friried applied
b sciences

Article

Enabling Role-Based Orchestration for Cloud Applications

Yue Wang !

check for

updates
Citation: Wang, Y.; Lee, C.; Ren, S.;
Kim, E.; Chung, S. Enabling
Role-Based Orchestration for Cloud
Applications. Appl. Sci. 2021, 11, 6656.
https://doi.org/10.3390/
app11146656

Academic Editor: Arcangelo

Castiglione

Received: 21 May 2021
Accepted: 14 July 2021
Published: 20 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Choonhwa Lee *1), Shuyang Ren 0¥, Eunsam Kim 2

and Sungwook Chung 3

Department of Computer Science, Hanyang University, Seoul 133-791, Korea;
wylk2019@hanyang.ac.kr (Y.W.); syren@hanyang.ac.kr (S.R.)

Department of Computer Engineering, Hongik University, Seoul 121-791, Korea; eskim@hongik.ac.kr
Department of Computer Engineering, Changwon National University, Changwon 51140, Korea;
swchung@changwon.ac.kr

*  Correspondence: lee@hanyang.ac.kr; Tel.: +82-2-2220-1268

Abstract: With the rapidly growing popularity of cloud services, the cloud computing faces critical
challenges to orchestrate the deployment and operation of cloud applications on heterogenous
cloud platforms. Cloud applications are built on a platform model that abstracts away underlying
platform-specific details, so that their orchestration can benefit from the abstract view and flexibility
of the underlying platform configuration. However, considerable efforts are still required to properly
manage complicated cloud applications. This paper proposes a model-driven approach to cloud
application orchestration which promotes the concerns of distinct roles for cloud system provisioning
and operation. By establishing a set of capabilities as modeling constructs, our approach allows
TOSCA-based application topology itself and its orchestration needs to be specified in a way to
provide a more targeted support for different needs and concerns of application developers and
operators. With novel orchestration features like application topology description, platform capability
modeling, and role-awareness for cloud application orchestration, it can significantly reduce the
complexity of application orchestration in diverse cloud environments. To show the feasibility and
effectiveness of our proposal for cloud application orchestration, we present a proof-of-concept
orchestration system implementation and evaluate its deployment and orchestration results in a
Kubernetes cluster.

Keywords: orchestration; TOSCA; model translation; role-based; capability-centric; Kubernetes

1. Introduction

Cloud-native applications are becoming increasingly complicated nowadays, which
poses significant challenges to the design, development, and delivery of them [1]. To help
application builders overcome the difficulties, PaaS(Platform-as-a-Service) was introduced
as a cloud service model that provides a configurable computing platform [2]. PaaS plat-
forms are also understood as DevOps environments that provides viable tools to quickly
build, test, and deliver cloud-native applications [3,4]. It provides application builders
with supports needed during the lifecycle of an application from development and testing
to delivery and operations. The means for provisioning and managing a cloud application
may vary in terms of involved technologies and underlying platform capabilities such
as auto-scaling, monitoring, and rolling releases of the application. To keep the platform
versatile, rich configuration options have to be provided, which would lead to a higher
level of flexibility and maintainability. However, not all the configuration parameters may
be of interest to ones. Some of the configuration fields are supposed to be used by platform
builders, while others are intended for application builders [5]. A single application compo-
nent might be backed up by multiple platform capabilities, which entails that application
builders are expected to understand all the configuration parameters of those underlying
platform resources. Obviously, the orchestration will likely be a time-consuming and
error-prone task for application builders. When considering the orchestration task for
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applications built upon various capabilities, it becomes even worse because the task must
deal with all the details of resources and capabilities” configurations [6].

In general, DevOps practice involves two different roles of application developers
and operators. Application developers are in charge of implementing their application
logic, while application operators are responsible for keeping the implementation up and
running properly. In this article, application builders are considered to play either of
the two roles. Both groups make use of platform resources directly or capabilities built
upon underlying resources to provide cloud applications. However, it is likely for them
to find it challenging to identify what specific configuration points are relevant for their
job. If they are left to perform their orchestration tasks solely on their own without any
coordination, they may end up making conflicting decisions. Therefore, it is crucial to
make a clear distinction among orchestration configurations from the perspective of roles,
so that different roles can exist in a harmonious way to achieve the ultimate, shared goal of
cloud-native applications’ orchestration.

This article proposes a model-driven cloud application orchestration approach which
distinguishes the concerns of distinct roles for cloud system provisioning and operation.
Each role’s concerns are encapsulated into modeling constructs of our orchestration model
which is built upon prominent standards for cloud application deployment and manage-
ment. Irrelevant configurations are shielded from the role and taken care of automatically,
which results in a significant reduction of the orchestration burden.

The remainder of this paper is organized as follows. Section 2 summarizes key stan-
dard models for cloud application orchestration before presenting a sample orchestration
scenario that motivates our work. Section 3 introduces our proposed approach and the
architectural design of role-based, capability-centric orchestration system along with proto-
type implementation effort. Our evaluation study and its results are reported in Section 4.
After discussing related work in Section 5, the paper concludes in Section 6.

2. Background Technology for Cloud Orchestration

First, we briefly discuss two outstanding efforts that push forwards orchestration
standards for cloud applications. After then, we present a sample orchestration scenario
that is intended to motivate our work.

2.1. Standard Models for Cloud Application Orchestration

Our orchestration approach leverages existing cloud orchestration standards, the most
relevant ones of which are TOSCA (Topology and Orchestration Specification for Cloud
Applications) and OAM (Open Application Model). OASIS TOSCA is an OASIS standard
that aims to enable portable specification of cloud applications. According to the standard,
an application topology is defined in an underlying platform-agnostic way in order to pro-
mote the application interoperability and portability across different cloud providers [7,8].
To define the topology of applications, TOSCA provides a type system that can model ap-
plications” components as typed Nodes and relationships among the components as typed
Relationships. Besides basic properties and interfaces, typed Nodes and Relationships also
have Capability and Requirement by which application designers specify dependencies
among components in terms of component functionalities. A component may be defined
to provide a certain ability as a typed entity or require an ability also defined as a typed
entity provided by others. As an example, consider a WordPress application, connected
to a MongoDB database that can adapt to input fluctuations with auto-scaling capability
enabled. As shown in Figure 1, the application can be defined as a TOSCA service template
that is composed by a Topology Template along with accompanying types. In other words,
the application’s parts and their relationships can be modeled and specified using the
TOSCA vocabulary. Additionally, TOSCA offers rich design primitives for specifying
orchestration constraints and behaviors within a declarative service template configuration,
such as policy and workflow [9]. Policy can be defined to express non-functional require-
ments applied to a group of typed nodes. Workflow is also known as Plan in TOSCA that
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includes a set of sequential tasks for fulfilling a certain orchestration task. Our approach
employs the TOSCA standard as a domain-specific language for describing the topology of
applications and defining their orchestration workflows.

/ Topology Template

Node Types \
/ \ type for .
Auto-scaling €l-=—==- Node
Type B Property

I 1
Y @ Interface

WordPress
Application

Service Template

T capability
J

Relationship Types  Requirement

e e
K\[ MOE;;DB ]/ /

Figure 1. TOSCA definition for a sample application.

OAM is a runtime-agnostic modeling and specification standard for defining cloud ap-
plications [10]. Focused on the application layer rather than underlying platform resources
or the infrastructure layer, OAM aims to model applications in a modular, extensible,
and portable way, enabling application delivery to diverse target platforms. Distinguishing
between parts that application developers and operators are responsible for, OAM argues
for separation of roles’ concerns when defining applications. With regard to the standard,
an application is composed of two parts mainly; the first is the component inside which
the application logic resides to provide its service, while the other is the specification of
operational characteristics for the component. More specifically, an OAM component is
introduced for application developers to declare a runtime environment where the applica-
tion runs, which might be containers, virtual machines, IoT devices, or cloud platforms.
The runtime environment is also known as workload in the context of OAM. For example,
an OAM workload, called containerized workload , represents a standard definition of
runtime for containerized applications. On the other hand, an OAM trait is a discretionary
runtime overlay that empowers workloads with additional operational features. Examples
of it include scaling workloads dynamically to achieve high availability and routing the
traffic towards a specific host domain. Both component and trait are designed as reusable
templates that can be easily instantiated to compositions of different applications. Applica-
tion configuration is a top-level OAM resource manifest in which all building blocks of an
application are to be instantiated and interconnected. Figure 2 depicts the structure of an
application containing one component for a containerized workload with two traits, scale
and route, attached, and Listing 1 shows its corresponding OAM YAML snippet.

ApplicationConfiguration WorkloadDefinition
Component EEN d workload
%// template
Trait (Scale) Instantiate
TraitDefinition
Trait (Route) - | NN N, trait
%/ template

Figure 2. OAM application configuration sample.
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Listing 1. OAM configuration YAML snippet.

apiVersion: core.oam.dev/vlalpha2 14 ... # properties of route
kind: ApplicationConfiguration [EREEE
metadata: 16 apiVersion: core.oam.dev/vlalpha2
name: example-app 17 kind: Component
spec: 18 metadata:
components: 19 name: example-comp
- componentName: example-comp 20 spec:
traits: 21 workload:
- name: scale 2 apiVersion: core.oam.dev/vlialpha2
properties: 23 kind: ContainerizedWorkload
replicas: 2 24 spec:
- name: route 25 ... # specification of workload
properties:

Kubernetes [11] is an open-source container orchestration framework that automates
the management of container lifecycle as well as execution of containerized applications.
Kubernetes cluster architecture consists of a master node and a set of worker nodes.
The master node is responsible for the maintenance and management of the cluster, while
the worker node runs a set of Docker containers for applications. This master/slave
architecture is illustrated in Figure 3. The minimal deployment unit in Kubernetes is
a pod that contains one or more Docker containers and provides shared storage and
networking capability for the containers. Several management components in charge of the
maintenance of the cluster state are located in the master node, which include API server,
Controller Manager, Scheduler, and etcd component. The API server provides an entry
point to control the entire Kubernetes cluster, and etcd is a highly available distributed
key-value store that keeps data for the cluster state. The Scheduler determines which
worker to assign which pod. To bring the system to a desired functioning state, Kubernetes
relies on the Controller Manager that consists of a few controller processes such as node
controller, job controller, etc. Each worker node is equipped with Kubelet, Kube-Proxy,
and Docker container runtime. More specifically, the Kubelet process handles the pod state
based on the commands from the master, and the Kube-Proxy process is a network proxy
that resides on each node.

Recently, container technology has been a popular choice as the base on which to
build cloud orchestrator runtime for multi-component applications. Being represented by
containers, the components of the applications can run fast and efficiently. In addition,
Kubernetes as container orchestration technology provides a means to collectively manage
related containers, which is found useful in deploying and managing multi-component
cloud application.

Kubernetes Cluster
Master Node Worker Node
API Server |——- -7 —>| Kubelet | | Container |
1
! ! Pod
1 1
Controller 4__: :—- = =1 Kube-Proxy Container-
Manager : : Runtime
1 1
1 1
: I Worker Node
Scheduler &+ "
1 L - -.)l Kubelet | | Container |
1 1
' ' Pod
1 1
etcd < Egl= —>| Kube-Proxy | Container-
Runtime

Figure 3. Kubernetes cluster architecture.
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2.2. Orchestration Scenario for Cloud Application

To motivate our work, we consider a sample orchestration scenario for a WordPress
application deployed in a container runtime environment, which is an open-source content
management system written in PHP. The application is basically made up of two functional
components: WordPress servers providing back-end services as well as web pages and a
MongoDB database node connected to the server. It is noted that the TOSCA topology of
the application is illustrated in Figure 1.

Our orchestration system considers Kubernetes as the deployment platform. With a
combination of well-defined declarative APIs, clear abstractions, and comprehensive exten-
sions, Kubernetes is widely accepted as a solid foundation for DevOps platforms [11,12].
Kubernetes offers a rich set of fundamental computing resources and configurable capa-
bilities. As illustrated in Figure 4, two components of WordPress application are running
inside a Kubernetes Deployment, while a Kubernetes Service serves as a load balancer as
well as an entry point for users to access the WordPress service. It is also noted that our
orchestration scenario involves two fundamental orchestration capabilities, auto-scaling
and progressive delivery, to cope with realistic production environments.

TOSCA Topology Template

1

1

1

1

{] Auto-scaling :

< Operational > 1

WordPress i
ene8 (¢ <] pppicaon (3 ’
< Workload > Progressive !
1

1

1

1

1

(] Delivery

- - < Operational >
- -
Workload Type - - -
Capabilty ~  ====== —" ————————————————— 1 ————————————————— W ——
L
Operational Type Deployment v
Capability
WordPress
(Pod Replica 1) Auto-scaling
Deployment WordPress I comp1 II comp2 II comp3 I
MongoDB (Pod Replica 2)
(Pod Replica 1)
WordPress
(Pod Replica 3) = =
Progressive Delivery
[ ] [=~]

@ ¢
i ittt 3 Service

User

Kubernetes Cluster

Figure 4. WordPress cloud application in action.

Automatic scaling is an operational capability used to adjust the application capacity
to dynamically changing demands [13,14]. It allows the number of the replicas of a
particular component to be dynamically adjusted according to performance metrics such
as CPU utilization rate or number of requests per second to the application. In our
scenario, auto-scaling is applied to the WordPress server Deployment in such a way that
the number of replicas is automatically increased or decreased in response to the fluctuation
of incoming requests. Auto-scaling capability is composed of two main modules, which
are a monitoring module and a scaling one. The former is responsible for monitoring its
target component and collecting relevant metrics data, while the latter automatically scales
the number of replicas based on its scaling rules.

Progressive delivery is a widespread practice for gradually rolling out new features
in order to avoid adverse impact on application operations [15]. Our scenario plans to
upgrade the WordPress server replicas from version v1.0 to version v2.0 in batches. A
certain portion of them is upgraded in each round rather than all replicas at once, so
that remaining v1.0 replicas continue to provide the service, if something goes wrong
during the upgrade. In production environments, an application often has a number
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of running replicas created and managed by its auto-scaling capability to guarantee the
service availability. Progressive delivery provides a means to upgrade the replica set to a
new version at a controlled pace.

These two capabilities are frequently utilized and found beneficial. However, their
setup is not straightforward for application builders because they oftentimes lack sufficient
knowledge about underlying platform resources upon which the capabilities are fulfilled.
In case of OAM, two roles are involved with the DevOps practice. Application operators are
the primary users of those two operational capabilities. Obviously, they are not expected
to know how to set up or implement these capabilities, even though they attach desired
operational characteristics to running workloads using the capabilities. On the other hand,
it is application developers who configure a workload runtime environment. To manage
the complexity in performing orchestration configurations and dealing with low-level
details, we propose a new orchestration scheme that can separate different roles” concerns
from oftentimes overwhelming configuration specifics for cloud applications.

3. TOSCA Model-Based Approach to Cloud Application Orchestration

In this section, we start off by proposing an orchestration approach which is based on
a TOSCA orchestration model and OAM application specification model [16]. As depicted
in Figure 5, our approach permits platform builders to identify common configurable
components and package them as platform capabilities with minimal configuration fields
through an abstraction layer between underlying platform resources and applications
at the top. Application builders, including application developers and operators, no
longer directly manipulate underlying platform resources. Instead, they utilize platform
capabilities to develop, test, and deliver their applications, as the capability layer shields
the details of resource configurations and usages from them. Moreover, the capabilities
are thought to belong to either of the two generic roles of application developers and
operators. By establishing a set of capabilities as modeling constructs, our approach allows
TOSCA-based application topology itself and its orchestration needs to be specified in a
way to provide a more targeted support for different needs and concerns of application
developers and operators. With support for features like application topology model,
platform capability, and role-awareness for cloud application orchestration, our approach
significantly reduces the complexity of application orchestration on cloud platforms.

| | Application Definition || Application Topolgoy | | Policy || Workflow | | ...... 1
1

I

L Application Orchestration 1

X 4
Developers Operators

! I

: ContainerizedWorkload Auto-scaling Rollout 1
|

I I

| Orchestration Capability Layer

! |
| Workload Service CustomResourceDefintion I
| (Deployment/DaemonSet/Job ...) Config and Storage (K8s ecosystem) |
I I

I Plarform Resources

Figure 5. Role-based cloud application orchestration.

Our proposed approach can be realized by extending state-of-the-art technologies
for cloud orchestration. As introduced in Section 2, TOSCA offers rich primitives and
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extensible types but has no support for role-awareness and separation of concerns. Focused
on a model specification for cloud applications, TOSCA remains neutral with regard to
run-time implementations or how a TOSCA-conforming orchestration system may deploy
orchestration manifests on cloud platforms. By contrast, OAM provides role-awareness
support and an official runtime implementation based on Kubernetes. However, it lacks
a comprehensive and robust meta-model to build an orchestration system, including
interface, policy, and workflow definitions. In particular, without support for application
topology definition, OAM hardly makes for a promising candidate technology for cloud
orchestration models. Therefore, complementing each other’s shortcomings for cloud
application orchestration, a combination of TOSCA and OAM would provide a solid
foundation on which to build up our model-driven, role-based cloud orchestration system.

3.1. Architectural Design of a Topology Model-Based Orchestration System

As illustrated in Figure 6, the architecture of our orchestration system consists of three
parts: TOSCA modeling layer at the top, extended OAM runtime at the bottom, and model
conversion engine that bridges the two domains:

1. First, TOSCA Service Templates in YAML files are loaded and processed by the parser
in TOSCA module. Besides built-in TOSCA normative types and the meta-model,
the parser also consumes a set of types tailored to specifying entities introduced by
our approach. Outputs from the TOSCA parser are stored in the memory to be passed
on to the conversion engine.

2. The conversion engine performs translation from TOSCA to OAM. Each of the nor-
mative TOSCA types as well as customized ones has a corresponding OAM typed
entity stored in the TOSCA-to-OAM type mapping repository. The conversion en-
gine is responsible for indexing the mappings and converting the components of
TOSCA Topology Templates into OAM Application Configurations. Additionally,
if any TOSCA workflow definition is contained in the Service Template, the engine
converts it into workflow directives executed by the workflow engine.

3.  Once OAM Application Configurations are prepared, our OAM-extended Kuber-
netes runtime can fulfill the deployment and orchestration of the application in a
Kubernetes cluster.

Normative TOSCA TOSCA Parser |

Types Repository (Service Template YAML to ‘"' E
Types and Templates )

TOSCA Service
Template in YAML

Customized TOSCA
Types Repository

Je—]

Service Templates
stored in the memory

) [ )

TOSCA meta-model

Conversion Engine
(Service Templates to
OAM manifests in YAML)

_lL
OAM meta-model l{

_‘i TOSCA to OAM
type mappings

II]IIIII!

1
_ Customized OAM OAM manifests 1 ! Customized I
%] capability definitions YAML files I L Workflow Plan 1

Workflow Engine

Kubernetes Extended OAM
Cluster - Kubernetes Runtime

Figure 6. TOSCA-based orchestration system architecture.
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Further details regarding the composition and operation of each of the three parts are
discussed below.

3.1.1. TOSCA Modeling

We have defined a set of customized TOSCA types that are categorized into two
groups. One group represents workload capabilities for application developers who are
concerned about workloads, where the application resides, as well as the runtime configu-
ration of the workloads. The second group models operational capabilities for application
operators who are responsible to attach operational characteristics to workloads. In the mo-
tivational scenario introduced in the previous section, the WordPress server resides inside
a Kubernetes Deployment and relies on a Kubernetes Service to deliver its service to users.
A combination of Deployment and Service is a typical workload capability that represents
an instantiation of runtime environment for containerized applications equipped with a
scaler and a load balancer. Auto-scaling capability represents an operational capability
that can dynamically scale workloads to a growing demand. Similarly, rollout capability is
another example of an operational functionality that gradually introduces a new version to
a group of replicas.

Based on the motivational scenario, we introduced extension node types for each
capability, including dcc.workload.containerized derived from dcc.workload.root for the com-
bination of Kubernetes Deployment and Service, and dcc.operational.autoScaling and
dcc.operational.simpleRollout derived from dcc.operational.root for auto-scaling and rollout
capability, respectively. As shown in Listing 2, the node dcc.workload.containerized contains a
set of properties to specify the runtime configuration of a containerized application whose
service is accessible through exposed container ports. Its image field defines the container
image used to run the service, while its ports field defines the container port used to access
the service.

The definition of two operational capability node types is shown in Listing 3. The node
dcc.operational.autoScaling represents the auto-scaling capability. From the perspective of ap-
plication operators, the dcc.operational.autoScaling should provide properties to specify basic
auto-scaling rules. Some important fields include maxReplicaCount and minReplicaCount for
replica count constraints, and promThreshold to indicate the threshold of triggering a scaling
action. The node dcc.operational.simpleRollout represents the operational capability that can
control the application behavior during its progressive delivery. The maxUnavailable is the
maximum number of replicas that can become unavailable during rolling out. The replicas
is the final number of replicas once progressive delivery completes. Additionally, the batch
defines the number of replicas that should be created in each round of rolling.

We have chosen to model operational capabilities as TOSCA Node types rather than
TOSCA Policy types. An operational capability allows us to define operation interfaces for
application operators to manipulate operational characteristics. Additionally, one instance
of an operational capability is only allowed to attach to one instance of workload. In other
words, multiple workloads cannot share operational capability instances. TOSCA Policy is
designed to apply non-functional constraints to a group of nodes and does not provide
a means to define operation interfaces. Therefore, modeling operational capabilities as
node types rather than policy types is more suitable in our approach and treats operational
capability and workload capability in the same way.

Two root Node types, dcc.workload.root and dcc.operational.root, indicate several com-
mon Requirements and Capabilities of workload and operational capabilities. The Work-
load nodes derived from dcc.workload.root have the workload capability in common, which
means that an operational capability node can be attached to it or other workload capability
nodes can connect to it. In addition, a common requirement connect-to indicates that they
can connect to another workload node. Additionally, the node dcc.operational.root empowers
its child node types with common capability operational and common requirement attach-to.
Thus, a workload node and an operational node are interconnected through the normative
relationship type of AttachesTo that can fulfill the requirement attach-to. When defining
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the properties of a capability node type, it is sufficient for application builders to specify
a small number of configuration parameters to control the behaviour of the capabilities
rather than each and every field of its underlying resources. This way, the complexity of
application orchestration specification can be kept low. In a real-world scenario, deciding
which properties or parameters concern a particular role is a task for the platform builders
who leverage our approach to build platform capabilities. They should be familiar with
overall configuration of a specific capability and have good knowledge on the concerns of
roles who will consume this capability in designated orchestration scenarios. Taking all of
the above into account, they can decide which configuration points are supposed to present
through capability properties while others should be hidden. With these extended types,
we can define the TOSCA Topology Template of the motivational scenario as diagrammed
in Figure 1.

Listing 2. Extension Node Type of dcc.workload.containerized.

node_types: 2 ports:
dcc.workload.containerized: 27 type: list
derived_from: dcc.workload.root 2 require: false
attributes: 29 entry_schema:
arch: 30 type: dcc.datatypes.container.port
type: string 31 cmd:
required: false 32 type: list
containers: 3 required: false
type: list 34 entry_schema:
required: true 35 type: string
entry_schema: 36 .
description: runtime configuration 37 dcc.datatypes.container.port:
type: dcc.datatypes.containerinfo 38 derived_from: tosca.datatypes.root
-—- 39 properties:
# extension data types 40 name:
data_types: 41 type: string
dcc.datatypes.containerinfo: 42 required: true
derived_from: tosca.datatypes.root 43 container_port:
properties: 4 type: integer
name: 45 required: true
type: string 46 protocol:
required: true 47 type: string
image: 48 required: false
type: string 49 default: tcp

required: true

Listing 3. Extension Node Types of dcc.operational.autoScaling and dcc.operational.simpleRollout.

node_types: 16 required: true
dcc.operational.autoScaling: 17
derived_from: dcc.operational.root 18 dcc.operational.simpleRollout:
attributes: 19 derived_from: dcc.operational.root
maxReplicaCount: 20 attributes:
type: integer 21 batch:
required: true 2 type: string
minReplicaCount: 23 required: true
type: integer 2 replicas:
required: true 25 type: integer
promQuery: 26 required: true
type: string 27 maxUnavailable:
required: true 28 type: integer
promThreshold: 29 required: true

type: integer
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node_template:

In order to guarantee that parsed TOSCA specifications can be input into the model
conversion module, we have developed a TOSCA parser based on an open-source TOSCA
processor named Puccini [17]. Puccini provides a stand-alone TOSCA parser that can fulfill
normalization, validation, inheritance, and assignment of TOSCA Service Templates. It
outputs a flat, serializable data structure for the ensuing model conversion.

3.1.2. Application Model Conversion

To convert TOSCA Service Templates to OAM Application Configurations, we have
identified and defined a set of mapping rules between two models as summarized in
Table 1. In our approach, TOSCA is used to describe application topology and orchestration
configuration. We employ the primitives of TOSCA type system to build a set of extension
types to represent specific capability entities. Thus, our conversion task focuses on in-
house extension types but not all TOSCA normative types. Since our extension TOSCA
Node types have now been further divided into two kinds for developers and operators,
TOSCA types can be easily mapped to OAM entities that have also been refined into two
corresponding sub-types. The conversion process is composed of five phases: validating
whether each TOSCA Node type has a matching OAM entity, rendering OAM components
for workload type nodes, rendering OAM traits for operational capability nodes, resolving
the relationships between the nodes, and generating an OAM Application Configuration.
Regarding the properties conversion in a node, we rely on a simple mapping strategy that
ensures that each property has a matching OAM entity spec field with the same name. For
example, the dcc.operational.autoScaling node type in Listing 4 is converted to the OAM trait
instance AutoScaling. Its properties” value will be assigned to AutoScaling spec fields with
the same name. The value of the property maxReplicaCount will be assigned to the field
spec.maxReplicaCount, and the value of the property promQuery will be assigned to the field
spec.promQuery.

Table 1. TOSCA-to-OAM entity mapping.

TOSCA Types/Templates OAM Types

Node Type (dcc.workload.*) WorkloadDefinition

Node Template (dcc.workload.*) Component

Node Type (dcc.operational.*) TraitDefinition

Node Template (dcc.operational.*) Trait

Relationship (AttachesTo) Attach Trait to Component
Relationship (Workloads_Connection) Component Data Inputs/Outpues

Listing 4. TOSCA property conversion.

# TOSCA topology template 19 # O0AM application configuration
topology_template:

20 apiVersion: core.oam.dev/vialpha2
21 kind: ApplicationConfiguration
2 metadata:

. 23 name: WordPress-app
auto-scaling: 24 spec:
type: dcc.operational.autoScaling 25 components:
properties: 26 .
maxReplicaCount: 5 27 traits:
10 minReplicaCount: 1 28 - trait:
11 promQuery: sum(rate(http_request[2m])) 2 apiVersion: extend.dcc/vialphal
12 promThreshold: 3 30 kind: AutoScaling
13 requirements: 31 spec:
14 - attach-to: wordpress-comp 32 maxReplicaCount: 5
15 relationship: attachesTo 33 minReplicaCount: 1
16 34 promQuery: sum(rate(http_request[2m]))

35 promThreshold: 3
36
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For two nodes connected by an AttachesTo Relationship type in TOSCA, their OAM
entities will be organized into an Application Configuration. Specifically, a Trait mapped
from an operational capability type is made from part of a Component mapped from a
workload capability node. Figure 7 depicts this kind of conversion from TOSCA Template
Topology containing the AttachesTo relationship to OAM Application Configuration.

Source Node
<Operational>
(Auto-scaling)

ApplicationConfiguration

Component

uEE > Trait

Conversion

(Auto-scaling)

Target Node
<Workload>
(ContainerizedWL)

Figure 7. Conversion of AttachesTo Relationship.

Another important relationship is a dependency between two workloads. As il-
lustrated in our motivational scenario, the connection between WordPress server and
MongoDB database is modeled as such a dependency relationship. Different from relation-
ships between a workload and an operational capability, dependency between workloads
has no counterpart concept in OAM specification. To overcome this deficiency, we leverage
a data transfer mechanism in OAM Kubernetes runtime that permits data passing among
components within an Application Configuration. The idea is to create a custom relation-
ship type workloads_connection with two end points. One is the field path to which the
target node (producer) writes data as output, and the second is the field path of field from
which the source node (consumer) reads input data. The conversion engine sets the data
input and output in the OAM components converted from two workload Node templates
connected by the workloads_connection relationship template. Figure 8 illustrates this con-
version from TOSCA Topology Template containing workloads_connection relationship to
OAM Application Configuration.

SourceNode
<Workload> ApplicationConfiguration
(WordPress App)
] Component
data_input
oS 111 = | = p |
relationship > ——-———— > 1
Conversion !
g Component |
workloads_connection N 3 i
Target Node | data_output |
<Workload>
(MongoDB)

Figure 8. Conversion of Workloads_Connection Relationship from TOSCA to OAM.

3.1.3. Extension to OAM Kubernetes Runtime and Workflow Engine

To fulfill OAM configuration manifests of an application in a Kubernetes cluster, we
have developed an extension to OAM Kubernetes runtime [18]. Basing our orchestration
system on OAM Kubernetes, we integrated several in-house extensions to it. One of
them is a set of Kubernetes controllers fulfilling the capabilities” functions, such as auto-
scaling and rollout. Following Kubernetes operator pattern, these controllers can create
underlying platform resources and organize them to work according to the configuration
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defined by corresponding TOSCA capability Node types [19]. They take care of low-level
configuration details intended to be hidden from the capability layer, allowing application
builders to remain concentrated on their orchestration goals without being distracted by
low-layer details.

Another extension is the workflow engine interacting with the runtime to synchronize
the state of application components and execute workflow directives defined in TOSCA
Service Templates. TOSCA provides an imperative workflow definition that can be used to
deploy, manage, or terminate a TOSCA Service Template. It allows the specification of the
cases that has not been planned in the definition of Node and Relationship types ahead
of time.

In contrast, workflow is not supported by OAM runtime because OAM is positioned
to be a purely declarative standard model. Therefore, we designed a workflow engine
to parse and execute workflow definitions from the TOSCA part. With regard to the
schema of TOSCA workflow, our workflow engine faces two challenges; one is to observe
the state of components at runtime, and the other is to interpret and execute workflow
directives, when a certain state is reached. Kubernetes API dictates a design convention
that a resource should record the current state in its “/status” sub-resource. Our workflow
engine makes use of it to keep track of the state changes. To address other challenges, we
defined a series of custom directives that help the workflow engine to resolve operations
defined by a TOSCA model into those of modified OAM configurations. An operation of
a Node type will result in certain modifications to generated OAM entities. For instance,
the set_new_image operation of dcc.workload.containerized Node type can accept an image tag
as an input parameter to update the node’s image tag property. If this operation is invoked,
the workflow engine asks for inputs to set the image tag field of the OAM Component.
Once a Component’s configuration is updated, OAM Kubernetes runtime automatically
applies the changes to the live workloads.

4. Experimental Evaluation

We performed a set of experiments with our prototype implementation of the pro-
posed orchestration system (https://github.com/dcc-lab-2021/tosca-oam accessed on
15 May 2021). We choose the motivational orchestration scenario introduced earlier in
the paper, featuring TOSCA-based modeling along with auto-scaling and progressive
delivery capabilities. Running in a Kubernetes cluster, an application needs a Kubernetes
Deployment as its hosting workload within which the application resides. A Kubernetes
Service is also required to expose the application functionality to the outside of the cluster.
The Deployment and its associated Service are central pieces for application developers
who are responsible to choose suitable workloads to run the applications.

Our prototype implementation of the proposed orchestration system is diagrammed
in Figure 9. In order to enable auto-scaling capability, Prometheus and KEDA (Kubernetes-
based Event Driven Autoscaling) are employed to implement a standalone Kubernetes
controller utilizing the operator pattern [20,21]. Prometheus collects monitoring data from
target Kubernetes Services and calculates metric results according to specified rules. KEDA
fetches the measurements from Prometheus and sets up a metric server in the Kubernetes
cluster. KEDA also creates and associates a Kubernetes HPA to the target Deployment,
which triggers scale-out or scale-in actions based on the inputs from the metric server. It
is worth mentioning that the auto-scaling may cause unexpected interference with the
progressive delivery that is underway at the moment, since a fixed number of replicas are
assumed with the rolling update. Thus, the auto-scaling temporarily puts the HPA on hold
to ensure that the replica set size remains the same during progressive delivery phase.
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Figure 9. Key components of WordPress application deployment.

4.1. TOSCA Model Conversion Cost

We defined the WordPress application of our motivational scenario in our extended
TOSCA model. Listing 5 is a YAML snippet of TOSCA Topology Template of the sample
application. The TOSCA Topology Template consists of multiple parts: two workload
Node templates representing the WordPress application and MongoDB database, two
operational Node templates for auto-scaling and rollout capabilities, and a Relationship
template connecting the nodes. Given the TOSCA Service Template specification as input,
our prototype system generates a manifest of OAM resources including an Application
Configuration and two Components as in Listing 6. Through observing the mapping rela-
tionship between the same name fields in the two listings, we can see how the conversion
is actually performed. Each property of extended TOSCA types has a corresponding field
in OAM entities. The OAM Kubernetes runtime will provision and deploy the application
according to the OAM manifest in a Kubernetes cluster.

To evaluate the performance of the model conversion engine, we performed a series
of conversions of different TOSCA Service Templates into OAM configurations. The
motivational scenario serves as a baseline to compare the execution times of the cases with
an increasing number of workloads and operational capability nodes. Conversions for
the same service template with varying number of workloads were executed ten times.
Elapsed times for the model translation are plotted in Figure 10 across different scales
of the application. As seen in the graph, the conversion time increases gradually, as the
application becomes more complicated.

Listing 5. TOSCA Topology Template of WordPress application.

topology_template:
node_template:
mongodb-comp:
type: dcc.workload.containerized
properties:

wordpress-comp:
type: dcc.workload.containerized
properties:
containers:
- name: wordpress-app
image: dcc-dev/wordpress-app:1.0
ports:
- containerPort: 8080
name: wordpress-svc
requirements:
- connect-to: mongodb-comp
relationship: workloads_connection

20

21

22

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

auto-scaling:

type: dcc.operational.autoScaling

properties:

maxReplicaCount: 5
minReplicaCount: 1
promQuery: sum(rate(http_request[2m]))
promThreshold: 3
requirements:
- attach-to: wordpress-comp
relationship: attachesTo

rollout:

type: dcc.operational.simpleRollout

properties:

requirements:

- attach-to: wordpress-comp
relationship: attachesTo
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20

21

22

23

24

Listing 6. Resultant OAM Application Configuration.

apiVersion: core.oam.dev/vlialpha2 25 minReplicaCount: 1
kind: ApplicationConfiguration 2 promQuery: sum(rate(http_request[2m]))
metadata: 27 promThreshold: 3
name: WordPress-app 28 - trait:
spec: 29 apiVersion: extend.dcc/vlalphal
components: 30 kind: SimpleRollout
- componentName: mongodb-comp 31 spec:
dataOutputs: 32
- name: mongodb-conn-endpoint B ---
fieldPath: status.connEndpoint 34 apiVersion: core.oam.dev/vlalpha2
- name: mongodb-conn-secret 35 kind: Component
fieldPath: status.connSecret 3 metadata:
- componentName: wordpress-comp 37 name: wordpress-comp
dataInputs: 3 spec:
- name: mongodb-conn-endpoint 39 workload:
fieldPath: spec...connEndpoint 40 apiVersion: core.oam.dev/vlalpha2
- name: mongodb-conn-secret 41 kind: ContainerizedWorkload
fieldPath: spec...connSecret 2 spec:
traits: 3 containers:
- trait: 44 - name: wordpress-app
apiVersion: extend.dcc/vialphal 45 image: dcc-dev/wordpress-app:1.0
kind: AutoScaling 46 ports:
spec: 47 - containerPort: 8080
maxReplicaCount: 5 48 name: wordpress-svc
440
400
£ 320 Baseline
g 280 —e— 2 Workloads
= 240
S 200 —— 4 Workloads
vy
g 160 ——— N 8 Workloads
Z 120 P
S 80 —e— 16 Workloads
40

o
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Figure 10. Conversion times of TOSCA to OAM specification.

4.2. Deployment and Complexity Reduction

The conversion module outputs OAM manifests that are fed into OAM Kubernetes
runtime in a target Kubernetes cluster. To evaluate the deployment of applications across di-
verse cloud environments, we installed our orchestration system on four mainstream cloud
platforms including Amazon Web Service, Microsoft Azure, Google Cloud, and Alibaba
Cloud. We leveraged managed Kubernetes services of the cloud providers which enables
higher availability and better performance than a manual setup in the local machine. We
repeated the application deployment for our sample scenario multiple times on each cloud
platform and averaged the times taken before the WordPress application becomes available
and the auto-scaling feature gets ready. The results in Figure 11 show that our prototype
system is able to deploy the application on these cloud platforms within a minute.
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Figure 11. Deployment times on managed Kubernetes service.

To see how simplified it can make matters when it comes to orchestration configu-
rations, we compared the number of configuration fields that have to be cared about. As
presented in Table 2, only six fields at the top need to be configured in case of our approach.
We’d like to emphasize that this is a drastic reduction from previous approaches where
all the low-level details, as listed at the bottom of the table, should have been specified
and configured. In our case, the six parameters are enough to set up an application with
auto-scaling capability enabled. These configurable fields should be of interest for the two
roles of application developers and operators. It is noted that our role-aware orchestration
model makes this reduction possible, as its building blocks, from basic modeling types to
top-level application topology, are identified and distinguished according to different roles’
concerns. All other parts that do not concern particular roles remain hidden from them
and are automatically handled by the orchestration system.

Table 2. Comparison of orchestration configuration fields.

Capability Configuration Fields

ContainerizedWorkload (Workload Capability) AutoScaling (Operational Capabilitiy)

.spec.template.spec.containers.*

.spec.promQuery

.spec.ports.*

.spec.promThreshold

.spec.maxReplicaCount

.spec.minReplicaCount

Related Underlying Resource Configuration Fields

deployments.apps/vl (main application) deployments.apps/vl (Prometheus component)
apiVersion/kind apiVersion/kind
.metadata .metadata

.spec.replicas

.spec.replicas

.spec.selector.matchLabels

.spec.selector.matchLabels

.spec.template.metadata.*

.spec.template.metadata.*

.spec.template.spec.containers.*

.spec.template.spec.containers[0].*

services(.core)/vl (main application) .spec.template.spec.containers[0].volumemounts

apiVersion/kind

.spec.template.spec.volumes.*
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Table 2. Cont.

Related Underlying Resource Configuration Fields

.metadata services(.core)/vl (Prometheus component)
.spec.ports.* apiVersion/kind
.spec.selector .metadata

scaledobjects.keda/vlalphal

.spec.ports.*

apiVersion/kind .spec.selector

.metadata configmap(.core)/vl (Prometheus component)
.spec.scaleTargetRef.deploymentName apiVersion/kind

.spec.minReplicaCount .metadata

.spec.maxReplicaCount .spec.data

.spec.triggers[0].type

.spec.triggers[0].server Address

.spec.triggers[0]. metricName

.spec.triggers[0].query

.spec.triggers[0].threshold

4.3. Workflow and Progressive Delivery

In order to make sure that our workflow engine works as expected, we conducted an
experiment of progressive delivery which involves orchestration workflows. Progressive
delivery is a process of releasing updates of applications in a controlled manner, steering
the automated promotion or rollback of the update. Progressive delivery involves both
application developers and operators. Developers are responsible for providing the artifacts
of a new version as well as a workload configuration for running the artifacts. By contrast,
operators carry out multiple tasks, such as specifying a rolling strategy, modifying other
operational capabilities to avoid interfering with the rollout, determining a rollback strategy,
etc. This is where an orchestration workflow comes into play. It is composed of a series
of steps to handle various tasks. Our approach promotes the principle of separation of
concerns by allowing users to define a role-aware workflow in TOSCA. Each step of the
workflow is relevant to specific roles.

The workflow is divided into five steps as shown in the Listing 7. During progressive
delivery, the number of replicas of a new version should follow the defined rules. How-
ever, auto-scaling may interfere with progressive delivery. For example, with incoming
requests decreasing, an auto-scaling decision may shut down newly-created replicas of the
new version, which is probably not what is expected to happen. Therefore, before initi-
ating progressive delivery, operators should lock the total number of replicas in the step
lock_autoscaling. In the following step of config_rollout, operators assign proper values to
the rollout parameters, such as rolling interval and batch size of each increment, according
to which the workflow engine creates and attaches a rollout capability node template
to the target component node. As the only step belonging to developers, rolling_update
accepts a new version of the application as the input parameter. Once the configuration
is complete, the workflow engine packs the new configuration of components as well as
newly added rollout capability, and applies it to the cluster. The rollout controller can detect
any modification on target components and trigger a batch of rolling update according to
the rule defined in the step config_rollout. In each round of the rolling update, a certain
portion of replicas are replaced with the new version. When all replicas are upgraded to
a new version successfully, operators deactivate the rollout capability of the component.
Finally, the auto-scaling gets unlocked to allow it to resume its normal operation.
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Listing 7. Orchestration workflow of progressive delivery.

workflows: 14 rolling_ update:
progressive_delivery: 15 target: wordpress-comp
steps: 16 activities:
lock_autoscaling: 17 - set_new_image: dcc-dev/wordpress-app:2.0
target: auto-scaling 18 on_success:
activities: [...] 19 - deactive_rollout
on_success: 20 - unlock_autoscaling
- config_rollout 21 deactive_rollout:
config_rollout: 2 target: rollout
target: rollout 23 activities: [...]
activities: [...] 2% unlock_autoscaling:
on_success: 25 target: auto-scaling
- rolling_update 2 activities: [...]

The experiment considers upgrading the WordPress application from version v1 to
version v2. For the sake of observation, we developed a service endpoint for WordPress
server, observe/rollout/version, which returns the version name of the component. The
progress of rolling update can be estimated by looking at accumulated response time from
each version. Since incoming requests are evenly distributed across the replica set, elapsed
times of each version would represent its share of the total processing capacity. Figure 12
illustrates the progress of the rolling update in terms of the response time, as its update
round performs repeatedly. In addition, 10,000 requests are generated by using Apache
server benchmarking tool (ab -n 10,000 -c 1 <service-host/observe/rollout/version>). As
shown in the graph, all traffic is initially handled by v1 replicas. According to the rollout
strategy batch: 20% that we use, every round, one fifth of the replicas are being replaced
with a new version, which can be observed from the correspondingly increasing response
time of the new replicas.

M VordPress vl
WordPress v2
12, 000
10, 000 10,000
10, 000
o
% 8,027 7,966
g 8,000
3 5,949 5, 943
o 6, 000
. , 051 4,057
& 4,000
E ,973 2,034
2,000
0 II 0
0
0 1 2 3 4 5
rolling round

Figure 12. Progress of rolling update.

4.4. Discussion

To the best of the authors” knowledge, we are the first ones to explore the possibility of
the integration of two prominent orchestration technologies of TOSCA and OAM. Unlike
other approaches, TOSCA application components are mapped to underlying OAM entities
in our orchestration scheme. As a result, the proposed approach can benefit from role
separation of concerns and higher-level orchestration features enabled by OAM technology.
Since our approach is geared towards higher-level abstractions, low-level details such
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as infrastructure resource managements are hidden from the application developers and
operators. This way, it can effectively ease much of the complexities and burdens inherent
to cloud application orchestration. Consequently, application builders can focus on their
own tasks without being worried about under-the-hood details. However, a downside
of the proposal is that it lacks fine-grained orchestration ability for cloud services and
applications. Being positioned as an orchestration solution at the capability level and above,
our proposed system is notable for handling orchestration needs with regard to low-level
infrastructure resources. It is noteworthy that there exist other approaches that can support
both IaaS- and PaaS-level orchestration [22]. Regrading the runtime implementation, our
system is built upon Kubernetes. As a result, it can handle containerized workloads only.
Our prototype system can be extended to support other types of workloads, especially
non-containerized workloads. In addition, further flexibility could be considered regarding
the application component to container mapping relationships. It is noteworthy that some
proposals already support the case of multiple components being placed within a single
container [23]. Lastly, the workflow engine in our prototype could be augmented further.
Even though TOSCA specifies primitives for workflow definition including interfaces of
node types, our prototype implementation does not provide a full coverage of the primitives
to generate corresponding execution directives. In addition, the current implementation
is limited in that one workflow step can only specify the activities and states of a single
node. However, it is likely that there exists an orchestration scenario where a workflow
step involves multiple nodes in the cluster.

5. Related Work

Much attention has recently been paid to the technology of cloud orchestration. As
a result, various alternative approaches to cloud application orchestration have been
explored, each with different strengths and weaknesses [6,24,25]. Some of the efforts target
the standardization of orchestration features and interfaces, while others have focused the
development of real orchestration tools and solutions. In addition, when it comes to the
orchestration layer of focus, they exhibit a wide range of low-level resources to application
layer functionalities. In order to assess the novelty of our proposal against others, we have
conducted a qualitative comparison study of several outstanding approaches in the field.
Table 3 compares our approach with Tosker, TOSCAMP, Cloudify, and KubeVela.

This paper extends our previous work [26] where the idea of role-based cloud or-
chestration was proposed along with its early results presented. In this version, having
advanced the orchestration system architecture with support for features like application
topology model, platform capability abstraction, and role-awareness for cloud application
orchestration, we have demonstrated that our proposal significantly reduces the complexity
of application orchestration on cloud platforms.
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Table 3. Qualitative analysis of orchestration approaches.

Our Approach Tosker TOSCAMP Cloudify KubeVela
Base TOSCA 1.0 and TOSCA 1.0 TOSCA 1.0 and TOSCA-based DSL OAM0.2.1
Specification OAM 0.2.1 CAMP 1.1
Application TOSCA toRQIng and TOSCA topology TOSCA topology Models Written in Capabilities but
Model capabilities Cloudify DSL no topology
Role-Awareness Role-awareness No role-awareness No role-awareness No role-awareness Role-awareness
Capability Typed capability as No capability No capability No capability Typed capability as
Abstraction model constructs abstraction abstraction abstraction model constructs
Workflow Imperative workflow Declarative workflow Imperative workflow Built-in deployment- No workflow
Definition definition by TOSCA definition by TOSCA definition by TOSCA specific workflows definition
Multi-Cloud Multi-cloud support No multi-cloud Multi-cloud support Multi-cloud support Multi-cloud support
Support based on Kubernetes support based on i{aafl/ PaaS based on Kubernetes based on Kubernetes
standards

Cross-Cloud

Cross-cloud based on

No cross-cloud

Cross-cloud support
based on standarized

Cross-cloud based on

Cross-cloud based on

Support Kubernetes Federation support Kubernetes Federation Kubernetes Federation
IaaS/PaaS APIs
Containerization Containerd, CRI-O, Only Docker No containerization Containerd, CRI-O, Containerd, CRI-O,
Support and Docker support and Docker and Docker
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Considered as a mature and prominent topology specification, TOSCA is adopted
by a number of cloud application orchestration solutions. TosKer [27] presents a Docker-
based orchestration system that can manage the deployment and operation of TOSCA-
based representations of applications in Kubernetes clusters. As a means to model cloud
application topology, it introduces new TOSCA node types of Container and Software that
represent a Docker container and a software component of the application, respectively.
Interconnection and dependencies among them are defined by the TOSCA normative
relationship types, including AttachesTo, ConnectsTo, HostedOn, and DependsOn. Given a
TOSCA representation of a cloud application, the orchestration engine instantiates the
application over a Kubernetes cluster. In this system, a container is the minimal entity
that can be orchestrated. This rigid coupling of software components and their hosting
containers is relaxed in their follow-up work [23], so that the components can be managed
independently from their hosting containers. More specifically, the lifecycle of software
components can be managed separately from that of their hosting containers. It is even
made possible to have multiple components running in a single container for better inter-
component communication latency and resource utilization. It is also shown that the
orchestration process is further automated to allow for a partial topology description [28].
Given an incomplete specification of TOSCA applications, where only application-specific
components are defined and other aspects are left unspecified, the proposed scheme can
complete the TOSCA representation by automatically filling in unspecified parts. These
research efforts focus on TOSCA orchestration systems tailored for container-based runtime
environments. According to these proposals, TOSCA application components are mapped
to Docker containers, and container orchestration technologies like Kubernetes and Docker
Swarm are exploited as a base to build up a full-fledged orchestration system. Our proposal
differs from these efforts in that TOSCA applications are mapped to underlying OAM
entities. As a result, it can benefit from role-awareness and higher-level orchestration
features enabled by OAM technology. To the best knowledge of the authors, we are the first
to explore the possibility of the integration of two prominent orchestration technologies of
TOSCA and OAM.

Another noteworthy effort is a layering approach where cloud management solu-
tions at the bottom like CAMP and OCCI are exploited to deploy and orchestrate TOSCA
application models at the top [22,29-31]. CAMP is a standardization effort at Platform-
as-a-Service(Paa$S) layer [32], while OCCI can be viewed as an laaS-layer equivalent. A
framework proposed by Fabian et al. [30] introduced a model-driven cloud orchestra-
tion scheme based on TOSCA and OCCI. OCCI provides the standardization of common
APIs for Infrastructure-as-a-Service (IaaS) providers, while TOSCA focuses on defining
application topology and their orchestrations. TOSCAMP architecture was also proposed
by Alexander et al. [31], which explored the possibility for orchestrating cloud applica-
tions through an integration of TOSCA and CAMP. Trans-cloud system [22] is similar to
TOSCAMP in that it supports cross-cloud management and orchestration by combining
two OASIS standards of TOSCA and CAMP. However, a difference lies in the fact that
Trans-cloud proposal provides unified orchestration support for both IaaS and PaaS ser-
vices. It is also noted that the Trans-cloud system is extended to a fault-aware orchestration
scheme [29] by which failures of application components can be automatically recovered
thanks to the knowledge of the application topology and inter-dependencies among the
components. After transforming TOSCA Service Templates into either OCCI or CAMP
deployment configurations by a model translator, OCCI- or CAMP-compatible runtime
fulfills the deployment and management of the applications. However, without support
for orchestration modeling at a proper abstraction level, it would be too complicated and
time-consuming for application builders to perform their orchestration tasks. Our proposed
method introduces a capability layer over laaS or PaaS resources to enable a role-aware
orchestration framework that hides irrelevant details of capability configurations.

As an open-source cloud orchestration framework, Cloudify introduces a domain-
specific language based on TOSCA [33]. Cloudify aims to define and deploy application
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templates that declare the configuration and interaction of cloud services, regardless of
cloud infrastructure providers. In addition, Cloudify provides a Kubernetes plugin to
interact with the Kubernetes cluster. It describes the configuration and the entire life cycle
of containerized applications in the form of Kubernetes API at a low-level infrastructure
layer [34]. By contrast, to save users from a burden of repetitive configuration specifics,
our approach allows for model applications based on platform capabilities instead of
infrastructure or underlying platform resources.

KubeVela is an emerging cloud platform engine based on Kubernetes and Open
Application Model [35]. As a runtime implementation conforming to the OAM specification,
it is designed to pursue consistent application delivery across clouds and on-premise
infrastructures using Kubernetes as a common abstraction layer. KubeVela serves as an
application platform that assists platform builders in constructing DevOps platforms
rather than a cloud application orchestration system. It is different from our approach in
that we leverage the capability of TOSCA to build an orchestration framework equipped
with several features that are not supported by KubeVela, such as application topology,
component interface, and workflow definition.

Different container platforms are also considered for TOSCA-based orchestration of
cloud applications. For instance, a TOSCA orchestration system is built over container
clusters running on Mesos [36]. An orchestration system can be built up by augmenting
native container runtimes and/or by exploiting accompanying container orchestration
features. This work itself builds up a container orchestration on top of Mesos, while a native
container orchestration layer such as Kubernetes and Docker Swarm could be exploited as
much as possible to deliver a full-fledged orchestration systems as reported in [23].

6. Conclusions

This study proposes and explores a methodology for orchestrating cloud applications
built on DevOps platforms by combining two prominent orchestration standards of TOSCA
and OAM. Our orchestration system design does not only support cloud application mod-
eling, but it also provides a viable solution for deploying and managing the applications
on the target runtime platform. By defining a set of capabilities as modeling constructs,
our scheme allows TOSCA-based application topology itself and its orchestration needs to
be specified in a way to provide a more targeted support for different needs of involved
individuals, e.g., application developers and operators. With support for advanced or-
chestration features such as application topology model, platform capability abstraction,
and role-awareness for cloud application orchestration, our approach significantly reduces
the complexity of application orchestration tasks on diverse cloud platforms.

We have demonstrated the feasibility and effectiveness of the proposed approach by
using a Kubernetes-based prototype implementation. More importantly, our evaluation
study shows the promising results that an ever-increasing complexity of cloud application
orchestration can be effectively tamed by our scheme.
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