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Abstract: In the last few decades, complex light-weight designs have been successfully produced
via additive manufacturing (AM), launching a new era in the thinking–design process. In addition,
current software platforms provide design tools combined with multi-scale simulations to exploit all
the technology benefits. However, the literature highlights that several stages must be considered in
the design for additive manufacturing (DfAM) process, and therefore, performing holistic guided-
design frameworks become crucial to efficiently manage the process. In this frame, this paper aims at
providing the main optimization, design, and simulation tools to minimize the number of design
evaluations generated through the different workflow assessments. Furthermore, DfAM phases are
described focusing on the implementation of design optimization strategies as topology optimization,
lattice infill optimization, and generative design in earlier phases to maximize AM capabilities. In
conclusion, the current challenges for the implementation of the workflow are hence described.

Keywords: additive manufacturing; design for additive manufacturing; topology optimization;
generative design; lattice infill optimization

1. Introduction

According to ISO/ASTM standards, additive manufacturing (AM) is defined as the
process of joining materials, generally by layer-by-layer approach, to produce parts starting
from digital representations [1]. Continuous development of metal AM technologies,
such as directed energy deposition (DED) or laser powder bed fusion (LPBF), yield new
industrial design perspectives due to several technology benefits.

Indeed, the main AM advantages include: the possibility to manufacture complex
internal part-functionalities like cooling channels in turbine blades [2], lattice and gyroids
structures in medical implants [3,4]; low buy-to-fly ratio [5]; consolidate part assemblies
into fewer components [6]; achieve mechanical properties as tensile and yield strength
comparable to bulk materials [7]; and high part-customization. Consequently, AM becomes
an economically suitable technology where low-production volumes or customizable
production on-demand are required [8].

However, there are still drawbacks related to the complex thermo-physical phenom-
ena involved: repeated cycles of rapid cooling of the melted pool generate anisotropy
depending on building direction [9]; control of printing parameters is required to prevent
physical problems of balling, key-hole formation and lack of fusion [10]; residual porosity
affects end-parts mechanical properties [11]; energy consumption is high to melt or sinter
the metal powder [12]; and low surface quality occurs due to layer-by-layer deposition [13],
thus reducing fatigue life [9]. Moreover, volumetric restrictions on part size [14], time-
consuming jobs and lack of standard certifications for certain industries as aerospace, are
still considered limitation factors [15].

In the traditional design for manufacturing (DFM) process, it is required to find a
design solution that minimizes manufacturing, assembly and logistic costs [16]. To take
into consideration these objectives with the unique AM technology capabilities (e.g., part
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consolidation, design freedom and highly part-customization), the design for additive man-
ufacturing (DfAM) allows rethinking the whole design process from the digital database
to the final printed part. In addition, to take into consideration the geometric printing
technology limitations, DfAM guidelines are provided, based on empirical analysis de-
pending on the material, printing parameters and manufacturing technology. Namely, it’s
possible to recognize [17]: critical angle of self-supported faces, minimum diameters for
unsupported holes, optimal position on the building plate, maximum allowable aspect ratio
of thin columns, minimum printable wall thickness and minimum feature size. To reduce
manufacturing costs related to energy consumption, printing time and post-processing,
parts should be designed with minimum support generation. Indeed, supports are usually
required for overhanging sections, to prevent collapse during building. However, for metal
AM, supports are crucial and cannot be removed at all due to the high-stress gradient
generated during printing. In this case, supports act as heat transfer structures preventing
excessive distortions and residual stresses.

Initially, the guided-design process performs post-processing checks, while recent
advancements on software platforms allow predicting thermal effects and mechanical per-
formance in earlier design phases. However, the physical and manufacturing limitations
mentioned above mean that the DfAM process workflow involves several stages to maxi-
mize printing capabilities and ensure correct manufacturability. In addition, the process is
considered a challenging task to perform, since computer-aided design (CAD), computer-
aided engineering (CAE), and computer-aided manufacturing (CAM) must be evaluated at
different abstraction levels requiring full design, simulation and manufacturing knowledge.

Engineering fields, such as automotive, aerospace, robotics, and medical prosthesis,
often require the design of lightweight structures for improving the energy efficiency of
moving systems enhancing the physical performance of analysis. To achieve this goal,
structural optimization is used as a suitable design framework based on mathematic formu-
lations consisting of coupling physic system responses such as stress, natural frequencies,
compliance, or displacements with deterministic or stochastic algorithms to find an optimal
layout material by an iterative process. This global definition includes [18]: sizing, shape,
and topology optimization (TO). Sizing optimization aims at determining the optimum
cross-sectional area of structural members, while shape optimization focuses on the opti-
mum boundary domain shape [19]. Particular attention has been addressed in the industry
and academia on TO strategies due to more design flexibility generating internal voids
in the design domain. In general, TO algorithms result in complex geometries, which are
not common by traditional thinking, mainly mimicking nature designs [20]. As a result,
AM became the perfect manufacturing technology to be coupled with TO capabilities, and
hence improve the DfAM workflow.

In this frame, this manuscript aims to describe the main DfAM workflow assessments,
focusing on suitable optimization, design, and simulation tools to reduce the number of
required design evaluations. Particular attention was addressed on including topology
optimization, lattice infill optimization and generative design in earlier design phases
to obtain high-performance parts that could be properly produced via AM. In this field,
the main theory behind the optimization algorithm used in commercial software is hence
described.

2. Holistic DfAM Workflow

As suggested in Figure 1, from a macro point of view, traditional DfAM holistic
workflow involves four main phases described by local tasks to be performed [21]: prod-
uct planning, design optimization, manufacturing optimization and product validation.
Product planning activities include modelling preparation of base design, definition of
objectives and constraints, finite element analysis and feasibility analysis to include a struc-
tural optimization strategy. Design optimization involves an iterative process of: design
optimization strategy; design interpretation of optimized results and product simulation.
Manufacturing optimization actions imply printing modeling with support generation, op-
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timization of support structures, and additive process simulation. The last phase involves
part manufacturing, post-processing, performance validation via mechanical testing and
quality inspection.
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Design and manufacturing optimization represents the digital phases of the DfAM
workflow, they are characterized by several design iterations to validate the design propos-
als. As described in [22], an automatic approach is required with suitable self-parametric
design interpretation, coupling AM simulation models with manufacturing settings, cost
evaluation and support structures. However, this level of automation was not yet reached.
Instead, software platforms as 3DExperience (Dassault Systemes, Velizy-Villacoublay,
France) and Ansys (Ansys Inc., Canonsburg, USA) integrates all the required computer
aided tools such as geometry preparation, topology optimization, FEM validation, addi-
tive preparation and AM process simulation in the same software interface. The main
advantage offered by this approach is to facilitate interchange data and manipulation of
intermediate results [21].

3. Product Planning

Once a candidate part is selected to perform the DfAM process, a CAD file must be
created for FEM analysis, to predict the real performance based on the domain distribution
of physical responses such as temperature, stresses, displacements and modal frequencies
of vibration. Based on this, a qualitative analysis is available for material distribution and
feasibility to include a structural optimization strategy. Additionally, the initial safety factor
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found from the maximum response values and the admissible material resistance enables
the viability of proposing any change in material design [23].

In some cases, where a CAD model is not available for starting the process [24],
computer-aided reverse engineering (CARE) is performed [25]: the computer model is
obtained by surface cloud points through measurements of the object with laser-based
scanner or coordinate measure machines. In this operation, a surface representation results
in digital formats as standard triangulation language (STL) [26], mesh-part file and graphics
exchange specification (IGES). Then, CAD file is obtained with adequate modeling tools
offered in software platforms.

This phase is also characterized by the definition of design and non-design domains
for applying the structural optimization process. One of the main features of mathematical-
based optimization is that solutions are very sensitive to the defined initial domains, with
a huge impact on mechanical performance in the simulation validation process [27]. To
maximize optimization exploration capabilities to find the optimal material distribution,
the definition of a vast design domain is recommended considering space limitation for
part-assembly. Additionally, at this stage, to reduce the number of required iterations in
the manufacturing-phase optimization, a suitable printing direction is decided, based on
the size of the building chamber, with possible additional restrictions via the expedient of
frozen regions [28].

4. Optimization Strategy

This phase is focused on solving the selected structural optimization process and
validating the performance of the proposed design. Given a design domain, boundary
constraints and loading conditions, TO describes solid mathematical method implemented
through computer-aided engineering (CAE) software. The method allows finding the
optimum material layout that maximizes or minimizes an objective function representing
a physic response of the system subjected to constraints. In general, real systems are
subjected to multiple loading conditions requiring the definition of a multi-objective criteria
optimization [29]. One common approach is to solve the multi-objective problem with a
single scalar function by associating weighted factors to the different loading cases [30].
This converts the problem into the so-called Pareto-optimality describing a frontier of
admissible optimal solutions. In [31] a 199-line Matlab code for tracing the Pareto optimal
frontier is proposed: interestingly, no sub-objective can be improved without diminishing
another with the main limitation to find a priori adequate values of weight factors [32].

Given this background, TO could be applied to a vast range of physics problems, with
the conditional enforcement that the partial differential equation (PDE) of analysis might
be reliably discretized and modelled using finite element method (FEM), boundary element
method (BEM), finite volume method (FVM) or other domain discretization schemes [33].
Besides classic static structural analysis, the process can be applied to fluid dynamics [34],
heat transfer [35], electromagnetism [36], acoustic [37] and Multiphysics combinations
between them [38]. In this manner, it is possible to associate a wide number of objectives
and constrains formulations including compliance, stress, frequency, displacements, Eigen
frequencies, reaction forces, moment of inertia, critical buckling load, mass or volume.
Typical optimization tasks for static structural problems are: compliance minimization that
is equivalent to stiffness maximization with volume constraint [39]; volume minimization
with stress constraint [40]; and minimizing displacement under volume constraint [41].

The global classification of TO methods is based on the fact that the optimization
process requires or does not calculate the gradient information of the objective functions.
Therefore, two main groups are defined: deterministic (gradient-based) and stochastic
(heuristic) methods; the later are inspired by nature and gradient calculus is not required.
Gradient-based methods include homogenization, density interpolation schemes as SIMP
(Solid Isotropic Material with Penalization) or RAMP (Rational Approximation of Material
Properties), and level set methods. Stochastic methods include metaheuristic algorithms
like evolutionary approaches as Genetic Algorithm (GA), ESO, BESO and bioinspired
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algorithms like particle swarm intelligence, human base (tabu-search) and physical-based
(Colliding bodies). The reader is kindly referred to [42] for an in-depth review of these
TO methods and their numerical formulation. All of the proposed algorithms have in
common the definition of a discretized domain and the necessity of implement filtering
techniques to ensure smooth convergence and mesh-independency results. Differences
between consists in purely mathematical definition with continuous or discrete variables,
linear or non-linear programming, heuristic or mathematical derivation, local or global
length scale control with implicit-explicit means.

Nowadays, software platforms allow applying several optimization strategies for
maximizing performance and obtaining lightweight structures that are suitably produced
by AM technologies. In this manuscript, different TO approaches are presented: traditional
gradient-based sequence with density interpolation schemes, infill optimization with lattice
structures and the innovative generative design approach. All of these are significantly
appropriate in the frame of DfAM.

4.1. Numerical Instabilities of TO

Main numerical instabilities of TO problems are defined in [43] as checkerboard
patterns, mesh dependence and local minima solution. The checkerboard pattern describes
a periodic pattern of low and high values for the design variable arranged as a checkerboard.
This result is undesirable since the material layout is not appropriate. It was shown
in [44] that a finite discretized domain with a patch arrangement of average density of
1/2 provides artificial high stiffness when applied to the TO for minimizing compliance.
Additionally, [45] concludes that this numerical instability is caused by FEM where the
equilibrium equations are only referred to element nodes. Moreover, the use of lower-
order elements promotes checkerboard patterns, while higher-order discretization schemes
reduce the global effect. In this case, finite-volume theory accomplishes the task to eliminate
checkerboards.

The mesh dependence problem appears when mesh-refinement of the design domain
results in different topology instead of better description for boundaries [46]. The solution
to both checkerboard-patterns and mesh dependency is the regularization of the domain
design by filtering techniques. From the wide spectrum of filtering schemes the most
valuable for easy implementation and efficiency are density and sensitivity filters [47]. In
the former, the element density is calculated as a weighted average of the neighborhood el-
ements included in the characteristic filter radius; in the latter, standard calculus of element
density is used to calculate a weighted average of the neighborhood sensitivities [48].

Nerveless, it is worth noting that regularization schemes fail in mitigating solutions
with a grayscale interface. To obtain pure black and white designs, with a minimum
interface, post-processing on the design domain is required through projection schemes
like the Heaviside threshold [49]. For example, commercial software Comsol Multiphysics
(Comsol Inc., Stockholm, Sweden) englobes filtering and projection schemes in the so-called
three-field density representation [50]. The chain of transformations starts from the design
domain, then a PDE density filter scheme is applied and the last operation includes a
Heaviside projection function to improve the contour boundaries.

Solving TO problems with penalized interpolation schemes results in non-convex
problems, hence obtaining local minima solutions [51]. To prevent this, continuation
schemes are typically employed on material and filter parameters. For the SIMP scheme,
the continuation strategies solve an initial convex problem, characterized with uniqueness
solution, with low value of the penalization parameter. This solution is used as input for
consecutive cycles, where this parameter is increased in steps until arriving at adequate
values.

4.2. Gradient-Based TO

Available commercial software as Altair Hyperworks (Altair Engineering, Troy, MI,
USA) [52], SolidWorks (Dassault Systemes, Velizy-Villacoublay, France), MSC (MSC Soft-
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ware Corporation, Newport Beach, CA, USA) [53], Comsol Multiphysics (Comsol Inc.,
Stockholm, Sweden) [54], Ansys (Ansys Inc., Canonsburg, PA, USA) and Abaqus (Abaqus
Inc., Velizy-Villacoublay, France) solves the TO problem by using the gradient-based den-
sity approach, associated to the density interpolation scheme method SIMP or power-law
approach. The density approach is characterized by a design variable assigned to dis-
cretized elements representing an artificial density of material [55]. This variable ranges
from 0 to 1 in the case of void elements or solid material, respectively. In general, platforms
provide as objective function minimizing compliance to find the maximum stiffness layout
material distribution, aiming to reduce the computing complexity of gradient-based algo-
rithms [56]. Alternatively, other optimization algorithms are available through MATLAB
or Python codes and integrated into FEM commercial software [57].

The solution of gradient-based TO strategy is found through an iterative process called
nested-formulation [58]. The iterative loop consists of five main steps [59]: FEM analysis,
sensitivity analysis, filtering techniques, optimality algorithm updating design variables
and post-processing.

In general, the stiffness matrix structure and the displacement field are found via FEM.
Then, the density design variables are assigned into the design domain as constants for each
finite element. By using a sensitivity analysis, the process calculates the partial derivatives
of the objective function concerning the value of the design variable, at each element. For
the particular case of compliance objective function, the derivative is always negative [60],
thus indicating that increasing element-density yields a decrease of the overall compliance,
and a stiffer structure. Aiming at reducing the numerical instabilities, the next step is
applying density or sensitivity filtering techniques to impose a length-scale restriction
on the design domain, thus limiting the spectrum of possible feasible solutions. The
following phase uses an optimality algorithm method like optimality criteria (OC) [61] or
the method of moving asymptotes (MMA) [62] that approximate the value of the objective
function by using the sensitivity results. In this manner, the optimization task is divided
into sub-problems so that solving is more efficient. The last step consists of updating the
design variable values. The cycle is repeated until numerical convergence. Additional
post-processing via projection filters might be required to improve contour boundaries.

4.3. SIMP Approach

One efficient strategy to solve the gradient-based TO formulation consists in a con-
tinuous representation of the density variable associated with some form of penalty that
steers intermediate solutions into discrete values. In the SIMP approach, a penalization
parameter is used to penalize intermediate values of the design variable so they became
unfavorable in the sense that the stiffness obtained is small compared to the required
material volume [46]. Then, the design variable is multiplied onto physical quantities as
stiffness, cost or conductivity to evaluate the performance of the material distribution in
the FEM analysis.

In density interpolation schemes the physical interpretation of greyscale or intermedi-
ate values is represented by the homogenization method correlated to porous composite
materials [58]. Low values of the penalization parameter cause too much greyscale so the
optimum material distribution is improperly defined. On the other hand, high values, lead
to a fast convergence solution into local minima, thus reducing the probability to obtain a
global optimum distribution. Adequate values are recommended from 3 to 5 based on the
verification of composite Hashin–Shtrikman bounds [58].

An evolution of the method has been suggested with the introduction of a minimum
stiffness value [47] that prevents singularity problems of the stiffness matrix when comput-
ing equilibrium equations. In addition, this method presents the advantage of their easy
generalization to many filtering techniques. This approach was efficiently introduced in
the 88-lines Matlab code for minimizing compliance [63].
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4.4. Lattice Infill Optimization

Lattice structures are very attractive for industrial lightweight applications [64].
Namely, the hip implant prosthesis is optimized with internal lattice infill to reduce the
physical phenomenon of stress shielding and promoting excellent biocompatibility [65].
Indeed, the porous infill pattern gives the advantage of high specific strength, enhanced
stiffness, superior capacity of energy absorption and offers the possibility to add inter-
nal functionality. Many mathematical models are available to generate porous patterns.
Namely, it is possible to recognize periodically distributed porous patterns as the triply
periodic minimal surfaces (TPMS) where uniform or functionally graded designs are cre-
ated [66]; and random porous distribution through stochastic point cloud-based and fractal
geometry that mimics the real porous distribution of nature scaffolds [67].

This type of structure is included in the so-called multi-scale design, where the overall
performance is evaluated using information from different abstraction levels. In fact,
they can be considered as composite material with mechanical properties calculated via
homogenization techniques [68]. Homogenization-based structural optimization is even
one of the mathematical foundations for density interpolations schemes. This method
converts the isotropic material TO analysis into a composite material consisting of infinite
small holes, periodically distributed through the material. In this manner, TO is converted
into a sizing optimization problem using micromechanical modelling where the design
variable is described by several sub-variables to be optimized [69].

To include lattice structures into the TO process, proper steps are required to combine
both topology and size optimization [70]. The sequence starts by implementing a TO
process to find the density field domain, then a density threshold is applied to preserve
areas with high-density regions describing solid boundaries; the remaining domain serves
as input to lattice wireframe generation. After the generation of infill lattice contours, a
size optimization with adequate meshing and FEM simulation is applied. The result of the
process is a graded infill lattice in low-density regions that has better performance with
minimum support generation. A similar process is used inside commercial software nTop
(nTopology, New York, NY, USA) [71].

4.5. Generative Design

Generative design (GD) describes a constrained design exploration process that allows
finding multiple convergent solutions by using evolutionary approaches based on nature.
This approach describes the artificial intelligence applied to structural optimization and
works as an auxiliary tool for traditional TO algorithms, where an exploration strategy is
added through a random disturbance to change search design direction [72].

Exploration algorithm works as a black-box where the input information is: materials,
manufacturing technology, physical constraints and design restrictions; while output
information involves multiple solutions meeting the initial demand. Design solutions are
categorized by a ranking performance to select an adequate candidate to manufacture.

The main difference from TO traditional process is that GD does not require the
definition of a design domain where the algorithm modifies the material distribution. In
fact, domain restrictions associated to the assembly with other parts are defined. Then,
the evolutionary algorithm creates a material path between fixed connections and domain
limitations, providing more freedom of design.

The main advantages of this design exploration strategy are part consolidation of
complex assemblies [73], almost ready parametrized CAD design solutions requiring
minimum modifications, multiple solutions obtained simultaneously for different materials
and manufacturing technologies. However, as indicated in [74], the strategy implies a high
consuming time task not recommended for simple designs where traditional TO is more
effective. Available commercial software that includes GD approach includes: MSC Apex
Generative Design (MSC Software Corporation, USA) [75], nTop (nTopology, USA) [76]
and Autodesk Fusion360 (Autodesk, San Rafael, USA) [77]. In addition, it is possible to
differentiate cloud-based GD from real-time GD. The first approach, used by Fusion360,
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takes advantage of cloud computing to efficiently solve different initial settings as materials,
constraints and manufacturing technologies simultaneously; while real time GD describes
an exploration analysis limited to fixed initial settings.

4.6. TO Constraints

Introducing optimization constraints in TO process improves the efficiency of the
DfAM workflow by reducing the number of design iterations to verify the product sim-
ulation and printing evaluation. Major structural constrains include: physical limits as
maximum stress and displacements and AM geometrical limitations based on fixed printing
direction.

In structural applications, maximum stress measure takes relevance to verify material
resistance. Solving TO with compliance minimization as objective function takes into
account preserving material in regions with elevated strain energy, providing results
with elevated stress concentrations inducing several design iterations until the prescribed
safety factor. One feasible solution is to include stress constraints in the TO formulation.
However, this implies computational problems related to physical phenomena such as
stress singularity, local nature and highly non-linear stress behavior [78]. Singularity
problem appears in degenerated regions where the design variables tend to zero: for these
elements, nonzero values of stress are found promoting the selection of a local minima
solution. Stress is a local measure in the design domain, the use of local stress constraints
for each element needs a high number of variables, thus increasing the computational
effort. Highly non-linear stress behavior is related to stress gradient and design domain, as
for reentrant corners where density changes in neighboring regions.

A common approach is to convert the local stress-constrained for each discretiza-
tion element into a single global stress measure by relaxing methods with p-norm or
Kreisselmeier–Steinhauser (KS) functions [79]. This technique lacks physical interpretation,
since it provides an approximation of the maximum reached stress by penalization of the
local stress measure for all domain elements.

Since stress-constrained TO is well suited to solve the shape optimization problem with
parametrized domain boundaries, another approach solves the traditional unconstrained
TO problem at first for then applying a design refinement on critical regions by shape
optimization technique [80].

To obtain TO designs that are suitable to AM with minimum support generation,
manufacturing constraints can be included into the algorithm process by imposing geomet-
rical printing limitations such as minimal angle of unsupported faces related to material
and printing technology; and minimum size thickness related to machine printing capa-
bilities [81]. AM constraints limit the algorithm freedom of searching the optimal layout
distribution obtaining a solution with reducing mechanical properties concerning the un-
constrained one. Therefore, a trade-off between support generation and performance must
be set.

5. Design Interpretation

The solution of the TO process consists of a density-field representation where solid
material and void areas are accepted to the light-weight structure without compromising
the structural response. To obtain a boundary representation of the optimized design and
reduce the density interface, software platforms provide threshold tools to limit the fraction
of density elements that are visualized. This design is available in specific file formats
depending on the available software or can be exported as tessellation representation, in
general as STL or IGS.

Design interpretation describes the methodology to convert TO results into parameter-
ized CAD model. This procedure is required to verify the physical performance via FEM
simulation and regularize the design boundaries. Depending on the software interface, it
is possible to find different design approaches such as: traditional parameterized model,
implicit modelling or NURBS representation. Among these, NURBS allows the creation of
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organic shapes with minimum effort thanks to the freedom to manipulate control points.
This approach is used by the pioneer aerospace company ArianeGroup to maximize AM
constraints [82].

Manual reconstruction is a highly time-consuming operation due to complex shapes
generated in the optimization process. However, software platforms as nTop (nTopology,
New York, NY, USA), Fusion 360 (Autodesk, San Rafael, CA, USA) and Creo (PTC Creo,
Boston, MA, USA) offer an automatic optimization to CAD reconstruction based on B-reps
and Boolean operations into a watertight boundary representation [83]. As a result, this
technique requires minimum post-processing to preserve the details of the optimization
result. In this stage, the designer must consider the DfAM guided rules as well, to reduce
the number of attempts to validate the part in the manufacturing optimization sequence.

6. Product Simulation

Software simulations allow us to predict the physical performance of the proposed
design by analyzing maximum stresses, displacements, absorbed strain energy, natural
frequencies of vibration, buckling modes and other physic parameters of interest. This
phase consists of checking the performance of the reconstructed design by FEM analysis.
To verify the robustness of the proposed mesh, a convergence analysis is required: the size
element is reduced until it arrives at convergence of the physical measure. Additionally, a
trade-off between element order discretization and computing time must be set [84].

For the special case of lattice structures validation, one common approach uses the
homogenization technique where a representative volume element of the repetitive pattern
distribution is analyzed to calculate the cell anisotropy properties and then results are
extrapolated into a solid isotropic material representing the overall infill domain. In this
manner, the required computational time is considerably reduced.

7. Printing Evaluation

Printing evaluation involves the analysis of the STL design representation and the
support generation depending on the selected building direction. This analysis is per-
formed through a draft angle measure where the minimum unsupported face angle of
DfAM guidelines is considered. There are several strategies to optimize the process. Some
of these are included in software platforms as Magics (Materialise, Leuven, Belgium) where
the optimal part position is found by ranking criteria including printing time, support
volume, total mass and center of gravity [85]. Additionally, optimization may involve the
support structure design with lattice infill and tree design.

Additionally considering printing set-up parameters as layer-height and infill strategy,
it is possible to generate a slice representation of the building process aiming at finding
possible failures and collapses.

8. Process Simulation

At micro-scale analysis, metal AM involves the complex physical phenomena of rapid
cooling [86]. This model represents a multi-scale thermal-transient analysis on which
every scan-laser hatching modifies the thermal response of bottom layers with melting-
solidification cycles [87]. A constant heat transfer in the building direction to prevent
high-stress concentrations is aimed. In this frame, numerical simulation plays an important
role by predicting stress concentrations, associated deformations and high plastic strain
regions. The last characteristic may lead to crack failures, detachment from the support
plate, excessive geometric distortions or high anisotropic microstructure.

The main advantage of the thermal analysis is optimizing the part design, building
orientation and support generation to prevent high-stress concentrations. In addition,
geometric compensation could be applied on the design to print pre-deformed part to
obtain the nominal geometric tolerance after support removal [88]. The main drawback of
this approach is that it becomes challenging to model due to the multi-scale behavior and
the excessive computational time.
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Recently, software platforms such as MSC or Ansys provide supplementary mod-
ules to perform AM printing simulation with great accuracy and significant reduction
of calculation time [85]. This model is based on the inherent strain approach that was
first developed in academia for welding large components. The main characteristic is
that thermo-mechanical simulation is replaced with a quasi-static FEM simulation where
distortions are induced by user defined inherent strains [89]. The method starts with a
course voxel discretization domain defined by the part with its support structure. The
size of voxel elements is a multiple of real layer thickness, in this way every voxel layer is
simulated as a manufactured layer. The material deposition modeling is addressed by a FE
activation strategy, where new layers are activated with the corresponding inherent strain
depending on hatching strategy and building time.

Initial inherent strains can be obtained via simulation [89] and empirical meth-
ods [90]. The first method is based on the reduce order approach, which describes a
thermo-mechanical simulation applied to a small-scale volume representation [91]. The
last approach used by MSC Simufact Additive involves the manufacturing of sampled
cantilever specimens to measure the maximum deflection after cutting from the building
plate. Other input parameters include beam width, speed, power and material properties.
To calibrate the model, the software uses an iterative procedure to find an adequate inherent
strain related to maximum deflections for the sample and the selected printing strategy.
After convergence, the calibration process is finished and this characteristic strain is fed as
input to layer-by-layer deposition FEM static distortion analysis. Crucially, the simulation
must be run under the same printing conditions defined on the calibration process.

9. Product Validation

Once the optimized design verifies the physical and manufacturing simulations, is
performed a prototype printing including the traditional post-processing sequence of
thermal treatment, detachment of the piece from the plate with support removal and
surface finishing with laser polishing or machining via CNC.

Therefore, as indicated in [92], part validation consists in: checking the material
mechanical properties with tensile coupons, dimensional control, non-destructive testing,
evaluation of density and microstructure. Due to the high anisotropy of AM metal process,
standard tensile coupons are printed in different building orientations to validate the
mechanical properties as ultimate tensile strength, yield strength and elongation for a
given building strategy [93]. Evaluation of density and microstructure can be performed
via scanning electron microscopy. Dimensional control consists in verifying the allowable
tolerances of the part, since thermal distortions and layer-by-layer deposition affects
dimensional measures. Nondestructive testing techniques as computed tomography scan
and penetrant testing provide additional information about internal porosity and cracks
at the surface, respectively. Eventually, depending on the nominal condition of loading,
the mechanical resistance is assessed. To date, ongoing research is conducted to address a
general lack of international standards for AM parts qualification [94,95], although specific
references have been published recently [96,97].

10. Discussion

The successful management of the DfAM workflow is directly related to the selected
design, optimization and simulation tools implemented during the different assessments.
From the design point of view, it is recommended to conduct the interpretation of optimized
results by using software platforms with smooth automated design interpretation that
minimizes the design intervention. Instead, if manual reconstruction is performed, the
NURBS approach demonstrates full potential to easily reproduce complex organic shapes
generated during the optimization phase; also the high design flexibility allows reducing
the effort to change design shapes for manufacturing analysis.

Recent DfAM frameworks proposals exploit AM capabilities via size and topology
optimization strategies [98–100]. Nevertheless, without including adequate physical and
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manufacturing optimization constraints the designer might fall in several design iterations.
This work empathizes that independent of the selected optimization strategy as topology
optimization, lattice infill optimization or generative design, imposing optimization physi-
cal and manufacturing constrains becomes therefore fundamental to considerably reduce
the number of required evaluations in the product simulation and printing evaluation.
However, is necessary to take into consideration that manufacturing constraints imposes
geometrical limits on the design exploration. Consequently, finding the material distribu-
tion that maximizes mechanical performance with minimum support generation becomes
a challenging task to perform and a trade-off between these opposite objectives must be
set.

Available simulation tools for predicting thermal distortions and failures, as the
thermo-mechanical simulation by the inherent strain method, offers great accuracy with
minimum computational time comparing to traditional fluid-flow thermal simulations.

11. Conclusions

This paper describes the main DfAM workflow phases focusing on design, opti-
mization and simulation tools to minimize the number of iterative design evaluations.
Optimization design strategies were described to maximize AM capabilities, and the main
highlights are presented as follows:

1. The guided-design TO strategy improves the workflow efficiency by using optimiza-
tion constraints for FEM validation and AM printing limitations.

2. Nowadays, software platforms provide automatic CAD reconstructions techniques for
TO, requiring minimum post-processing time and modelling expertise. To maximize
this technique, TO and FEM validation should be performed via the same software
platform, to facilitate data manipulation.

3. In general, TO algorithms works as a black-box inside software platforms. However,
the designer must understand the physical interpretation of density fields and check
solver convergence to ensure adequate results.

4. The analysis of different TO solutions is recommended to find an adequate trade-off
between performance and manufacturing costs.

Unfortunately, the major limitation is the crucial amount of non-automated tasks
involving intensive software knowledge in different areas. Therefore, multidisciplinarity is
strongly required.
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74. Vlah, D.; Žavbi, R.; Vukašinović, N. Evaluation of Topology Optimization and Generative Design Tools As Support for Conceptual
Design. Proc. Des. Soc. Des. Conf. 2020, 1, 451–460. [CrossRef]

75. MSC Software Corporation: MSC Apex Generative Design. Available online: https://www.mscsoftware.com/product/msc-
apex-generative-design (accessed on 23 June 2021).

76. NTopology: nTopology Generative Design. Available online: https://ntopology.com/generative-design-software/ (accessed on
23 June 2021).

77. Autodesk: Autodesk Fusion 360. Available online: https://www.autodesk.com/solutions/generative-design/manufacturing
(accessed on 23 June 2021).

78. Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D. Stress-based topology optimization for continua. Struct. Multidiscip. Optim. 2009,
41, 605–620. [CrossRef]

79. Lee, K.; Ahn, K.; Yoo, J. A novel P-norm correction method for lightweight topology optimization under maximum stress
constraints. Comput. Struct. 2016, 171, 18–30. [CrossRef]

80. Lian, H.; Christiansen, A.N.; Tortorelli, D.A.; Sigmund, O.; Aage, N. Combined shape and topology optimization for minimization
of maximal von Mises stress. Struct. Multidiscip. Optim. 2017, 55, 1541–1557. [CrossRef]

81. Mhapsekar, K.; McConaha, M.; Anand, S. Additive Manufacturing Constraints in Topology Optimization for Improved Manufac-
turability. J. Manuf. Sci. Eng. Trans. 2018, 140, 1–16. [CrossRef]

82. Schelhorn, L.; Gosch, M.; Debeugny, L.; Schröter, P.; Schwarz, W.; Soller, S. Optimal Design and Process Simulation for Additive
Manufacturing. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences, Madrid, Spain, 1–4 July 2019.
[CrossRef]

83. Marinov, M.; Amagliani, M.; Barback, T.; Flower, J.; Barley, S.; Furuta, S.; Charrot, P.; Henley, I.; Santhanam, N.; Finnigan, G.T.;
et al. Generative Design Conversion to Editable and Watertight Boundary Representation. CAD Comput. Aided Des. 2019, 115,
194–205. [CrossRef]

84. Schneider, T.; Hua, Y.; Gao, X.; Dumas, J.; Zorin, D.; Panozzo, D. A Large-Scale Comparison of Tetrahedral and Hexahedral
Elements for Finite Element Analysis. arXiv 2019, arXiv:1903.09332.

85. Pagac, M.; Hajnys, J.; Halama, R.; Aldabash, T.; Mesicek, J.; Jancar, L.; Jansa, J. Prediction of model distortion by fem in 3d printing
via the selective laser melting of stainless steel aisi 316l. Appl. Sci. 2021, 11, 1656. [CrossRef]

86. Cheng, B.; Loeber, L.; Willeck, H.; Hartel, U.; Tuffile, C. Computational Investigation of Melt Pool Process Dynamics and Pore
Formation in Laser Powder Bed Fusion. J. Mater. Eng. Perform. 2019, 28, 6565–6578. [CrossRef]

87. Carraturo, M.; Jomo, J.; Kollmannsberger, S.; Reali, A.; Auricchio, F.; Rank, E. Modeling and experimental validation of an
immersed thermo-mechanical part-scale analysis for laser powder bed fusion processes. Addit. Manuf. 2020, 36, 101498. [CrossRef]

88. Afazov, S.; Denmark, W.A.D.; Lazaro Toralles, B.; Holloway, A.; Yaghi, A. Distortion prediction and compensation in selective
laser melting. Addit. Manuf. 2017, 17, 15–22. [CrossRef]

http://doi.org/10.1002/nme.1620240207
http://doi.org/10.1007/s00158-010-0594-7
http://doi.org/10.1016/j.matdes.2019.108137
http://doi.org/10.1115/DMD2018-6804
http://doi.org/10.1016/j.jmbbm.2019.103520
http://doi.org/10.3390/fractalfract5020040
http://doi.org/10.1007/s00158-021-02881-8
http://doi.org/10.1002/nme.5575
http://doi.org/10.1016/j.addma.2020.101116
http://doi.org/10.1007/s00158-021-02874-7
http://doi.org/10.3390/designs4020010
https://adsknews.autodesk.com/news/gm-autodesk-using-generative-design-vehicles-future
https://adsknews.autodesk.com/news/gm-autodesk-using-generative-design-vehicles-future
http://doi.org/10.1017/dsd.2020.165
https://www.mscsoftware.com/product/msc-apex-generative-design
https://www.mscsoftware.com/product/msc-apex-generative-design
https://ntopology.com/generative-design-software/
https://www.autodesk.com/solutions/generative-design/manufacturing
http://doi.org/10.1007/s00158-009-0440-y
http://doi.org/10.1016/j.compstruc.2016.04.005
http://doi.org/10.1007/s00158-017-1656-x
http://doi.org/10.1115/1.4039198
http://doi.org/10.13009/EUCASS2019-354
http://doi.org/10.1016/j.cad.2019.05.016
http://doi.org/10.3390/app11041656
http://doi.org/10.1007/s11665-019-04435-y
http://doi.org/10.1016/j.addma.2020.101498
http://doi.org/10.1016/j.addma.2017.07.005


Appl. Sci. 2021, 11, 6628 15 of 15

89. Chen, Q.; Liang, X.; Hayduke, D.; Liu, J.; Cheng, L.; Oskin, J.; Whitmore, R.; To, A.C. An inherent strain based multiscale modeling
framework for simulating part-scale residual deformation for direct metal laser sintering. Addit. Manuf. 2019, 28, 406–418.
[CrossRef]

90. Setien, I.; Chiumenti, M.; Veen, S.D.; San Sebastian, M.; Garciandía, F.; Echeverría, A. Empirical methodology to determine
inherent strains in additive manufacturing. Comput. Math. Appl. 2019, 78, 2282–2295. [CrossRef]

91. Liang, X.; Chen, Q.; Cheng, L.; Hayduke, D.; To, A.C. Modified inherent strain method for efficient prediction of residual
deformation in direct metal laser sintered components. Comput. Mech. 2019, 64, 1719–1733. [CrossRef]

92. Orme, M.; Madera, I.; Gschweitl, M.; Ferrari, M. Topology optimization for additive manufacturing as an enabler for light weight
flight hardware. Designs 2018, 2, 51. [CrossRef]

93. Caiazzo, F.; Alfieri, V.; Corrado, G.; Argenio, P. Laser powder-bed fusion of Inconel 718 to manufacture turbine blades. Int. J. Adv.
Manuf. Technol. 2017, 93, 4023–4031. [CrossRef]

94. Seifi, M.; Gorelik, M.; Waller, J.; Hrabe, N.; Shamsaei, N.; Lewandowski, J. Progress Towards Metal Additive Manufacturing
Standardization to Support Qualification and Certification. Miner. Met. Mat. Soc. 2017, 69, 3. [CrossRef]

95. Bourell, D.L.; Rosen, D.W.; Leu, M.C. The Roadmap for Additive Manufacturing and Its Impact. 3D Print. Addit. Manuf. 2014, 1,
6–9. [CrossRef]

96. ISO; ASTM. ISO/ASTM 17296:2014—Additive Manufacturing–General Principles—Part 3: Main Characteristics and Corresponding Test
Methods; ISO International Organization for Standardization: Geneva, Switzerland; ASTM American Society for Testing and
Materials: West Conshohocken, PA, USA, 2014.

97. ISO; ASTM. ISO/ASTM 52904:2019—Additive Manufacturing–Process Characteristics and Performance—Practice for Metal Powder
Bed Fusion Process to Meet Critical Applications; ISO International Organization for Standardization: Geneva, Switzerland; ASTM
American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.

98. Rosso, S.; Uriati, F.; Grigolato, L.; Meneghello, R.; Concheri, G.; Savio, G. An optimization workflow in design for additive
manufacturing. Appl. Sci. 2021, 11, 2572. [CrossRef]

99. McEwen, I.; Cooper, D.E.; Warnett, J.; Kourra, N.; Williams, M.A.; Gibbons, G.J. Design & manufacture of a high-performance
bicycle crank by Additive Manufacturing. Appl. Sci. 2018, 8, 1360. [CrossRef]

100. Nieto, D.M.; Sánchez, D.M. Design for additive manufacturing: Tool review and a case study. Appl. Sci. 2021, 11, 1571. [CrossRef]

http://doi.org/10.1016/j.addma.2019.05.021
http://doi.org/10.1016/j.camwa.2018.05.015
http://doi.org/10.1007/s00466-019-01748-6
http://doi.org/10.3390/designs2040051
http://doi.org/10.1007/s00170-017-0839-3
http://doi.org/10.1007/s11837-017-2265-2
http://doi.org/10.1089/3dp.2013.0002
http://doi.org/10.3390/app11062572
http://doi.org/10.3390/app8081360
http://doi.org/10.3390/app11041571

	Introduction 
	Holistic DfAM Workflow 
	Product Planning 
	Optimization Strategy 
	Numerical Instabilities of TO 
	Gradient-Based TO 
	SIMP Approach 
	Lattice Infill Optimization 
	Generative Design 
	TO Constraints 

	Design Interpretation 
	Product Simulation 
	Printing Evaluation 
	Process Simulation 
	Product Validation 
	Discussion 
	Conclusions 
	References

