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Abstract: Pollen analysis and the classification of several pollen species is an important task in
melissopalynology. The development of machine learning or deep learning based classification
models depends on available datasets of pollen grains from various plant species from around the
globe. In this paper, Cretan Pollen Dataset v1 (CPD-1) is presented, which is a novel dataset of grains
from 20 pollen species from plants gathered in Crete, Greece. The pollen grains were prepared and
stained with fuchsin, in order to be captured by a camera attached to a microscope under a ×400
magnification. In addition, a pollen grain segmentation method is presented, which segments and
crops each unique pollen grain and achieved an overall detection accuracy of 92%. The final dataset
comprises 4034 segmented pollen grains of 20 different pollen species, as well as the raw data and
ground truth, as annotated by an expert. The developed dataset is publicly accessible, which we
hope will accelerate research in melissopalynology.

Keywords: dataset; honey; melissopalinology; pollen grain; segmentation

1. Introduction

Honey is a natural food with great importance for many countries due to its nutritional
and medicinal properties [1]. It is highly appreciated by consumers and the demand for
honey of certified origin is currently a necessity. Pollen analysis, also known as melissopa-
lynology, is a method to determine the origin of honey, based on the determination of the
pollen grains presented in it [2]. Honey contains pollen as a result of the manipulation
of the flower when honeybees collect nectar. The procedure largely followed today is
based on the method described in [3]. Although widely accepted, this method has signifi-
cant disadvantages, namely the high manual effort and the specialized expertise required,
both leading to high costs and high demands on time and, thus, to restrictions in sample
throughput [4]. Because of the high financial importance of honey, it is necessary to provide
effective tools that can help ensure its origin.

The automation of this process could work directly, reducing the analysis time, whilst
increasing the accuracy of the results. Procedures related to image analysis and the use
of neural networks have yielded significant results. Recent years have seen advances in
the fields of machine learning and artificial intelligence related to pollen analysis [5], with
quite impressive results with up to 98% correct pollen classification [6].

Geographical indications (GIs) identify a good honey as one that originates from a
particular place, has a particular quality, characteristic, or reputation [7]. In most cases,
these indications have a determinative role in both domestic and international markets [8].
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One such product is “Pefkothymaromelo Kritis PDO”, a honey specific to Crete, which is
characterized by specific organoleptic, physicochemical, and microscopic characteristics.
To certify this product, pollen analysis is crucial. The main and defining type of pollen in
that particular honey is thyme (formerly called Coridothymus capitatus, currently referred
to as Thymbra capitata) which is present in all honey samples in a percentage greater than or
equal to 10%. In addition, another 15 to 20 types of pollen grains from different plants are
indicative of Cretan nature, mainly chestnut (Castanea sativa), heather (Erica arborea, Erica
manipuliflora), eucalyptus (Eucalyptus camaldulensis), myrtle (Myrtus communis), different
species of Sinapis sp. (Brassicaceae), carob (Ceratonia siliqua), giant fennel (Ferula communis)
sage (Salvia officinalis), marjoram (Origanum microphyllum), and savory (Satureja thymbra)
[9]. Therefore, an automated process of microscopic identification could aid the fast and
accurate quality control of this product.

For this reason, a collection of pollen grains from plants usually present in “Pe-
fkothymaromelo Kritis, PDO” was developed to create a microscopic imaging dataset. In
particular, the scope of this work was to gather, prepare, and capture such images, as well as
to develop an image processing method to segment each unique pollen grain. Doing so, the
analysis of each pollen grain becomes easier, also enabling machine learning classification
methods to be developed. The dataset is also publicly available at 10.5281/zenodo.4756360
(accessed on 13 May 2021) under a CC BY 4.0 licence for other researchers to use [10].

The rest of the article is structured as follows. Section 2 presents a short overview of
pollen grain segmentation methods. Section 3 presents the data acquisition, quality control
and annotation protocol. The segmentation pipeline, as well as the performance results of
the method are presented in Sections 4 and 5, respectively. Finally, the findings of the study
are discussed in Section 6 and the article is concluded in Section 7.

2. Related Works

Damian et al. [11] proposed a 2-stage segmentation pipeline. In the first stage, they
utilized Hough transform in order to detect the initial contours based on a circle-like
pattern. After the initial contour estimation, three different methods were compared for
the fine detection of the pollens’ contours. In particular, they utilized a basic edge-contour
approach which was based on the gradient image, the snake-contour algorithm and the
convex-hull algorithm. However, not all pollen grains have a circle-like shape as the ones
examined in this study, originating from the Urticaceae family, and, thus, their approach
may perform poorly on other types of pollen grains.

Battiato et al. [12,13] presented the Pollek13K dataset, which consists of a bit more
than 13.000 segmented grains of 5 pollen types, which included a separate class for possible
debris. In order to segment each one of the 13k grains, they developed a 3-stage processing
pipeline, which consists of a pre-processing stage, the segmentation stage and a post-
processing stage. During the preprocessing stage, several noise reduction filters are applied
(i.e., mean shift filtering, Gaussian blurring), as well as the Otsu’s thresholding method to
highlight the foreground and the pollen grains’ contours. In order to identify each pollen
grain, several morphological operations are used. In addition, having the objects of interest
filled with black color while the background filled with white color, any detected object that
was smaller or larger than a predefined minimum or maximum size was discarded from the
final dataset, based on analyzing the connected components in the image. Finally, in order
to highlight only the foreground (i.e., the object of interest) in each of the segmented images
and discard any of the background information, a post-processing approach based on
several noise reduction filters and morphological operations was used. When we applied
this processing pipeline on our data, we found that, although it performs well on large or
well separated pollen grains, it really struggles to identify overlapping ones.

Olsson et al. [14] developed a pollen grain segmentation pipeline which is based
on watershed algorithm. Prior to the application of the watershed algorithm, the image
applied a threshold, as well as several morphological operations [15], similarly to the
previously mentioned approaches.
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Finally, Gallardo et al. [16] developed a pollen grain detection method based on
a convolutional neural network (CNN). Their CNN was trained based on a multifocal
analysis approach, in which several focus points were used on the camera in order to
capture all pollen grains under the optimal focus setting. The camera captured a video
across all the focus points, which was used to train the network, after annotating a bounding
box around each of the pollen grains. Their approach was trained and tested on 11 different
pollen types and outperformed other methods that were based on non-machine learning
image processing techniques, achieving recall and precision scores of 99% and intersection
over union (IoU) score of 0.9. However, two main drawbacks of this approach is the
laborious and time-consuming process of capturing the video, as well as annotating each
grain at the various focus points.

In this study, we present a novel pipeline for segmenting pollen grains from fuchsin-
stained microscope images of 20 types of plants gathered in Crete, Greece. The novelty
of this study is twofold. First, the proposed method is robust and accurate since it is able
to correctly detect and segment pollen grains of various shapes and sizes. Secondly, the
proposed dataset is a unique and novel collection of pollen grains from plants across Crete,
Greece, which we hope that this will accelerate the development of automated machine
learning and deep learning systems for pollen classification, which is an essential step for
melissopalynology and honey certification.

3. Data
3.1. Image Acquisition

Microscopic slides were prepared from freshly cut flowers collected from various
places of Crete during April 2019 to April 2021. Before extracting pollen, plant species
were identified by a botanist. Pollen was isolated in the laboratory to create permanent
microscope preparations according to [2]. On a 76× 26 glass slide (Objektträger knittel, Ger-
many), one drop of filtered honey:water solution (2:1) was spread and the anthers of each
plant were shaken over it so that the pollen would fall. Subsequently, a solution of 0.05%
Pararosaniline chloride (Acros Organics, India) in ethanol was added as a colouring agent.
The slides were placed in a heating hearth, at 40°C to evaporate the moisture, followed
by covering the sample with cover slips (Objektträger knittel, Germany) and mounting
medium (Eukitt Quick, Sigma-Aldrich, Germany). Permanent pollen preparations were
allowed to dry before storage. Subsequently, the images of the samples were captured
using a Leica CME microscope using an external Canon Power Shot A620 camera. The
images were taken at magnification of ×400.

3.2. Image Quality Control

However, some samples, like the one in Figure 1, have too many overlapping pollens,
as well as debris, which can be seen as black spots or a pink dyed area (as at the top right
corner). Such images were discarded due to their poor quality.

3.3. Image Annotation

After the acquisition and the quality control stages, each image was annotated by
drawing the bounding box of each pollen grain. An example of such annotation can be
seen in Figure 2. Doing so, it is possible to assess the performance of the segmentation, by
comparing the predicted bounding boxes with the ground truth. In particular, if the IoU
between the predicted bounding box and the ground truth is above a certain threshold (i.e.,
50%), the predicted pollen is considered to be correctly detected.
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Figure 1. Bad quality image example.

Figure 2. Annotated image example.

4. Segmentation Pipeline

In this section, we present and describe in detail the pollen grain segmentation pipeline.
The term "segmentation" in image processing and computer vision refers to the process of
identifying, locating, and partitioning segments of the image that are of particular interest
(i.e., the pollen grains in this case). In this study, the segmentation pipeline consists of
3 main components, which are also presented in Figure 3:

1. Image pre-processing;
2. Pollen grain segmentation;
3. Pollen grain image post-processing.

The method was implemented in Matlab using the Image Processing Toolbox on a
Ryzen 7 3700× CPU with 32 GB 3200 MHz RAM. The processing time for a single image
was 1–2 seconds, depending on the number of unique pollen grains in the image. It should
be noted that the preprocessing and segmentation stages of the pipeline are based on a semi-
automatic approach, in the sense that several hyper-parameters can be tuned by the user
during the execution of the methods, such as the morphological operations’ parameters.
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Figure 3. The segmentation pipeline: pre-processing stage (orange), segmentation stage (green),
and post-processing stage (blue). Each specific stage corresponds to: a) the original image, b) the
gaussian filtered image, c) the corresponding HSV image, d) the saturation channel of the HSV image,
e) the image after the threshold was applied, f) the image after the morphological operations were
applied, g) the distance transform result, h) the segmentation map as calculated by the watershed
algorithm, i) the masked segmentation map, j) the foreground mask and k) examples of a cropped
(with background present) and an isolated (with background discarded) pollen grain.

4.1. Pre-Processing Stage

The aim of the preprocessing stage of the pipeline is to decrease any noise that may
be present in the raw images and highlight the pollen grains’ contours that will be used
for segmenting them. Firstly, we apply a Gaussian blurring filter (Equation (1)) in order to
eliminate any high-frequency noise and smooth the image.

G(x) =
1

2πσ2 exp− x2 + y2

2σ2 (1)

where σ is the standard deviation of the Gaussian distribution, which was set to σ = 0.5,
and x, y are the pixel’s coordinates in the 2D plane. Then we convert the image from the red-
green-blue (RGB) color model to the hue-saturation-value (HSV) model, Equations (2)–(5),
and extract the saturation channel.

M = max(R, G, B)

m = min(R, G, B)

C = M − m

(2)

Hue = 60°


unde f ined, i f C = 0
G−B

C mod6, i f M = R
B−R

C + 2, i f M = G
R−G

C + 4, i f M = B

(3)

Saturation =

{
0, i f V = 0
C
V , otherwise

(4)
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Value = max(R, G, B) = M (5)

Because of the staining protocol, the pollen grains have a higher saturation value than
the background does. Thus, by extracting the saturation channel from the HSV image, the
pollen grains are better illuminated than they are on the RGB image, as seen in Figure 3d.
After the extraction of the saturation channel, the Otsu’s thresholding filter is applied [17].
Finally, an opening or closing morphological operations or a combination of them is used
in order to (a) reduce any salt and pepper noise (i.e., white and black spots) that may be
present after the thresholding or (b) to fill any gaps within the pollen grains (Figure 3e).
In addition, we produce a foreground mask, as seen in Figure 3j, by converting the RGB
image to its grayscale equivalent (Equations (6)) and thresholding it at the value of 20.

Grayscale = 0.2989 ∗ R + 0.5870 ∗ G + 0.1140 ∗ B (6)

Similarly to the previous thresholding operation, in order to reduce any salt and
pepper noise and fill any gaps, we apply several morphological operations (i.e., opening
and closing, respectively). Finally, we shrink the generated mask, in order to make the
binary circle mask a bit smaller, by applying an eroding morphological operation. This
mask will be used to discard the outer part of the visible section of the image, which is
shadowed and does not hold any meaningful information for the segmentation stage, as
seen in Figure 3i.

4.2. Segmentation Stage

The segmentation is based on the watershed algorithm, which is able to highlight
even overlapping pollen grains fairly accurately. As seen in Figure 3, the input to the
segmentation stage is the thresholded image from the previous stage and the foreground
mask. The first step is to calculate the distance transform of the complement of the
thresholded image. The value of each pixel of the distance transform is calculated as
the distance between that pixel and the nearest non-zero pixel of the complement of the
thresholded image. Then the watershed algorithm is applied on the complement image of
the distance transform. The resulting image from the watershed algorithm is multiplied
pixel-wise by the foreground mask, in order to reduce any artifacts around the edge, that
may be identified as pollen grains by the algorithm, as seen in Figure 3h,i. Having the
result of the watershed algorithm, we extract the contours of each identified pollen grain
and analyze their morphology. Doing so, we calculate the area of each pollen grain in
pixels, its centroid, as well as the bounding box surrounding its contour.

4.3. Post-Processing Stage

Having extracted the contour and the binary mask of each pollen grain, as well as
having calculated their morphological characteristics, we can analyze them in order to
discard any duplicate or false-positive pollen grains. Firstly, we identify possible duplicates
by comparing the coordinates and possible overlaps between the computed bounding boxes
for each of the pollen grains. If two bounding boxes with similar centroids’ coordinates
overlap by at least 80%, then one of them is discarded as a duplicate of the other. Then we
discard any detected pollen grain, whose contour area is bigger or smaller than two pre-
specified values. The pollen grain size varies across the different types of pollens, as can be
seen in Figure 4. As an optional step, each segmented pollen grain is multiplied pixel-wise
by its binary mask, in order to discard the background and keep only the foreground of
each individual pollen grain, as seen in the last stage of the pipeline in Figure 3k. In order
to distinguish between the two, the segmented pollen grains whose background has been
discarded will be referred as “isolated pollen grains” from now on, while those with the
background present will be referred as “cropped pollen grains”.
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Figure 4. A mosaic of all segmented pollen grains, numbered as in Table 1.

5. Results

The performance of the segmentation pipeline is reported in Table 1. In particular,
there are two metrics that are presented, i.e., the number of the detected pollen grains and
the method’s accuracy for detecting pollen grains for each one of the pollen types. The
performance results in Table 1 shows that the proposed method can detect each individual
pollen grain with a high accuracy across all types of pollen. In addition, the proposed
dataset consists of more than 4000 unique pollen grains from 20 types of plants, making it
the second largest publicly available pollen dataset and the largest one regarding pollen
that has been collected directly from plants, as seen in Table 2.

Table 1. Method performance results.

ID Plant Name Detected Accuracy ID Plant Name Detected Accuracy

1 Thymbra 146 98.7% 11 Pinus 29 100%

2 Erica 181 97.3% 12 Calicotome 298 94.0%

3 Castanea 218 81.0% 13 Salvia 178 96.7%

4 Eucalyptus 170 97.1% 14 Sinapis 197 97.5%

5 Myrtus 786 79.4% 15 Ferula 83 90.2%

6 Ceratonia 100 96.1% 16 Asphodelus 34 100%

7 Urginea 109 99.1% 17 Oxalis 139 96.5%

8 Vitis 269 95.4% 18 Pistacia 34 100%

9 Origanum 171 99.4% 19 Ebenus 22 100%

10 Satureja 71 100% 20 Olea 790 92.9%

Table 2. Comparison between the available datasets.

Dataset # Pollen Types # Grains Image Type Resolution Magnification Staining Origin Region

Proposed 20 4034 Color Varying 40x Fuchsin Plants Crete, Greece

Pollen13K [13] 3 + Debris ∼13.000 Color 84x84 N/A Fuchsin Airborne Samples N/A

POLEN23E [18] 23 790 Color Varying 40x N/A Honey Brazilian Savanna

POLLEN73S [19] 73 2523 Color Varying 40x Fuchsin Plants Brazilian Savanna
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Regarding the Myrtus pollen grains, which were detected with a low accuracy of
79.4%, there was a dense concentration of pollen grains in the images, with many overlaps
and occlusions, as seen in Figure 5. Such overlaps and occlusions make it difficult for the
method to properly distinguish each unique pollen grain. A similar problem is observed
on the Castanea pollen grains, as seen in Figure 6, on which the detection accuracy was
81%. These particular pollen grains have a very small size as can be seen in Figure 4-3 and
Figure 6, compared to the rest pollen types. Thus, their small size combined with possible
overlaps, make their detection trickier. However, there are more than 1000 and 200 pollen
grains detected for each pollen type, respectively, which can be enough for a classification
analysis when their unique shape and characteristics, as well as the number of the detected
pollen grains of the rest species are also considered.

Although there is an imbalance for some pollen types, such as Pinus (Figure 4-11) and
Asphodelus (Figure 4-16) their shape and characteristics are unique when compared to the
rest of the pollen types. Thus, we do not expect a great performance loss in a machine
learning classification task regarding these pollen classes. Similarly, we do not expect much
performance issues when the Ebenus (Figure 4-19) pollen is considered, due to its similar
size and shape to the Ferula (Figure 4-15) pollen. The former is rather smooth both on its
outline and within it, in contrast to the latter, which has a rather harsher outline and texture.
On the other hand, the same does not apply for the Pistacia pollen (Figure 4-18), which has
a very similar shape and texture with other pollen types, such as Sinapis (Figure 4-14). As a
result, we expect that these pollen types will be harder to distinguish from one another. In
order to deal with such imbalancing, and increase the data, image augmentation techniques
can be used.

Figure 5. Image example showing some missed pollen grains due to multiple occlusions for the
Myrtus species.
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Figure 6. Image example showing some missed pollen grains for the Castanea species.

6. Discussion

Although for most cases the segmentation masks enclose the whole pollen grain, there
are some cases where part of the pollen grain has been removed. In order for the reader to
fully understand this issue, Figure 7 presents an example of a correctly segmented pollen
grain (Figure 7a) and a poorly segmented one (Figure 7b). Such poorly segmented pollen
grains encountered in images with dense concentration of pollen grains, i.e., Thymbra,
Eucalyptus, Myrtus, etc. In addition, there are very few cases in densely concentrated
microscopic images, where an isolated pollen grain image contains part of a separate pollen
grain (Figure 7c). Table 3 presents the proportion of poorly segmented pollen grains for
each class, respectively. It can be observed that Thymbra, which is the most characteristic
pollen type of the honey product of interest, has a proportion of 6.5% of poorly segmented
pollen grains. However, we estimate that this issue will not have a serious impact on the
performance of any machine learning based classification method, since they are only a
small percentage of the dataset size when considering the size of each class individually. In
addition, modern image augmentation techniques can be used to generate more samples
and increase the size of the dataset.

Table 3. Proportion of poorly segmented pollen grains.

ID Plant Name Proportion ID Plant Name Proportion

1 Thymbra 6.5% 11 Pinus 0%

2 Erica 1.7% 12 Calicotome 2.3%

3 Castanea 1.8% 13 Salvia 3.4%

4 Eucalyptus 1.8% 14 Sinapis 1%

5 Myrtus 3.8% 15 Ferula 2.4%

6 Ceratonia 3% 16 Asphodelus 2.9%

7 Urginea 1.8% 17 Oxalis 0.7%

8 Vitis 3% 18 Pistacia 0%

9 Origanum 2.3% 19 Ebenus 0%

10 Satureja 0% 20 Olea 1.3%



Appl. Sci. 2021, 11, 6657 10 of 11

Version July 15, 2021 submitted to Appl. Sci. 8 of 10

Table 2: Comparison between the available datasets.

Dataset # Pollen Types # Grains Image Type Resolution Magnification Staining Origin Region
Proposed 20 4034 Color Varying 40x Fuchsin Plants Crete, Greece

Pollen13K [13] 3 + Debris ∼13.000 Color 84x84 N/A Fuchsin Airborne Samples N/A
POLEN23E [18] 23 790 Color Varying 40x N/A Honey Brazilian Savanna

POLLEN73S [19] 73 2523 Color Varying 40x Fuchsin Plants Brazilian Savanna

pollen (Figure 4-18), which has a very similar shape and texture with other pollen types,234

such as Sinapis (Figure 4-14). As a result, we expect that these pollen types will be harder235

to distinguish from one another. In order to deal with such imbalancing and increase the236

data, image augmentation techniques can be used.237

6. Discussion238

Although for most cases the segmentation masks enclose the whole pollen grain,239

there are some cases where part of the pollen grain has been removed. In order for240

the reader to fully understand this issue, Fig. 7 presents an example of a correctly241

segmented pollen grain (Fig. 7a) and a poorly segmented one (Fig. 7b). Such poorly242

segmented pollen grains encountered in images with dense concentration of pollen243

grains, i.e. Thymbra, Eucalyptus, Myrtus, etc. In addition, there are very few cases in244

densely concentrated microscopic images, where an isolated pollen grain image contains245

part of a separate pollen grain (Fig. 7c). Table 3 presents the proportion of poorly246

segmented pollen grains for each class respectively. It can be observed that Thymbra,247

which is the most characteristic pollen type of the honey product of interest, has a248

proportion of 6.5% of poorly segmented pollen grains. However, we estimate that this249

issue will not have a serious impact on the performance of any machine learning based250

classification method, since they are only a small percentage of the dataset size when251

considering the size of each class individually. In addition, modern image augmentation252

techniques can be used to generate more samples and increase the dataset’s size.253

Table 3: Proportion of poorly segmented pollen grains.
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Figure 7. (a) proper segmentation example, (b) poor segmentation example and (c) an example of
an isolated pollen grain image which wrongfully includes part of other pollen grains.

Figure 7. (a) proper segmentation example, (b) poor segmentation example and (c) an example of an
isolated pollen grain image which wrongfully includes part of other pollen grains.

In a future study, a more advanced image capturing device will be used (i.e., Kern
microscope with built-in camera ODC-82/ODC-83, Kern, Germany) which will produce
images of higher quality with less illumination artifacts than the ones used in this study. In
addition, a deep learning based detection method will be explored, in order to increase
both the detection accuracy, as well as the segmentation quality of the method.

7. Conclusions

This article presents the Cretan Pollen Dataset v1 (CPD_v1), which comprises micro-
scope images of stained pollen grains of 20 plant types. A segmentation method based on
the watershed algorithm was developed to segment each unique pollen grain, with an over-
all accuracy of 92%. The complete dataset with the raw data, the ground truth annotations,
and the segmented pollen grains are also publicly available at 10.5281/zenodo.4756360
(accessed on 13 May 2021), as presented in Table 4, for other researchers to use [10].

Table 4. List of data available in the dataset (10.5281/zenodo.4756360 accessed on 13 May 2021).

Data Description # Data Type File Format

Color Microscope Images Raw data 157 Image png

Pollen Annotations
Bounding boxes
of pollen grains

20 Tabular CSV

Cropped Pollen Grains
Segmented pollen grains

with the background
4034 Image png

Isolated Pollen Grains
Segmented pollen grains
without the background

4034 Image png
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