validation

GC [11] 64.3± 11.7 57.1± 11.0 53.0± 7.4
TEκα[10] 65.5± 11.4 62.8± 11.7 67.5± 4.2

PSI [12,51] 62.4± 7.8 58.8± 8.3 75.2± 5.2
GCθ 67.0± 11.9 63.5± 14.4 74.5± 4.4
TEθ

κα 70.4 ± 12.5 69.0 ± 14.8 93.0 ± 5.9

4.2.1. Motor Imagery Results

Figure 6 depicts the average classification accuracy for all subjects in MI database as a
function of the number of selected features during the training-validation stage, for TEκα

and TEθ
κα. These results show there is a small improvement in the ability to discriminate

between the MI tasks when using features extracted through phase TE, as compared with
real-valued TE. In addition, they reveal that the CKA-based feature selection strategy
successfully identified the most relevant connections for MI task classification. That is to
say, the classification system has a stable performance even for a very reduced number of
connectivity features. This is fundamental for any practical BCI application that intends
to use phase TE as a characterization strategy, since estimating single-trial phase TE is
computationally expensive [8]. Therefore, it is important to reduce as much as possible
the number of channel pair connectivity features required to achieve peak classification
performance. Additionally, it is important to highlight that while classification accuracies in
Figure 6, and in Table 1, are in the same range of those obtained through other connectivity-
based characterization approaches [10,23], they are far below those obtained from methods
such as common spatial patterns [59–61]. A possible explanation is that bivariate TE
might be more robust at describing long-range interactions rather than local ones [41],
like those arising from MI-related activity, centered on the sensorimotor area. In addition,
the differences with the results in [10], where we used TEκα to characterize the same
database, lay mostly in the fact that in this study we select and analyze one 2 s long
time window covering the period right after the end of the visual cue, while in [10] we
report results from multiple overlapping windows covering the entirety of the task. Lastly,
the large standard deviations from the average accuracies in Figure 6 point to disparate
performances for different subjects.
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Figure 6. Average classification accuracies, and their standard deviations, for all subjects in the MI
database as a function of the number features selected to train the classifiers.
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Figure 7A shows the highest average classification accuracy per subject for TEθ
κα,

GCθ and PSI, during the training-validation stage. The subjects are ordered from highest
to lowest performance. The analogous information for the testing stage is presented in
Figure 7. In both stages, the TEθ

κα-based classifier performs slightly better than those based
on alternative connectivity estimation strategies in most subjects. In addition, as inferred
from Figure 6, there are large variations in performance for the different subjects in the
database, consistent across the two classification stages. This behavior has been reported
elsewhere [10,59–62].
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Figure 7. (A) Highest average classification accuracy for each subject in the MI database during
the training-validation stage. (B) Accuracies obtained for each subject during the testing stage.
The subjects are ordered from highest to lowest performance according to the accuracies obtained for
the TEθ

κα-based classifier in the training-validation stage.

In order to gain insight into the observed performance differences, in the case of
TEθ

κα, we exploited the second advantage provided by the CKA-based relevance analysis.
The relevance vector index $ not only allows us to perform feature selection but also
provides a one-to-one relevance mapping to each connectivity feature. That is to say, we
can reconstruct normalized relevance connectivity matrices by properly reshaping $, so
as to visualize the connectivity pairs and frequency ranges that are discriminant for the
task of interest. In that line, we followed the approach proposed in [23] to interpret the
relevance information by clustering the subjects according to common relevance patterns.

First, for each subject and frequency band of interest, we obtained a relevance vector
$n,∆ f ∈ RC whose elements were associated with each node (EEG channel) in the data by
computing the relevance of the total information flow of every node. Such magnitude was
defined as the sum of the relevance values $, obtained from all data in the training dataset,
corresponding to all directed interactions targeting and originating from a particular node.
Then, we concatenated the vectors $n,∆ f ∈ RC for all frequency bands to obtain a single
relevance vector $n ∈ R2C. Next, we reduced the dimension of the relevance vectors
$n of each subject through t-Distributed Stochastic Neighbor Embedding (t-SNE), which
preserves the spatial relationships existing in the initial higher-dimensional space [63].
Figure 8A shows the obtained two-dimensional representation of the relevance vectors for
each subject in the MI database, colored according to their respective classification accuracy.
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Note that the distribution of the subjects in the plot is related to their classification accura-
cies. This indicates that shared relevance patterns are related to the obtained classification
results, meaning that subjects with similar $n had close performances. Then, we grouped
the subjects into two clusters using the k-means algorithm. The number of clusters was
selected by visual inspection of the t-SNE results. Figure 8B displays the two groups,
termed G. I and G. II. The TEθ

κα-based classifier has average accuracies of 0.59± 0.05 and
0.80± 0.09 for the subjects in G. I and G. II, respectively.

50

60

70

80 G. I
G. II

A B

Figure 8. (A) Two-dimensional representation of the relevance vectors for each subject in the MI
database obtained after applying t-SNE on $n. (B) Groups identified by k-means. For the TEθ

κα-based
classifier the subjects grouped in G. I have an average accuracy of 0.59± 0.05, while those in G. II
have an average accuracy of 0.80± 0.09.

Finally, Figure 9 shows the average nodal relevance, as defined by $n, and the most
relevant connectivities for each group, discriminated by frequency band. For G. I we
observe high node relevance mostly in the α band in right fronto-central, left-central,
and centro-parietal regions. The most relevant connections in the α band tend to originate
or target fronto-central nodes, while the ones in the βl band favor parietal and centro-
parietal areas. For G. II, the node relevance is concentrated around the right centro-parietal
region, particularly channel CP4, for both frequency bands. The most relevant connections
in the α band involve short-range interactions mainly between centro-parietal and central
regions. The most relevant connections in the βl band, which display higher values than
those of α, originate from CP3 and CP4 and target central and fronto-central nodes. Since
the G. II includes all the subjects with good classification performances, we can conclude
that the information that allows to satisfactorily classify the left and right hand MI tasks
from TEθ

κα features corresponds mostly to the incoming and outgoing information flow
coded in the phases of the oscillatory activity in the centro-parietal region. These results
are in line, in terms of spatial location, with those we found in [10], and with physiological
interpretations that argue that MI activates motor representations in the parietal areal and
the premotor cortex [64].
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Figure 9. Topoplots of the average node (channel) relevance for each group of clustered subjects and
frequency band of interest in the MI database (see Figure 8). The arrows represent the most relevant
connectivities for each group. For visualization purposes, only 3% of the connections, those with the
highest average relevance values per group, are depicted.

4.2.2. Working Memory Results

Figure 10 presents the average classification accuracy for all subjects in the WM
database as a function of the number of selected features, for TEκα and TEθ

κα. The results
show that the classifier trained from phase TE features markedly outperforms the one
trained using real-valued TE estimates, as long as the appropriate percentage of features is
selected. This difference might be attributed to the hypothesized phase-based nature of
directed interactions during WM tasks [35,50], which would be better captured by phase
TE. Furthermore, both accuracy curves highlight the importance of feature selection, since
they show a steep performance degradation as more features are used to train the classifiers.
In this case, the CKA-based relevance analysis not only allows reducing the number of
features needed to successfully classify the three cognitive load levels present in the WM
data but also prevents the classifiers from being confounded by connections that do not
hold relevant information to discriminate between the target conditions.

20 40 60 80 100
Number of features (%)

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

TE
TE

Figure 10. Average classification accuracies, and their standard deviations, for all subjects in the WM
database as a function of the number features selected to train the classifiers.

Figure 11 depicts the highest average classification accuracy per subject for TEθ
κα, GCθ

and PSI. The subjects are ordered from highest to lowest performance. Unlike the results
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obtained for the MI database, we do not observe an underperforming group of subjects, es-
pecially after considering the fact that for the WM database the classifiers must discriminate
among three classes instead of two. On the other hand, in this case, the TEθ

κα-based classifier
largely outperforms those based on alternative connectivity estimation strategies in most
subjects. Here, we must point out that the auxiliary cross-validation step introduced for
feature selection, aiming to obtain stable CKA results for the reduced number of available
trials, leads to data leakage. This is because, ultimately, it requires all the available data
to estimate $̄, which renders it a nonviable approach for practical BCI implementations
and can inflate performance evaluations, such as the accuracy results previously discussed.
However, since the same strategy was implemented for all classification systems and
connectivity measures considered for the WM database, comparisons among them remain
valid, and the relative differences in performance are still informative.
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Figure 11. Highest average classification accuracy for each subject in the WM database. The subjects are ordered from
highest to lowest performance according to the accuracies obtained for the TEθ

κα-based classifier.

In order to elucidate the pairwise connectivities, and their corresponding frequency
bands, that allow the TEθ

κα-based classification system to successfully discriminate among
different memory loads, we proceeded as described in Section 4.2.1 and from $̄ obtained
a node relevance vector $̄n ∈ R3C. Then, we applied t-SNE on $̄n. Figure 12A shows
the obtained two-dimensional representation of the relevance vectors for each subject in
the WM database. Unlike the results observed before for the MI database, there is not
a clear association between the subject distribution on the plot and their classification
accuracies. Nonetheless, Figure 12A shows the presence of well-defined groups sharing
similar relevance patterns. As before, we grouped the subjects into clusters using the
k-means algorithm. The number of clusters was selected as three by visual inspection
of the t-SNE results. Figure 12B displays the three groups, termed G. I, G. II, and G. III.
The TEθ

κα-based classifier has average accuracies of 0.94± 0.04, 0.92± 0.08, and 0.93± 0.08
for the subjects in G. I, G. II, and G. III, respectively.

Lastly, Figure 13 shows the average nodal relevance, as defined by $n, and the most
relevant connectivities for each group, discriminated by frequency band. For G. I we
observe widespread high node relevance in both the α and βl bands and low node relevance
in the θ band. Most relevant connections are present in the βl band with many connections
originating in the parieto-occipital region and targeting frontal and centro-frontal areas.
For G. II and G. III node relevance is more evenly distributed across the three frequency
bands considered. Spatially, it is more prominent around some pre-frontal, frontal, centro-
parietal, and parietal nodes. In terms of the most relevant connections, we observe long-
range contralateral interactions involving mostly the regions previously listed, as well as
some connections to and from temporal areas. Therefore, we argue that the information
flow between frontal, parietal, and temporal regions, coded in the phases of oscillatory
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activity in the θ, α, and βl bands, is what allowed us to discriminate among different
memory loads from TEθ

κα features. These results agree with several studies that identify
fronto-parietal and fronto-temporal neural circuits operating in frequency ranges spanning
from θ to β as key during the activation of working memory [35,50,51].
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Figure 12. (A) Two-dimensional representation of the relevance vectors for each subject in the WM
database obtained after applying t-SNE on $n. (B) Groups identified by k-means. For the TEθ

κα-based
classifier the subjects grouped in G. I, have an average accuracy of 0.94± 0.04, while those in G. II
and G.III have average accuracies of 0.92± 0.08 and 0.93± 0.08, respectively.
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Figure 13. Topoplots of the average node (channel) relevance for each group of clustered subjects
and frequency band of interest in the WM database (see Figure 12). The arrows represent the most
relevant connectivities for each group. For visualization purposes, only the 1% of the connections,
those with the highest average relevance values per group, are depicted.

4.3. Limitations

In this study, we employed Morlet wavelets as filters for instantaneous phase extrac-
tion prior to phase TE estimation, as proposed in [8]. However, as discussed by the authors
in [8], the choice of filter can influence the behavior of phase TE. This is an aspect we have
yet to explore for our proposal. In the same line, in [42] the authors showed, using the
Kraskov-Stögbauer-Grassberger TE estimator on real-valued filtered signals, that filtering
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and downsampling are deleterious for TE, since they can lead to altered time delays and
hide certain causal interactions. Furthermore, from a conceptual perspective, while filtering
dampens spectral power, it does not always remove the information contained in specific
frequencies [25]. This would hinder the isolation of frequency specific interactions in TE
estimates from real-valued filtered data, the most common approach to obtain spectrally
resolved TE values. Whether those effects are also present in the case of phase TE is yet
to be analyzed; however, as pointed out in [25], phase TE is conceptually different from
spectrally resolved TE. Additionally, the results obtained with our phase TE estimator for
the NMM data closely follow those obtained with the PSI, a measure that does not rely on
data filtering, which points to a certain degree of robustness to the negative effects that
might be associated with phase extraction through complex filtering. A related issue is the
possible effects on our proposal of the preprocessing pipelines employed on the EEG data,
which involve spectral and spatial filtering. Regarding the former, we have not studied
its effects in this work; while for the latter, surface Laplacian positively impacted the
discrimination capability of the connectivity features obtained from the different measures
considered.

In addition, we are yet to examine the effects of the parameter α in Renyi’s entropy
on the proposed phase TE estimator. In [10], we showed that the choice of α indeed
modified the performance of the TEκα. The same must hold true for TEθ

κα. Additionally, we
selected the autocorrelation time and Cao’s criterion to obtain the embedding parameters
for all the TE estimation methods. More complex approaches such as time-delayed mutual
information and Ragwitz criterion may yield better results [34]. However, since our
motivation was to propose a single-trial phase TE estimator suited as characterization
method for BCI applications, the choice of simple parameter estimation methods is justified.
As a matter of fact, a practical implementation of a phase TE-based BCI system would
likely require further simplifications regarding parameter estimation, in order to facilitate
the computation of phase TE in real time. Furthermore, our proposed phase TE estimator
inherits the limitations of TEκα [10]. Namely, it is ill suited to analyze long time series
(several thousands of data points) because of the increase in computational cost, especially
for non-integer values of the parameter α. In addition, it assumes stationary or weakly
non-stationary data. Finally, since the definition of causality underlying TE is observational,
the proposed phase TE estimator is blind to unobserved common causes, including those
resulting from different driving delays.

5. Conclusions

In this work, we proposed a single-trial phase TE estimator. Our method combines
a kernel-based TE estimation approach, which defines effectivity connectivity as a linear
combination of Renyi’s entropy measures of order α, with instantaneous phase time series
extracted from the data under analysis. We tested the performance of our proposal on
synthetic data generated through NMMs and on two EEG databases obtained under MI
and WM paradigms. We compared it with commonly used single-trial TE estimators,
applied to phase time series, and the PSI and GC. Our results show that the proposed
phase TE estimator successfully detects the direction of interaction between individual
pairs of signals, capturing the differences in coupling strength and displaying statistically
significant results around the frequencies corresponding to the main oscillatory compo-
nents present in the data. It also succeeds in detecting bidirectional interactions of localized
frequency content and is robust to realistic noise and signal mixing levels. Moreover, our
method, coupled with a CKA-based relevance analysis, revealed discriminant spatial and
frequency-dependent patterns for both the MI and WM databases, leading to improved
classification performance compared with approaches based on real-valued TE estima-
tion. In all our experiments, the proposed single-trial kernel-based phase TE estimator is
competitive with the comparison methods previously listed in terms of the performance
assessment metrics employed.
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As future work, we will look into developing a cross-spectral representation for
our phase TE estimator to study directed interactions between oscillations of different
frequencies [65]. We will also explore the effects of the choice of filter on the proposed
estimator as well as those of the parameters involved in time embedding and in our
kernel-based TE estimation approach.
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