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Abstract: Despite its significant effectiveness in adversarial training approaches to multidomain
task-oriented dialogue systems, adversarial inverse reinforcement learning of the dialogue policy
frequently fails to balance the performance of the reward estimator and policy generator. During the
optimization process, the reward estimator frequently overwhelms the policy generator, resulting in
excessively uninformative gradients. We propose the variational reward estimator bottleneck (VRB),
which is a novel and effective regularization strategy that aims to constrain unproductive information
flows between inputs and the reward estimator. The VRB focuses on capturing discriminative
features by exploiting information bottleneck on mutual information. Quantitative analysis on a
multidomain task-oriented dialogue dataset demonstrates that the VRB significantly outperforms
previous studies.

Keywords: task-oriented dialogue; dialogue policy; reinforcement learning; inverse reinforcement
learning

1. Introduction

While deep reinforcement learning (RL) has emerged as a viable solution for compli-
cated and high-dimensional decision-making problems [1], including games such as Go [2],
chess [3], checkers [4], and poker [5,6], robotic locomotion [7,8], autonomous driving [9,10],
and recommender system [11,12], the determination of an effective reward function re-
mains a challenge, especially in multidomain task-oriented dialogue systems. Many recent
studies have struggled in sparse-reward environments and employed a handcrafted reward
function as a breakthrough [13–16]. However, such approaches typically are not capable of
guiding the dialogue policy through user goals. For instance, as shown in Figure 1, the user
cannot attain the goal because the system (S1) that exploits the handcrafted rewards com-
pletes the dialogue session too early. Moreover, as the dialog progresses, the user goal will
frequently vary.

Due to these problems, systems that exploit the handcrafted rewards fail to assimilate
user goals and guide users through user goals, achieving low performance, while humans
self-judge from dialog context using well-defined reward function in their minds and
generate appropriate responses despite multidomain circumstances.

MaxEnt-IRL [17] and Inverse reinforcement learning (IRL) [18,19] tackle the problem
of recovering the reward function automatically and using this reward function to generate
optimal behavior. Although generative adversarial imitation learning (GAIL) [20], which
applies the GANs framework [21], has proven that the discriminator can be defined as a
reward function, GAIL fails to generalize and recover the reward function. Adversarial
inverse reinforcement learning (AIRL) [22] enables GAIL to take advantage of disentan-
gled rewards. Guided dialogue policy learning (GDPL) [23] uses the AIRL framework
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to construct the reward estimator for multidomain task-oriented dialogues. However,
these approaches often encounter difficulties in balancing the performance of the reward
estimator and policy generator and produce excessively uninformative gradients.

In this paper, we propose the variational reward estimator bottleneck (VRB), a novel
and effective regularization algorithm. The VRB uses information bottleneck [24–26] to
constrain unproductive information flows between dialogue internal representations and
state–action pairs of the reward estimator, thereby ensuring highly informative gradients
and robustness. The experiments show that the VRB achieves state-of-the-art (SOTA)
performances on a multidomain task-oriented dataset.

U: "Hi, I am looking for a high-end Cuban 
restaurant in Cambridge."

S1: "Unfortunately, there are no high-end Cuban 
restaurants in Cambridge."

S2: "Unfortunately, there are no high-end Cuban 
restaurants in Cambridge. Would you like to 
choose a different cuisine?"

(U)

(S1)

(S2)

U: "How about Portuguese food?" 

S2: "Unfortunately, there are no Portuguese 
restaurants that meet your requirements. Can I 
look for something else for you?"

U: "How about Spanish food then?"

S2: "La Tasca meets your standards. Would 
you like to book this restaurant?"

U: "Don't worry about booking me. I need to get 
a ride to the restaurant though."

. . .

Figure 1. The system (S2) that uses well-specified rewards can guide the user through the goal, while
S1 cannot.

The remainder of this paper is organized as follows: Section 2 presents the brief
background to set the stage for our model. Section 3 describes the proposed method in
detail along with mathematical calculations. Section 4 outlines the experimental setup,
whereas Section 5 presents the experiments and the results thereof. Section 6 provide
discussions and the conclusions of this study.

2. Background
2.1. Dialogue State Tracker

The dialogue state tracker (DST) [27–29], which takes dialogue action a and dialogue
history as input, updates the dialogue state x and belief state b for each slot. For example,
as shown in Figure 2, DST observes the user goal where the user aims to go. At dialogue
turn t, the dialogue action is represented as a slot and value pair (e.g., Attraction: (area,
centre), (type, concert hall)). Given the dialogue action, DST encodes the dialogue state as
xt = [au

t ; at−1; bt; qt].

2.2. User Simulator

Mimicking various and human-like actions is essential with respect to training task-
oriented dialogue systems and evaluating these models automatically. The user simulator
µ(au, tu|xu) [30,31] in Figure 2 extracts the dialogue action au corresponding to the dialogue
state xu. tu stands for whether the user goal is achieved during a conversation. Note that
the DST and the user simulator cannot meet the user in the absence of well-defined
reward estimation.
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Figure 2. Schematic depiction of the variational reward estimator.

2.3. Policy Generator

The policy generator [32,33] encourages the dialogue policy πθ to determine the
next action that maximizes the reward function r̂ζ,ψ(xt, at, xt+1) = fζ,ψ(xt, at, xt+1) −
log πθ(at|xt):

LCLIP
π (θ) = Ex,a∼π [min(ξt(θ)Ât, ξ̃t(θ)Ât)]

LVF
t (θ) = −

(
Vθ −

T

∑
k=t

γk−t r̂k

)2

where ξ̃t(θ) = clip(ξt(θ), 1− ε, 1 + ε), Ât = δt + γλÂt+1, δt = r̂ζ,ψ + γV(xt+1) − V(xt),

and δ is the TD residual [34]. ξt(θ) = πθ(at |xt)
πθold

(at |xt)
and Vθ is the state-value function. Ep-

silon and λ are hyperparameters. The reward function r̂ζ,ψ can be simplified in the
following manner:

r̂ζ,ψ(xt, at, xt+1) = log [Dζ,ψ(xt, at, xt+1)]

− log [1− Dζ,ψ(xt, at, xt+1)]

= log

[
−1 +

1
1− Dζ,ψ(xt, at, xt+1)

]

= log

[
exp [ fζ,ψ(xt, at, xt+1)]

πθ(at|xt)

]
= fζ,ψ(xt, at, xt+1)− log πθ(at|xt)

where Dζ,ψ(xt, at, xt+1) is the reward estimator, which is defined as follows [22]:

Dζ,ψ(xt, at, xt+1) =
exp[ fζ,ψ(xt, at, xt+1)]

exp[ fζ,ψ(xt, at, xt+1)] + πθ(at|xt)

3. Proposed Method
3.1. Notations on MDP

To represent inverse reinforcement learning (IRL) as a Markov decision process (MDP),
we consider a tupleM = (X ,A, T,R, ρ0, γ), where X is state space, and A is the action
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space. The transition probability T(xt+1|xt, at) defines the distribution of the next state
xt+1 given state xt, and at at time-step t. R(xt, at) is the reward function of the state–action
pair, ρ0 is the distribution of the initial state x0, and γ is the discount factor. The stochastic
policy π(at|xt) maps a state to a distribution over actions. Supposing we are given an
optimal policy π∗, the goal of IRL is to estimate the reward functionR from the trajectory
τ = {x0, a0, x1, a1, . . . , xT , aT} ∼ π∗. However, building an effective reward function is
challenging, especially in a multidomain task-oriented dialogue system.

3.2. Reward Estimator

The reward estimator [23], which is an essential component of multidomain task-
oriented dialogue systems, evaluates dialogue state–action pairs at dialogue turn t and
estimates the reward that is used for guiding the dialogue policy through the user goal.
Based on MaxEnt-IRL [17], each dialogue session τ in a set of human dialogue sessions
D = {τ1, τ2, . . . , τH} can be modeled as a Boltzmann distribution that does not exhibit
additional preferences for any dialogue sessions.

fζ(τ) = log

(
exp(R�)

Z

)

where Rζ = ∑T
t=0 γtrζ(xt, at), Z is a partition function, ζ is a parameter of the reward

function, andRζ denotes a discounted cumulative reward. To imitate human behaviors,
the reward estimator should learn the distributions of human dialogue sessions using the
KL divergence loss:

Lπ(θ) ≈ −KL

(
πθ(τ) ||

exp(R�)
Z

)

= ∑ πθ(τ) log


exp(R�)

Z
πθ(τ)

1


= Eτ∼π [log

(
exp(R�)

Z

)
− log πθ(τ)]

= Eτ∼π [ fζ(τ)− log πθ(τ)]

= Ex,a ∼π [ fζ,ψ(xt, at, xt+1)]

+Ex,a ∼π [− log πθ(xt, at, xt+1)]

= Ex,a ∼π [ fζ,ψ(xt, at, xt+1)] + H(πθ)

where H(πθ) is the entropy of dialogue policy πθ . The reward estimator maximizes
the entropy, which indicates maximizing the likelihood of observed dialogue sessions.
Therefore, the reward estimator is learned to discern between human dialogue sessions D
and dialogue sessions that are generated by the dialogue policy.

L f (ζ, ψ) = −KL

(
D(τ) ||

exp(R�)
Z

)

−
(
−KL

(
πθ(τ) ||

exp(R�)
Z

))
= Ex,a ∼D [ fζ,ψ(xt, at, xt+1)] + H(D)
−Es,a ∼π [ fζ,ψ(xt, at, xt+1)] − H(πθ)
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Note that H(D) and H(πθ) are not dependent on the parameters ζ and ψ. Thus,
the reward estimator can be trained using gradient-based optimization as follows:

L f (ζ, ψ) = Ex,a∼D [ fζ,ψ(xt, at, xt+1)]

−Ex,a∼π [ fζ,ψ(xt, at, xt+1)]
(1)

3.3. Variational Reward Estimator Bottleneck

The variational information bottleneck [24–26] is an theoretical information approach
that restricts unproductive information flow between the discriminator and inputs. In-
spired by this approach, we propose a regularized objective that constrains the mutual
information between encoded original inputs and state–action pairs, thereby ensuring
highly informative internal representations and a robust adversarial model. Our proposed
method trains an encoder that is maximally informative regarding human dialogues.

To this end, we employ a stochastic encoder and an upper bound constraint on the
mutual information between the dialogue states X and latent variables Z:

L f ,E(ζ, ψ) = Ex,a∼D [Ez∼E(z|xt ,xt+1)
[ fζ,ψ(zg, z′h, zh)] ]

−Ex,a∼π [Ez∼E(z|xt ,xt+1)
[ fζ,ψ(zg, z′h, zh)] ]

s.t. I(Z, X) ≤ Ic

(2)

where fζ,ψ(zg, z′h, zh) = Dg(zg) + γDh(z′h) + Dh(zh), and D is modeled with nonlin-
ear function. Note that fζ,ψ(zg, z′h, zh) is divided into the three terms Dg(zg), γDh(z′h),
and Dh(zh), based on GANs [21], GAN-GCL [35], and AIRL [22]. Dg represents the en-
coded disentangled reward approximator with the parameter ζ, and Dh is the encoded
shaping term with the parameter ψ. Stochastic encoder E(z|xt, xt+1) can be defined as
E(z|xt, xt+1) = Eg(zg|xt) · Eh(zh|xt) · Eh(z′h|xt+1), which maps states to a latent distribu-
tion z: E(z|xt) = N (µE(xt), ΣE(xt)). r(z) = N (0, I) is standard Gaussian, and Ic stands
for an enforced upper bound on mutual information.

To optimize L f ,E(ζ, ψ), VRB introduces a Lagrange multiplier ϕ as follows:

L f ,E(ζ, ψ) = Ex,a∼D [Ez∼E(z|xt ,xt+1)
[ fζ,ψ(zg, z′h, zh)] ]

−Ex,a∼π [Ez∼E(z|xt ,xt+1)
[ fζ,ψ(zg, z′h, zh)] ]

+ ϕ (Ex,a∼π [KL[E(z|xt, xt+1)] || r(z) ]− Ic)

(3)

where the mutual information between dialogue states X and latent variable Z is

I(Z, X) = KL[p(z, x)||p(z)p(x)]

=
∫

dz dx p(z, x) log
p(z, x)

p(z)p(x)

=
∫

dz dx p(x)E(z|x) log
E(z|x)

p(z)

≤ Ic =
∫

dz dx πθ(x)E(z|x) log
E(z|x)

r(z)
= Ex,a∼π [KL[E(z|x)||r(z)]]

In Equation (3), the VRB minimizes the mutual information with dialogue states to
focus on discriminative features. The VRB also minimizes the KL divergence with the
human dialogues, while maximizing the KL divergence with the generated dialogues,
thereby distinguishing effectively between samples from dialogue policy and human
dialogues. Our proposed model is summarized in Algorithm 1.
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Algorithm 1 Algorithm of Variational Reward Estimator Bottleneck

1 Initialize dialogue policy generator πθ and reward estimator fζ,ψ
2 for i← 0 to N do
3 Obtain Random Samples from Human Dialogue Corpus D
4 Gather Dialogue Sessions using User Simulator µ(au, tu|xu) and Policy

Generator πθ(a|x)
5 Encode Dialogue Sessions using Stochastic Encoder E(z|·) = N (µE(·), ΣE(·))
6 Compute Information Bottleneck Ex,a∼π [KL[E(z|x)||r(z)]]
7 Update Reward Estimator fζ,ψ by Optimizing L f ,E(ζ, ψ)

8 Estimate Reward Function r̂ζ,ψ for each State–Action Pair
9 Update State-Value Function V(X ) and Dialogue Policy πθ given the Reward

r̂ζ,ψ

4. Experimental Setup
4.1. Dataset Details

We evaluated our method on multidomain wizard of oz [36] (MultiWOZ), which
contained approximately 10,000 large-scale, multidomain, and multiturn conversational
dialogue corpora. MultiWOZ consisted of 7 distinct task-oriented domains, 24 slots,
and 4510 slot values. The dialogue sessions were randomly divided into training, validation,
and test set. The validation and test sets contained 1000 sessions, respectively.

4.2. Models Details

We used the agenda-based user simulator [30] and VHUS-based user simulator [31].
The policy network πθ and value network V are MLPs with two hidden layers. gζ and hψ

are MPLs with one hidden layer each. We used the ReLu activation function and Adam
optimizer for the MLPs. We trained our model using a single NVIDIA GTX 1080ti GPU.
Detailed hyperparameters are shown in Table 1.

Table 1. Detail description of VRB hyperparameters.

Hyperparameters Value

Lagrange multiplier ϕ 0.001
Upper bound Ic 0.5
Learning rate of dialogue policy 0.0001
Learning rate of reward estimator 0.0001
Learning rate of user simulator 0.001
Clipping component ε for dialogue policy 0.02
GAE component λ for dialogue policy 0.95

We compare the proposed method with the following previous studies: GP-MBCM [37],
ACER [38], PPO [33], ALDM [39], and GDPL [23]. GP-MBCM [37] trains a number of poli-
cies on different datasets based on the Bayesian committee machine [40]. ACER [38]
suggests the importance of weight truncation with bias correction for sampling efficiency.
PPO [33] employs an effective algorithm that attains the data’s robust and efficient per-
formance using only a first-order optimizer. ALDM [39] shows an adversarial learning
method to learn dialogue rewards directly from dialogue samples. GDPL [23] is the current
SOTA model that consists of a dialogue reward estimator based on IRL.

4.3. Evaluation Details

To evaluate the performances of these models, we introduce four metrics: (i) Turns:
we record the average number of dialogue turns between the user simulator and dialogue
agent. (ii) Match rate: we conduct match rate experiments to analyze whether the booked
entities are matched with the corresponding constraints in the multidomain environment.
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For instance, in Figure 2, entertainment should be matched with concert hall in the center.
The match rate ranges from 0 to 1 and scores 0 if an agent is unable to book the entity.
(iii) Inform F1: we test the ability of the model to inform all of the requested slot values.
For example, as shown in Figure 1, the price range, food type, and area should be informed
if the user wishes to visit a high-end Cuban restaurant in Cambridge. (iv) Success rate: in
the success rate experiment, a dialogue session scores 0 or 1. We obtain 1 if all required
information is presented, and every entity is booked successfully.

5. Main Results
5.1. Experimental Results of Agenda-Based User Simulators

Table 2 presents the empirical results on both simulators and MultiWOZ. In the agenda-
based setting, we observe that our proposed method achieves a new SOTA performance.
Note that an outstanding model should obtain high scores in every metric, not just a single
one, because to regard a dialogue as having ended successfully, every request should be
informed precisely, thereby guiding a dialogue through the user goal. Although GDPL
achieves the highest score in Inform F1, our proposed model acts more human-like with
respect to Turns, which is close to the human evaluation score: 7.37, and provides more
accurate slot values and matched entities than the other methods.

Table 2. Results on agenda-based user simulators.

Model
Agenda

Turns Match Inform Success

GP-MBCM [37] 2.99 44.29 19.04 28.9
ACER [38] 10.49 62.83 77.98 50.8
PPO [33] 9.83 69.09 83.34 59.1
ALDM [39] 12.47 62.60 81.20 61.2
GDPL [23] 7.64 83.90 94.97 86.5

VRB (Ours) 7.59 90.87 90.97 90.4

Human 7.37 95.29 66.89 75.0

5.2. Experimental Results of VHUS-Based User Simulators

On the other hand, in the VHUS setting, though PPO behaves more human-like in
Turns, PPO exhibits greater difficulty in providing accurate information, while our model
does not because our approach constrains unproductive information flows. Results in
Table 3 demonstrate that our proposed model outperforms existing models, providing
more definitive information than the other methods. Similar to the agenda-based setting,
the VHUS-based model also showed the best performance. It demonstrates that our
methodology reflecting human-like characteristics is a very effective methodology.

Table 3. Results on VHUS-based user simulators.

Model
VHUS

Turns Match Inform Success

GP-MBCM [37] - - - -
ACER [38] 22.35 33.08 55.13 18.6
PPO [33] 19.23 33.08 56.31 18.3
ALDM [39] 26.90 24.15 54.37 16.4
GDPL [23] 22.43 36.21 52.58 19.7

VRB (Ours) 20.96 44.93 56.93 20.1

5.3. Verification of Robustness

As shown in Figures 3 and 4, to evaluate the robustness of the models, we conduct
experiments over 30 times for each model and visualize the results using a violin plot. Exper-
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imental results show that our proposed method outperforms PPO in every metric, despite
some negative outliers, and has a much lower standard deviation than PPO. An example of a
dialogue session comparison between VRB and PPO is available in Table 4.

Table 4. A comparison between VRB and PPO with respect to the dialogue act.

VRB PPO

U: {‘attraction-inform-area-1’: ’south’} U: {‘attraction-inform-area-1’: ‘south’}
S: {‘attraction-inform-choice-1’: ‘8’, ‘attraction-request-type-?’:

‘?’}
S: {‘attraction-inform-choice-1’: ‘8’, ‘attraction-request-type-?’:

‘?’}
U: {‘attraction-request-post-?’: ‘?’, ‘attraction-request-phone-?’:

‘?’, ’attraction-request-addr-?’: ‘?’, ‘attraction-request-fee-?’:
‘?’, ‘attraction-request-type-?’: ‘?’}

U: {‘attraction-request-post-?’: ‘?’, ‘attraction-request-phone-?’:
‘?’, ‘attraction-request-addr-?’: ‘?’, ‘attraction-request-fee-?’:
‘?’, ‘attraction-request-type-?’: ‘?’}

S: {‘attraction-inform-name-1’: ‘the junction’, ‘attraction-
recommend-name-1’: ‘the junction’, ‘attraction-recommend-
addr-1’: ‘clifton way’}

S: {‘attraction-inform-name-1’: ‘the junction’, ‘attraction-inform-
fee-1’: ‘?’, ‘attraction-recommend-name-1’: ‘the junction’}

U: {‘attraction-request-post-?’: ‘?’, ‘attraction-request-phone-?’:
‘?’, ‘attraction-request-fee-?’: ‘?’, ‘attraction-request-type-?’:
‘?’}

U: {‘attraction-request-post-?’: ‘?’, ‘attraction-request-phone-?’:
‘?’, ‘attraction-request-addr-?’: ‘?’, ‘attraction-request-type-?’:
‘?’}

S: {‘attraction-inform-fee-1’: ‘?’, ‘attraction-inform-phone-1’:
‘01223511511’, ‘attraction-inform-post-1’: ‘cb17gx’}

S: {‘attraction-inform-name-1’: ‘the junction’, ‘attraction-
inform-addr-1’: ‘clifton way’, ‘attraction-inform-phone-1’:
‘01223511511’, ‘attraction-inform-post-1’: ‘cb17gx’}

U: {‘attraction-request-type-?’: ‘?’} U: {‘attraction-request-type-?’: ‘?’}
S: {‘attraction-inform-type-1’: ‘museum’} S: {}
U: {‘hotel-inform-price-1’: ‘cheap’, ‘hotel-inform-area-1’: ‘cen-

tre’}
U: {‘attraction-request-type-?’: ‘?’}

S: {‘hotel-inform-name-1’: ‘alexander bed and breakfast’} S: {}
U: {‘hotel-request-post-?’: ‘?’, ‘hotel-request-phone-?’: ‘?’} U: {‘attraction-request-type-?’: ‘?’}
S: {‘general-reqmore-none-none’: ‘none’, ‘hotel-inform-phone-1’:

‘01223525725’, ‘hotel-inform-post-1’: ‘cb12de’}
S: {}

U: {‘hotel-inform-stay-1’: ‘dont care’, ‘hotel-inform-day-1’: ‘dont
care’, ‘hotel-inform-people-1’: ‘dont care’}

U: {‘attraction-request-type-?’: ‘?’}

S: {‘booking-book-ref-1’: ‘none’} S: {}
U: {‘general-bye-none-none’: ‘none’} U: {‘attraction-request-type-?’: ‘?’}

S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘attraction-request-type-?’: ‘?’}
S: {}
U: {‘general-bye-none-none’: ‘none’}

turn: 8
match: 1.0
inform: (1.0, 1.0, 1.0)

turn: 22
match: 0.0
inform: (0, 0, 0)

Success Failure
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Figure 3. Performance on the MultiWOZ and the agenda-based user simulator. Higher is better except Turns. Quartiles
marked with dashed lines.
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Figure 4. Performance on the MultiWOZ and the VHUS-based user simulator. Higher is better except Turns. Quartiles
marked with dashed lines.

6. Conclusions

In this paper, we present a novel and effective regularization method known as the
variational reward estimator bottleneck (VRB) for multidomain task-oriented dialogue
systems. The VRB includes a stochastic encoder, which enables the reward estimator to
be maximally informative, and provides information bottleneck regularization, which
constrains unproductive information flows between the reward estimator and the inputs.
The quantitative results show that VRB achieves new SOTA performances on two different
user simulators and a multiturn and multidomain task-oriented dialogue dataset. Despite
great improvements, training dialog policy via VHUS setting remains a hurdle to overcome.
We leave this for future works.
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