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Abstract: Real-time bioprocess monitoring is crucial for efficient operation and effective bioprocess
control. Aiming to develop an online monitoring strategy for facilitating optimization, fault de-
tection and decision-making during wastewater treatment in a photo-biological nutrient removal
(photo-BNR) process, this study investigated the application of Raman spectroscopy for the quantifi-
cation of total organic content (TOC), volatile fatty acids (VFAs), carbon dioxide (CO2), ammonia
(NH3), nitrate (NO3), phosphate (PO4), total phosphorus (total P), polyhydroxyalkanoates (PHAs),
total carbohydrates, total and volatile suspended solids (TSSs and VSSs, respectively). Specifically,
partial least squares (PLS) regression models were developed to predict these parameters based
on Raman spectra, and evaluated based on a full cross-validation. Through the optimization of
spectral pre-processing, Raman shift regions and latent variables, 8 out of the 11 parameters that were
investigated—namely TOC, VFAs, CO2, NO3, total P, PHAs, TSSs and VSSs—could be predicted with
good quality by the respective Raman-based PLS calibration models, as shown by the high coefficient
of determination (R2 > 90.0%) and residual prediction deviation (RPD > 5.0), and relatively low root
mean square error of cross-validation. This study showed for the first time the high potential of
Raman spectroscopy for the online monitoring of TOC, VFAs, CO2, NO3, total P, PHAs, TSSs and
VSSs in a photo-BNR reactor.

Keywords: microalgal–bacterial consortium; biological wastewater treatment; intracellular polymers;
nutrient removal; partial least squares (PLS); photo-biological nutrient removal reactor; Raman
spectroscopy; real-time monitoring; total organic carbon (TOC); total suspended solids (TSSs)

1. Introduction

Demographic expansion and the improvement of standards of living around the world
have led to rapid urbanization, intensive agricultural practices and industrial expansion.
Consequently, environmental and water pollution increased, either through the release of
waste streams with high concentrations of carbon, nitrogen (N) and/or phosphorus (P),
or through the excessive use of fertilizers [1]. Exceeding N and P discharge limits into
natural water reserves can lead to eutrophication, perturbing the equilibrium of aquatic
ecosystems [2]. Improving the ecological status of water sources is a growing concern
for many nations, particularly regarding the reduction in N and P concentrations during
wastewater treatment [3].

The technologies currently applied for N and P removal in wastewater treatment
plants (WWTPs) are highly oxygen (O2) and/or chemical-dependent, which not only
increases the operation costs of wastewater treatment, but also has a negative impact on
the environment, due to the high greenhouse gas emissions that occur both during the
wastewater treatment process and energy production for aeration. Biological nutrient
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removal (BNR) is the most common process implemented for simultaneous P and N
removal, typically through sequential zones in activated sludge systems: anaerobic for
carbon uptake and P release; anoxic for heterotrophic denitrification and P uptake; and
aerobic for nitrification and P uptake. Such BNR systems require intensive O2 supply, often
accounting for approximately 60% of WWTPs energy costs [4,5].

The use of phototrophic anoxygenic bacteria or microalgae systems for wastewater
treatment is a good alternative to decrease aeration energy costs in WWTPs [3,6–8]. Further-
more, microalgal–bacterial consortia can achieve higher nutrient removal efficiencies than
bacterial or microalgal systems alone and with reduced oxygenation costs. In fact, microal-
gae not only perform nutrient removal but also consume carbon dioxide (CO2) produced
by bacteria, while producing, through photosynthesis, the O2 required for system oxy-
genation and heterotrophic bacterial growth [3]. In addition, higher nutrient recovery can
be achieved when compared with anaerobic technologies in WWTPs [9,10], and the good
settling properties of the microalgal–bacterial flocs reduce the biomass harvesting costs
associated with microalgal systems [11,12]. Recently, a photo-enhanced biological phospho-
rus removal (photo-EBPR) system composed of a consortium of microalgae and bacteria
demonstrated a good capacity for P removal at a low chemical oxygen demand (COD) to P
ratio (COD/P) and without external aeration requirements [13]. The photo-EBPR system
was operated with dark–light cycles, simulating conventional anaerobic–aerobic EBPR
cycles, resulting in a culture enriched with polyphosphate accumulating organisms (PAOs)
and microalgae [13].

In the current work, a photo-BNR system combining P and N removal was operated
and monitored [14]. In photo-BNR systems, volatile fatty acids (VFAs), or other organic
carbon sources, are consumed during the dark period. During the light period, microalgae
consume CO2 and produce O2 to be used by PAOs and nitrifiers. Furthermore, PAOs
will store excess P as polyphosphate, while nitrifiers oxidize ammonia to nitrate. Since
both nitrifiers and microalgae are CO2 dependent, the CO2 mitigation ability of the photo-
BNR process is potentially higher than that of other BNR processes. An anoxic dark
period is added after the light period, to allow denitrification to occur. During the dark
anoxic period, when no external carbon source is added, denitrifying PAOs are expected to
perform denitrification by using the anaerobically stored polyhydroxyalkanoates (PHAs).
The main mechanisms of nutrient removal observed in the photo-BNR were ammonia
assimilation by the microbial biomass, phosphorus accumulation as poly-P by PAOs, and
nitrate removal by denitrification. Due to the interaction between microalgae and bacteria,
cells can aggregate as flocs more easily and settle very fast, resulting in a solids-free effluent
and thus, solving one of the main problems of using microalgae for wastewater treatment.
The goal of the photo-BNR process is to remove BNR aeration requirements and mitigate
CO2 without the need for costly external COD dosing, thus reducing the operational costs
and ecological footprint of the WWTP [14].

Real-time bioprocess monitoring is of crucial importance for efficient operation and
effective bioprocess control [15]. In contrast with offline, retrospective and time-consuming
reference analytical methods, which do not provide a real-time knowledge of process per-
formance, the use of fast, non-destructive, robust and sensitive online spectroscopy probes,
in combination with chemometrics, have great potential for the real-time monitoring of
key bioprocess parameters, significantly reducing the time required for bioprocess control
and optimization [16]. Raman spectroscopy can provide a wide range of information,
from molecular structure to chemical environment, being among the most interesting
spectroscopic-based techniques reported for the online monitoring of microbiological
processes [16]. In fact, in addition to representing a rapid, eco-friendly and economic
alternative to reference analytical methods (e.g., chromatography), Raman spectroscopy
is particularly suitable for the in situ quantitative monitoring of multiple component bio-
processes, owing to the incorporation of fiber optic-based probes, as well as due to its
insensitivity to water [17]. Nevertheless, applications of online bioprocess monitoring and
control using Raman spectroscopy coupled with chemometrics are still scarce. Examples in-
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clude nitrate and nitrite monitoring in a wastewater treatment bioreactor [18], the real-time
prediction of glucose concentration during microalgae cultivation in a photo-bioreactor [19]
and during mammalian cell cultivations [20], as well as the monitoring substrates and
products during bacterial and yeast fermentation processes [15,16], especially for pharma-
ceutical industrial application [21,22].

In this context, the application of Raman spectroscopy for the online monitoring of
a photo-BNR is of upmost interest, facilitating optimization, fault detection and decision-
making during the wastewater treatment process. Specifically, real-time knowledge on
key-parameters such as NH3, nitrate (NO3), phosphate (PO4) and total organic content
(TOC), VFA and CO2 can be crucial for optimizing nutrient and carbon removal, namely by
controlling the CO2 dosing and the time length of the anaerobic (dark), aerobic (light) and
anoxic periods. In addition to PO4, polyphosphate (poly-P), or total P (which allow a more
direct monitoring and control of the P removal performance), PHAs and carbohydrates
are key functionally relevant intracellular polymers also involved in the EBPR process, as
their real-time quantification significantly contributes to understanding the dynamics and
optimizing the nutrient removal process. Moreover, monitoring cell growth by following
the total suspended solids (TSSs) and volatile suspended solids (VSSs) by Raman spec-
troscopy would also provide important information on the system performance, such as,
for example, the light availability per biomass concentration, a parameter that can affect
photosynthesis efficiency [23].

Micro-Raman spectroscopy has been used for the simultaneous identification and
quantification of the intracellular polymers poly-P, poly(3-hydroxybutyrate) (PHB) and
glycogen in individual microbial cells from complex environmental samples, character-
izing their distribution among conventional EBPR microbial populations [24,25]. Recent
studies have further developed Raman microscopy-based quantitative approaches to as-
sess the structural dynamics and storage states of these relevant intracellular polymers,
crucial for a fundamental understanding of the EBPR process [26,27]. In addition, Raman
microscopy was shown to identify and quantify poly-P in microalgal cells, specifically
Chlorella vulgaris [28]. However, Raman microscopy is not suitable for online measurements
and although Raman spectroscopy has been suggested to be a fast and efficient tool for
process control of PHB bioproduction through qualitative and quantitative in situ moni-
toring of intracellular PHB content in Cupriavidus necator H16 cultures [29], its application
to real-time monitoring in mixed microbial bioprocesses is limited and has never been
demonstrated for a photo-BNR system.

Unlike Raman microscopy, where specific Raman peaks can be used to follow the
associated biomolecules, Raman spectra acquired through an immersion probe in a complex
environmental ecosystem, such as a photo-BNR reactor, are very complex, including
a large amount of data. Therefore, Raman spectroscopy needs to be combined with
chemometric tools to extract the relevant information from the spectral data and develop
quantitative mathematical models that will ultimately allow real-time predictions of the
system properties and a concentration of various analytes based on new, in line, fast and
non-destructive spectroscopic measurements.

The present study aimed to develop a Raman-based monitoring strategy for the real-
time prediction of several key parameters of a photo-BNR reactor for process control and
optimization. Therefore, Raman spectra were acquired at-line, directly from mixed liquor
samples harvested from a lab-scale photo-BNR reactor, and partial least squares (PLS)
calibration models were developed to predict the concentration of TOC, VFAs, CO2, NH3,
NO3, PO4, total P, PHAs, carbohydrates, TSSs and VSSs in the mixed liquid. The capacity
of the calibration models to predict the reference data measured by standard analytical
methods was evaluated by a full cross-validation procedure.
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2. Materials and Methods
2.1. Reactor Operation and Sampling

An acrylic sequencing batch reactor (SBR) with a working volume of 2 L was inocu-
lated with wastewater sludge from the aerobic tank of a WWTP located in Lisbon (Beirolas,
Portugal). The SBR was fed with synthetic domestic wastewater and operated for 128 days
in 8 h cycles, comprising subsequent periods of anaerobic (dark), aerobic (light) and anoxic
phases for 7 h, followed by 1 h for settling and withdrawal. The synthetic medium, fed at
the beginning of each cycle, was composed of 75% (v/v) of a phosphate solution (253 mg/L
of K2HPO4 and 154 mg/L of KH2PO4) and 25% (v/v) of carbon and nitrogen medium with
a concentration per liter of: 0.64 g C2H3O2Na·3H2O; 68 µL C3H6O2; 0.59 g NH4Cl; 0.95 g
MgSO4·7H2O; 0.44 g CaCl2·2H2O; 11.7 mg allyl-N thiourea (ATU, only added during PAO
enrichment to prevent nitrification); 31.7 mg ethylene-diaminetetraacetic (EDTA) to prevent
salts precipitation and 3.17 mL of a micronutrients solution, with a concentration per liter
of: 1.5 g FeCl3·6H2O; 0.15 g H3BO3; 0.03 g CuSO4.5H2O; 0.18 g KI; 0.12 g MnCl2·4H2O;
0.06 g Na2MoO·2H2O; 0.12 g ZnSO4·7H2O and 0.15 g CoCl2·6H2O. The carbon media con-
tained volatile fatty acids (VFAs) at a ratio of 75% acetate and 25% propionate, to promote
PAO enrichment [30]. The temperature of the reactor was set to 20 ◦C while the pH was
controlled at 7.5 through the addition of 0.1 M HCl. Anaerobic, aerobic, anoxic and idle
periods were stirred with a magnetic stirrer at a constant rate of 700 rpm. At the end of the
anoxic period, the culture was settled and decanted, with 1 L of supernatant being removed.
During the following idle period, argon was bubbled to ensure anaerobic conditions before
the next cycle. The anoxic phase was introduced at the end of day 73, upon the suspension
of ATU addition for nitrification inhibition. The HRT and sludge retention time were 16 h
and 18 days, respectively. Illumination was supplied by external Osram halogen lamps
(two lamps of 40 W and one of 60 W), providing an intensity of 99 W/m2 on the reactor
surface, which corresponds to 4.5 W/L. This light intensity was chosen to simulate the sun
irradiance levels that occur during a summer day in Portugal [31]. For more information
about reactor operation details, please see [14].

Mixed liquor samples were harvested from the SBR during 7 h of each reactor cycle
(Figure S1 in Supplementary Materials), along the selected treatment cycles (13 samples per
cycle) [14] and used for both at-line Raman spectra acquisition and offline quantification
of TOC, VFAs, CO2, NH3, NO3, PO4, total P, PHAs, glycogen, TSSs and VSSs through
reference analytical methods. Total P, TSSs and VSSs were only determined on samples
collected at specific timepoints. Four SBR cycles were selected for this study, corresponding
to the SBR operation days 73 (cycle A; samples 1–13); 79 (cycle B; samples 14–26); 85 (cycle
C; samples 27–39); and 101 (cycle D; samples 40–52). Specifically, the duration of the
anaerobic/aerobic/anoxic phases were 3 h/4 h/0 h on cycle A, 1.5 h/2.5 h/3 h on cycles B
and C, and 1.5 h/3.5 h/2 h on cycle D. The quantification of all parameters was performed
in the four selected cycles, except for TOC, which was only measured on cycle A.

2.2. Reference Analytical Methods

The reference measurements were carried out on the same samples used for the Raman
spectral acquisition. PO4, NH3, NO3 and nitrite (NO2) concentrations were determined
by colorimetric methods implemented in a flow segmented analyzer (Skalar 5100, Skalar
Analytical, Breda, The Netherlands). For the total P content, an acidic digestion of a mixed
liquor sample was performed with 0.3 M H2SO4 and 400 mg of K2S2O8 and analyzed using
the flow segmented analyzer. Acetate and propionate (VFA) were determined by high-
performance liquid chromatography (HPLC), using a VWR Hitachi Chromaster with a
Biorad Aminex HPX-87H 300 7.8 MM column and a DAD detector (0.01 N sulfuric acid was
used as eluent with an elution rate of 0.5 mL/min). The total carbohydrates hydrolysable
to glucose (i.e., bacterial glycogen and microalgae starch) were determined through an
acidic digestion of lyophilized biomass [32]. PHAs were determined by GC according to
the method described by Lanham et al. [33], using a Bruker 430-GC gas chromatograph
equipped with an FID detector and a Restek column (60 m, 0.53 mm internal diameter,
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1 µM df, crossbond). TSSs and VSSs were calculated according to APHA/AWWA/WEF
standard methods [34]. Aqueous carbon dioxide was measured with a CO2 Mettler Toledo
sensor and the concentrations were corrected considering the pH of the reactor, taking into
account the equations of CO2 equilibrium in water and their respective constants according
to Henry’s Law (K = 0.0017 M; Ka1 = 4.47 × 10−7 M; Ka2 = 4.69 × 10−11 M) [35,36].

2.3. Raman Spectroscopic Method

Raman spectra of 2 mL mixed liquor samples were directly acquired after collection
and without pre-treatment using a fiber coupled Raman probe (RPB Raman probe, In-
Photonics) routed to a modular spectrometer (Ocean Optics QE65 Pro), and an 785 nm
excitation laser (RGBLase LLc, Fremont, CA, USA) with 500 mW output. The Raman
probe used was a non-immersible anodized aluminum probe with a stainless steel tip and
focused light with a working distance of 7.5 mm. Thermo-electric cooling was applied
in the spectrometer with a detector set point of −10 ◦C. Each spectrum was obtained in
the Raman shift range from 2677.68 to −62.34 cm−1, with a 3.69 cm−1/pixel linear dis-
persion, corresponding to 1044 data points. Raman spectroscopy analysis was directly
performed at-line on the mixed liquor samples, without any pre-treatment, in order to
mimic online measurements. One scan was performed for each sample. A 5-s integration
time was applied during spectral acquisitions on cycles A, B and C, and an integration
time of 200 ms was used on samples from cycle D to avoid signal oversaturation. The
acquired spectra correspond to the first basic measurements in a lab-scale photo-BNR. In
real systems, overlaying fluorescence is an expected interference and this aspect will be
focused on a future work.

2.4. Chemometric Analysis

PLS calibration models were developed based on Raman spectra of mixed liquor
samples (Raman spectroscopic method) and on respective standard measurements of
the selected parameters (reference analytical method). Commercial OPUS Quant2 soft-
ware, version 8.2.28 (Bruker Optik GmbH, Leipzig, Germany), was used for spectral
data pre-processing and a chemometric PLS calibration model development for each
selected parameter.

Raman spectral pre-processing is crucial to remove undesired systematic variations in
the spectral data that are unrelated to the analytical information, consequently degrading
the predictive ability of a calibration model. To extract the spectral information related to
each one of the parameters considered, the corresponding PLS calibration models were
optimized in terms of spectral range, pre-processing method and the number of factors or
latent variables (LVs) employed, a maximum of 10 LVs being considered.

The optimization of calibration models was performed using the OPUS Quant2 op-
timization tool, which evaluates the combination of different data pre-processing strate-
gies with various spectral ranges, resulting in more than 1000 tested combinations [37].
Specifically, a Raman shift region defined by the user is divided into 10 equal subregions
and the best combination of subregions is iteratively searched by the optimization tool.
Mean-centering was applied as the default in every pre-processing strategy, in addition
to the eleven default pre-processing strategies, which include no further spectral data
pre-processing, constant offset elimination, straight line subtraction (SLS), vector normal-
ization (standard normal variate; SNV), minimum–maximum (Min–Max) normalization,
multiplicative scatter correction (MSC), first derivative (1st Der) and second derivatives
(17 smoothing points used as default), as well as the combined methods 1st Der + SLS, 1st
Der + SNV and 1st Der + MSC.

A full cross-validation (leave-one-out) procedure was adopted to determine the opti-
mal number of LVs, based on the minimum value obtained for the root mean square error
of cross-validation (RMSECV). The prediction performance and accuracy of the PLS models
were evaluated based on the coefficient of determination of cross-validation (R2

CV), the RM-
SECV and the residual prediction deviation of cross-validation (RPDCV). The RPD value
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indicates specifically whether a PLS model has insufficient prediction quality (RPD < 2.5)
or whether it can be used as a rough screening method (2.5 < RDP < 3), as a good screening
method (3 < RPD < 5), as a quality control method (5 < RPD < 8) or as an excellent method
for analytical tasks (RPD > 8) [38]. Bias was also considered, corresponding to the system-
atic averaged deviation between the predicted and the reference values. Overall, robust,
reliable, and unbiased calibration models are characterized by combining low values of
RMSECV, high R2

CV and RPDCV, a bias value close to zero, as well as a low number of LVs
in order to avoid overfitting the model. Depending on the studied parameter, some samples
were excluded from the calibration set during PLS model development, either in the case
of no detectable amounts of the analyte in a sample (null concentration determined by the
reference method) or when the associated measurement was considered an outlier based
on the Mahalanobis distance. The spectra of samples containing null concentration of a
parameter were not included in the PLS model in order to avoid an imbalanced calibration
model focused on the concentration region around zero, instead of the concentration range
of interest for each parameter. Since NO2 was not detectable in any of the analyzed samples,
PLS models were not developed for this parameter.

3. Results and Discussion
3.1. Development of PLS Calibration Models

To study the possibility of using Raman spectroscopy as a monitoring tool in a photo-
BNR wastewater treatment process, Raman spectra were acquired from mixed liquor
samples harvested along four selected SBR cycles (13 samples/cycle), as described in
Section 2.1. Although each spectrum was obtained in the Raman shift range from 2677.68
to −62.34 cm−1, the region below 200 cm−1 corresponded to spectral noise, not being
considered in the development of PLS models. The most intense peaks in the Raman
spectra were observed within the range of 2000–1000 cm−1, as observed in the raw Raman
spectra of all samples used in this study (Figure 1). Nevertheless, it was difficult to make
direct peak attributions through visual inspection due to overlapping vibrational modes
of different constituents in such complex samples, confirming the need for multivariate
analysis methods such as PLS regression.
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Figure 1. Raw Raman spectra of mixed liquor samples harvested from the SBR on (a) cycles A, B and C (samples 1–39; 5 s
integration time); and (b) cycle D (samples 40–52; 200 ms integration time).

To extract relevant spectral information, PLS model optimization was carried out by
testing different spectra pre-processing strategies in combination with various spectral re-
gions using the OPUS software, as described in Section 2.4. The proper selection of spectral
ranges is essential to avoid that bands of interfering components are accounted for by the
PLS algorithm, consequently deteriorating the quality of the model. The main spectral
truncations used as input for this optimization process included the total spectral range
without the noise region (2677.68–200 cm−1) and two spectral truncations covering the
most peak-concentrated areas of the spectra (2000–200 cm−1 and 2000–1000 cm−1). In addi-
tion, aiming for a more refined search of relevant spectral data, different spectral regions
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were considered for each parameter, according to Raman shift attributions described in the
literature [39]. Specifically, distinct regions within the Raman shift range 1200–600 cm−1

were considered in the development of models for PO4 and poly-P for comprising P–O–
P and PO2

– stretching vibrations [25–28,39–41], whereas the 1450–1200 cm−1 range was
tested for modelling CO2 [42]. Similarly, the region 1600–1350 cm−1 was tested for NH3
models owing to the N-H in plane deformation reported within this range [39], while the
1100–1000 cm−1 range was tested for NO3 models due to symmetric N–O stretching vibra-
tions [18]. Moreover, the regions 1800–400 cm−1 and 1200–800 cm−1 were studied during
the construction of PLS models for VFA due to characteristic C–C, C=O, C–H, CH2 and CH3
bands [24,25,27,43,44], and the regions 1800–1700 cm−1 + 1000–800 cm−1 + 500–400 cm−1

were specifically tested in PHAs modelling for comprising previously associated Raman
shifts [24,26,43–45]. Finally, the Raman shifts 500–450 cm−1 + 1200–800 cm−1 were used
to build calibration models for carbohydrates owing to their specific association with
glycogen [24,25,39].

3.2. Evaluation of PLS Calibration Models

The models developed for each parameter were evaluated mostly based on the RM-
SECV and R2

CV, while still considering the calibration parameters, i.e., the root mean
square error of calibration (RMSEC) and the coefficient of determination of calibration
(R2

Cal). Table 1 presents the optimized pre-processing strategy, the spectral region and
number of LVs used in the final PLS models selected for each studied parameter, along
with the respective calibration and cross-validation statistical results. According to the pre-
processing information presented in Table 1, the optimized pre-processed Raman spectra
of the calibration samples used for the development of each PLS model are represented
in Figures S2–S12 in Supplementary Materials. These calibration models are graphically
represented in Figure 2, which depicts the regression line that correlates the analytically
measured values of each calibration sample with the corresponding values predicted by
the calibration model. Overall, it was possible to establish a good relation between the
Raman spectral data and the concentration of all the studied parameters. This was denoted
by the very high R2

Cal (>99.3%) and prediction deviation of calibration (RPDCal > 11.6),
and by the relatively low RMSEC values registered for almost all parameters (Table 1),
except for NH3, which presented slightly less favorable calibration results (R2

Cal = 96.2%;
RPDCal = 5.2). These statistical results reflect the data represented in Figure 2, where the
calibration points fit the regression line for each parameter very well, with more scattered
data points around the regression line being exceptionally observed in the NH3 model.

Regarding the prediction performance of these calibration models, the excellent statis-
tical results (R2

CV > 90.0%; RPDCV > 3.2) obtained for TOC, VFAs, CO2, NO3, Total P, PHAs,
TSSs and VSSs (Table 1) indicate that these parameters can be quantified with good quality
through the respective Raman-based PLS models. On the other hand, the models devel-
oped for the prediction of PO4, NH3 and carbohydrates did not perform as well, according
to their lower cross-validation quality parameters, i.e., R2 < 90% and RPDCV < 3.0. Overall,
the RMSECV values are higher than the corresponding RMSEC, but the determined bias
values were close to zero for all parameters, except for PO4 (Bias = 0.364; Table 1). The
cross-validation outcome, which represents the performance of each PLS model to predict
the concentrations of the respective parameter, is graphically illustrated in Figure 3, where
the reference analytical values measured for each sample are plotted together with the
corresponding values predicted by a full cross-validation (leave-one-out) procedure. In
addition, Figure 3 allows to observe each parameter’s profile and the trend of predicted
values along the SBR cycles. Overall, the analytical data for each parameter (Figure 3)
followed the expected profile along the photo-BNR reactor cycles [14], i.e., the decrease
in VFA and carbohydrates concentration values, in parallel with the increase in PHAs
and PO4 concentrations along the anaerobic phase; followed by the decrease in NH3, PO4
and PHAs concentrations, along with the increase in NO3 concentration (nitrification) and
poly-P and glycogen contents in the subsequent aerobic phase.
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Table 1. Raman-PLS models developed for each studied parameter, within the indicated concentration range: total carbohydrates, carbon dioxide (CO2), ammonia (NH3), nitrate (NO3),
polyhydroxyalkanoates (PHAs), phosphate (PO4), total organic content (TOC), total phosphorus (total P), total suspended solids (TSSs), volatile fatty acids (VFAs), and volatile suspended
solids (VSSs). For each parameter, the optimized pre-processing strategy, spectral regions, and number of latent variables (LVs) used in the selected model are indicated, along with
the respective statistical results from the calibration (coefficient of determination of calibration, R2

Cal; root mean square error of calibration, RMSEC; residual prediction deviation of
calibration, RPDCal) and the full (leave-one-out) cross-validation (coefficient of determination of cross-validation, R2

CV; root mean square error of cross-validation, RMSECV; residual
prediction deviation of cross-validation, RPDCV; Bias) obtained during the prediction of the indicated parameters. The number of samples included in the calibration set (n) of each
calibration model is indicated for each parameter.

Calibration Cross-Validation

Parameter n Range Spectral Regions (cm−1) Pre-Processing a LV R2
Cal (%) RMSEC b RPDCal R2

CV (%) RMSECV b RPDCV Bias

Carbohydrates 28 2.8–8.3 mmolC L−1

1200.0–1159.5
999.4–959.0
920.3–878.0
839.4–798.9

n.a.p. 7 99.4 0.15 12.5 88.2 0.53 2.9 −0.012

CO2 33 3.0–16.7 g L−1 1450.3–1398.8
1374.8–1297.6 MSC 8 99.8 0.16 21.9 90.0 0.96 3.2 0.063

NH3 37 17.2–26.5 mgN L−1
2677.7–1685.8
1439.2–1189.0

944.2–199.0
1st Der + MSC 8 96.2 0.72 5.2 65.5 1.89 1.7 −0.018

NO3 6 0.3–3.3 mgN L−1 1080.4–1069.4 n.a.p 3 99.6 0.14 14.9 97.7 0.18 6.7 −0.028

PHA 24 0.7–12.8 mmolC
L−1

1001.3–898.2
850.4–798.9
491.6–464.0

1st Der + SNV 9 99.9 0.12 37.6 95.9 0.71 5.0 −0.011

PO4 36 32.2–99.6 mgP L−1 1030.7–940.6
670.1–579.9 n.a.p. 8 99.4 1.95 13.1 70.0 12.10 1.8 0.364

TOC 13 17.4–43.2 ppm
1501.8–1349.1
1051.0–898.2
751.0–598.3

COE 5 99.5 0.76 13.6 96.7 1.38 5.5 0.070

Total P 11 0.1–0.4 g L−1 1179.8–1168.7
1159.5–1139.3 1st Der + MSC 9 100.0 0.00 323.0 99.0 0.01 10.3 0.001

TSS 13 2.7–5.8 g L−1
1801.8–1698.7
1601.2–1500.0
1100.7–999.4

SNV 5 99.9 0.03 34.2 97.5 0.14 6.3 −0.003

VFA 8 0.1–2.7 mmolC L−1 1934.2–1685.8
944.2–694.0 n.a.p. 4 99.5 0.10 13.9 95.4 0.18 4.7 0.027

VSS 13 2.1–4.5 g L−1
1901.1–1500.0
1400.6–1299.4
1100.7–999.4

Min–Max 5 99.3 0.08 11.6 93.9 0.17 4.1 −0.019

a Mean centering of spectral data was applied for all PLS models, in addition to the pre-processing methods indicated. 1st Der: first derivative; COE: constant offset elimination; Min–Max: minimum–maximum
normalization; MSC: multiplicative scatter correction; n.a.p.: no additional pre-processing; SNV: vector normalization (single normal variate). b RMSEC and RMSECV values are expressed in the same dimensions
indicated for the respective parameter’s range.
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The parameter predictions based on the Raman spectra in Figures 2 and 3 correspond
to single measurements and there is only one parameter prediction for each spectrum. Rep-
etitions of spectra acquisition were not performed since the biological reactions continued
to occur in each sample after collection from the bioreactor. Thus, variations were expected
to occur between those repetitions over a short period of time. However, the continuous
monitoring during a long period allows the generation of continuous data and reveals the
reproducibility of the monitored system.

Despite the procedures to minimize the noise in the calibration data set (simple
pre-processing, spectral region selection and outlier removal), for some parameters, the
low number of samples available and the low diversity of analytical values might have
contributed to PLS model overfitting. In order to minimize this effect, a full cross-validation
procedure was used for PLS model development. However, an external validation using
an independent test set was required to evaluate the degree of overfitting of the developed
PLS models by comparing the performance of the test set with that of the calibration set.
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Figure 2. Representation of the Raman-PLS calibration models developed for (a) total carbohydrates; (b) carbon dioxide
(CO2); (c) ammonia (NH3); (d) nitrate (NO3); (e) polyhydroxyalkanoates (PHAs); (f) phosphate (PO4); (g) total organic
content (TOC); (h) total phosphorus (total P); (i) total suspended solids (TSSs); (j) volatile fatty acids (VFAs); and (k) volatile
suspended solids (VSSs) along with the statistical calibration results.
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Figure 3. Representation of the prediction capabilities of the Raman-PLS models developed for (a) total carbohydrates;
(b) carbon dioxide (CO2); (c) ammonia (NH3); (d) nitrate (NO3); (e) polyhydroxyalkanoates (PHAs); (f) phosphate (PO4);
(g) total organic content (TOC); (h) total phosphorus (total P); (i) total suspended solids (TSSs); (j) volatile fatty acids (VFA);
and (k) volatile suspended solids (VSSs). For each parameter and calibration sample, the analytical values measured by
reference methods (N) are represented along with the corresponding parameter values predicted by the respective cross-
validation model (#). The pre-processing strategy, spectral regions, and number of latent variables used in the development
of the PLS models are indicated in Table 1, for each studied parameter, along with the statistical cross-validation results.
Vertical dashed lines separate the sample sets from each studied cycle, corresponding to the SBR operational days 73
(cycle A; samples 1–13); 79 (cycle B; samples 14–26); 85 (cycle C; samples 27–39); and 101 (cycle D; samples 40–52).

3.3. Nitrate (NO3)

NO3 was not detected on cycles A, B and C, because denitrification was only occurring
on cycle D (Figure 3d), leading to a very small number of calibration samples available
for developing the Raman-based PLS model to predict NO3 concentrations. Neverthe-
less, the reference values were broadly spanned through the investigated concentration
range (0.3–3.3 mgN L−1; Figure 2d), allowing to obtain predictions of NO3 concentration
with high accuracy (RMSECV = 97.7% and RPDCV = 6.7) simply requiring three LVs
and the mean centering of the spectral data (no additional pre-processing needed) in the
1080.4–1069.4 cm−1 range (Table 1). In fact, according to the UV resonance Raman spectra
of nitrate solutions, symmetric N−O stretching vibrations were reported to produce strong
bands at 1044 cm−1 for NO3 [18]. The possibility of implementing Raman-based real-time
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monitoring of NO3 in a photo-BNR reactor would contribute to control denitrification
efficiency, by adapting the length of the anoxic phase, for example, and consequently, guar-
anteeing that no NO3 is present when organic carbon is fed. The simultaneous presence
of NO3 and organic carbon promotes the growth of heterotrophic denitrifying organisms,
which compete for carbon with PAOs and lead to photo-BNR failure over the time [2,46].

3.4. Ammonia (NH3)

The best model obtained for monitoring NH3 concentration involved eight LVs and
used the 1st Der + MSC as the pre-processing method in three spectral regions (Table 1),
one of which (1439.2–1189.0 cm−1) comprising Raman shifts previously attributed to N–H
in plane deformation (1400 and 1425 cm−1), and part of a band associated with NH3
(1550–1428 cm−1) [39]. Despite the promising calibration parameters (R2

Cal = 96.2% and
RMSEC = 0.72 mgN L−1), the low R2

CV and RDPCV values of 65.5% and 1.7, respectively,
and the substantial RMSECV (1.89 mgN L−1) obtained imply that this model has a poor
prediction capacity, being unable to extract the relevant information from the spectral data.
This is evidenced by the scattering of data points around the regression line (Figure 2c)
and the discrepancy between the measured and predicted NH3 concentration values for
some of the samples (Figure 3c). However, no further samples were excluded from the
data set, as no clear outliers were detected. The significantly better calibration results in
comparison to cross-validation suggest that a higher number of samples should be used for
PLS model development in order to represent the whole NH3 concentration range under
study. Accordingly, is it possible that the prediction accuracy of the PLS model could be
improved by including more samples to equally cover the total NH3 concentration range.
In fact, real-time knowledge on the NH3 concentration in a photo-BNR reactor would
allow the assessment of its nutrient removal capacity and the adaptation of the operational
conditions when the treatment efficiency would not meet the discharge requirements.

3.5. Phosphate (PO4) and Total Phosphorus (Total P)

Regarding PO4, PLS model optimization led to the selection of a spectral region
comprising a Raman shift specific for the ν1 vibration domain of the PO4 group, i.e.,
960 cm−1 [40]. Similarly to the model developed for NH3, the cross-validation results ob-
tained for the PO4 model in the 32.2–99.6 mgP L−1 range (R2

CV = 70.0%;
RMSEC = 12.10 mgP L−1; Figure 3f) were significantly worse than the calibration statistics
(R2

Cal = 99.4%; RMSEC = 1.95 mgP L−1). Accordingly, the RPDCV of 1.7 confirmed the
insufficient prediction quality of the model. In contrast, the PLS model developed for esti-
mating total P concentrations presented an excellent prediction performance (Figure 3h),
as evidenced by the cross-validation results, i.e., R2

CV = 99.0% and RPDCV = 10.3 (Table 1).
In fact, the RMSEC and RMSECV values (0.0 and 0.01 g L−1) were very similar, denoting a
good calibration model for the P concentration range from 0.1 to 0.4 g L−1 (as illustrated in
Figure 3h). The spectral data pre-processing involved the application of 1st Der + MSC
in the regions 1179.8–1168.7 cm−1 + 1159.5–1139.3 cm−1, which is in accordance with
the PO2 stretching vibrations band reported to occur around 1175–1168 cm−1 [24] and
1163–1130 [26] and used to quantify the intracellular poly-P content [24–27,38,40]. How-
ever, this model required nine LVs, which is a relatively high number of factors, eventually
leading to the overfitting of data. Future work is needed to confirm the prediction capac-
ity of this potentially relevant model, by performing external validation tests. Accurate
real-time monitoring of total P would significantly improve the capacity to understand
which is the main mechanism of P removal in the photo-BNR process, and thus evaluate
the possibility of using the excess sludge as fertilizer, since high P amounts in the biomass
indicate high accumulation as poly-P.

3.6. Total Carbohydrates and Polyhydroxyalkanoates (PHAs)

Most studies using Raman as a monitoring tool for PHAs production have focused
on intracellular polymer content, composition and degree of crystallinity [43]. The most
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prominent contributions of PHB to a bacterial Raman spectrum were associated with a
peak at around 1734 cm−1 [45]. Furthermore, studies using commercial copolymers of
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) identified specific Raman bands
associated with 3-hydroxyvalerate (3HV) [43] and quantified the molar fraction of 3HV
in polyester solutions and molten polyester films based on specific Raman peaks [44].
Subsequently, Raman spectroscopy has been suggested as a potentially fast and efficient
tool for the process control of PHB bioproduction through qualitative and quantitative in
situ monitoring of intracellular PHB content in biomass, specifically in Cupriavidus necator
H16 cultures [29].

In the context of wastewater treatment in a photo-BNR reactor, the online monitoring
of intracellular polymers such as PHAs and glycogen (accounted for as part of the total
carbohydrates), which are involved in the P removal process, is relevant to assess whether
nutrient removal is limited by the low concentration of biopolymers and to optimize this
process. The Raman region located at 1200–800 cm−1 has been reported to be mainly
dominated by polysaccharide peaks, and the spectral region between 1288 and 987 cm−1

was previously used to develop a Raman-based PLS model for carbohydrates in powdered
milk samples [47]. Accordingly, the optimization of the PLS models for total carbohydrates
in the present study led to the selection of spectral regions within the 1200–800 cm−1 range
(Table 1), which include some of the peaks characteristic of glycogen vibrations (484–478,
860–840, 944–937, 1087–1048, 1131, 1383–1333, and 1460 cm−1) [24].

The glycogen skeletal deformation band (484–478 cm−1) was not accounted for in
the carbohydrates model, probably due to overlapping peak positions between PHAs
and glycogen in this region [41]. In fact, the optimized PLS model for PHAs included the
484–478 cm−1 band within the selected spectral regions, i.e., 491.6–464.0 cm−1 + 850.4–
798.9 cm−1 + 1001.3–898.2 cm−1 (Table 1). The selection of these spectral regions is in
accordance with two of the most prominent bands reported in the Raman spectra of PHB
and PHBV: 433 and 860–840 cm−1, assigned to δ(C–C) skeletal deformations and ν(C–C)
skeletal stretches, respectively [24].

Despite the excellent calibration statistical results obtained in both models (R2
Cal and

RMSEC of 99.4% and 0.15 mmolC L−1 for total carbohydrates, and 99.9% and 0.12 mmolC L−1

for PHAs, respectively), good cross-validation performance was only reached in the PHAs
model (R2

CV = 95.9%, RPDCV = 5.0; Figure 3e), while only satisfactory results were obtained
in the model developed for total carbohydrates (R2

CV = 88.2%, RPDCV = 2.9; Figure 3a).
Overall, the predicted values follow the measured values along the SBR treatment cycles,
as represented in Figure 3a,e for total carbohydrates and PHAs, respectively. Nevertheless,
according to the respective RPD values, the PLS model constructed for PHAs prediction
could be used as a good screening method within the 0.7–12.8 mmolC L−1 concentration
range, while the one for total carbohydrates can only be considered as a rough screening
method for concentration values within 2.8–8.3 mmolC L−1 [38]. In light of the labor-
intensive, complex and time-consuming protocols involved in the analytical methods
used to measure PHAs and total carbohydrates (involving biomass digestions, GC and
HPLC analysis, respectively), the application of Raman spectroscopy as a fast, direct and
not destructive monitoring tool would enable timely decisions regarding process control
and optimization.

3.7. Volatile Fatty Acids (VFA) and Total Organic Carbon (TOC)

Modelling VFA concentration was based on the spectral regions 944.2–694.0 cm−1 and
1934.2–1685.8 cm−1 (Table 1) which include v(C–C) skeletal stretches (860–840 cm−1) [43]
and c(C=O) stretching vibrations (1725–1750 cm−1) [24,43,44], respectively. By applying
mean centering alone as pre-processing, this model yielded very good cross-validation re-
sults in the VFA concentration range from 0.1 to 2.7 mmolC L−1 (RMSECV = 0.18 mmolC L−1,
R2

CV = 95.4% and RPDCV = 4.7; Figure 3j). In contrast to the time-consuming analytical
method used for assessing VFA concentration (HPLC), Raman spectroscopy has the poten-
tial to deliver much faster information about the reactor performance.
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Regarding the final model selected for predicting TOC concentration, the spectral
regions used in the model span over a large range of the Raman spectrum (from 1500 to
600 cm−1; Table 1). In fact, important regions for the vibrations associated with organic
matter are expected to involve a wide spectral range, including aliphatic C–H stretching,
vibrations related to carboxylic groups, aromatic groups, carboxylate groups and protein
amide [37]. Although TOC measurements were only available for one of the studied cycles,
a good correlation between the reference analytical data and the pre-processed (constant
offset elimination) selected Raman spectral regions could be obtained by using five LVs,
as indicated by the calibration results (R2

Cal = 99.5%, RMSEC = 0.76 ppm, RPDCal = 13.6;
Table 1). Moreover, the cross-validation was successful (R2

CV = 96.7%; RPDCV = 5.5), the
reference TOC profile within the 17.4–43.2 ppm range being very well predicted by the
Raman-based PLS model (Figure 3g).

Real-time information on the concentration of VFAs and TOC can help in preventing
the presence of organic carbon during the light aerobic period of the SBR cycles. The pres-
ence of organic carbon during the light aerobic period promotes the growth of heterotrophic
phototrophic purple bacteria and ordinary aerobic heterotrophs, which consequently, re-
duce the efficiency of the photo-BNR, since PAOs accumulate more P [7].

3.8. Total Suspended Solids (TSSs) and Volatile Suspended Solids (VSSs)

As expected, the spectral regions used by the PLS models for estimating TSSs and
VSSs are very similar, covering related regions within the 2000–1000 cm−1 range (Table 1).
Despite the application of different normalization methods as pre-processing (SNV for
TSSs versus Min–Max normalization for VSSs), both models were constructed based on
five LVs and the statistical calibration and cross-validation results were comparable, so the
TSS performs slightly better (RMSECV and RPDCV of 97.5% and 6.3 for TSS versus 93.9%
and 4.1 for VSSs, Figure 3i,k, respectively).

3.9. Carbon Dioxide (CO2)

The CO2 concentration model used two short regions of Raman shifts (1450.3–1398.8 cm−1

+ 1374.8–1297.6 cm−1), which comprise two peaks attributed to vibrational modes of CO2,
specifically 1388 cm−1 and 1285 cm−1 [42]. The spectral pre-processing involved MSC,
and cross-validation revealed a good prediction accuracy within a large CO2 concentration
range (3.0–16.7 g L−1), as indicated by the cross-validation results (R2

CV = 90.0%, RMSECV
of 0.96 g L−1; RPDCV = 3.2; Table 1). In fact, Figure 3b shows excellent correlations
between Raman spectroscopy and reference analysis, highlighting Raman spectroscopy as
a potentially useful tool for providing real-time information on the CO2 concentration. Real-
time knowledge on the CO2 level in a photo-BNR reactor is essential for understanding
whether photosynthesis, and thus oxygen production by microalgae, is limited by inorganic
carbon availability and when it happens, whether it increases the CO2 feed to the system.
Compared to regular CO2 sensors, this can be advantageous because no further correction,
based on pH, is necessary to know the real CO2 concentration, reducing the delay time and
improving the overall nutrient removal efficiency of the photo-BNR.

4. Conclusions

Raman spectra were acquired at-line during the operation of a lab-scale photo-BNR
reactor and PLS regression was performed to develop calibration models for the prediction
of key monitoring parameters, essential for process control and optimization. This study
showed that Raman spectroscopy, allied with PLS, is a very promising tool for monitoring
the concentrations of TOC, VFAs, CO2, NO3, total P, PHAs, TSSs and VSSs in a photo-BNR
reactor in real-time. This was shown by the high R2

CV and RPDcv values obtained for these
parameters: 96.7% and 5.5 for TOC, 95.4% and 4.7 for VFAs, 90.0% and 3.2 for CO2, 97.7%
and 6.7 for NO3, 99.0% and 10.3 for Total P, 95.9% and 5.0 for PHAs, 97.5% and 6.3 for TSSs,
93.9% and 4.1 for VSSs, respectively. Regarding NH3, PO4 and total carbohydrates, the
prediction accuracy of the respective Raman-based PLS models (R2

CV and RPDcv of 65.5%
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and 1.7 for NH3, 70.0% and 1.8 for PO4; 88.2% and 2.9 for total carbohydrates, respectively)
could possibly be improved by including more samples in the calibration set.

The performance of the PLS calibration models was evaluated by a full cross-validation
procedure and can be further assessed by an external validation using additional samples
that were not included in model development (external test set). After external validation,
the models can then be used for predicting the concentration of the different parameters
simply based on the Raman spectral data, minimizing the need for performing extensive
off-line analyses. Although the external validation of the developed PLS calibration models
was not performed due to the lack of an external test set, this study presents very promising
results for the real-time monitoring of a photo-BNR reactor using Raman spectroscopy,
being the first to report this specific application. Overall, the application of Raman-based
monitoring in a photo-BNR reactor offers a fast, simple, non-destructive, eco-friendly and
holistic alternative to laborious standard analytical and expensive methods, enabling the
quantification of various parameters within a single Raman measurement. Once robust
and reliable PLS calibration models have been developed, Raman spectroscopy can be
used online to provide real-time process information, facilitating decision-making during
wastewater treatment. Nevertheless, regular reference analytical data will always be
needed in order to guarantee the long-term validity of PLS models.

Supplementary Materials: The following figures are available online at https://www.mdpi.com/
article/10.3390/app11146600/s1, Figure S1: Photo-BNR daily cycle of day 85; Figures S2–S12: Pre-
processed Raman spectra of calibration samples used for the development of the PLS model for total
carbohydrates, CO2, NH3, NO3, PHAs, PO4, TOC, total P, TSS, VFAs, and VSSs, respectively.
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29. Samek, O.; Obruča, S.; Šiler, M.; Sedláček, P.; Benešová, P.; Kučera, D.; Márova, I.; Ježek, J.; Bernatová, S.; Zemánek, P. Quantitative
Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16. Sensors 2016, 16, 1808. [CrossRef]

30. Carvalheira, M.; Oehmen, A.; Carvalho, G.; Reis, M.A. The effect of substrate competition on the metabolism of polyphosphate
accumulating organisms (PAOs). Water Res. 2014, 64, 149–159. [CrossRef]

31. Gschwind, B.; Ménard, L.; Albuisson, M.; Wald, L. Converting a successful research project into a sustainable service: The case of
the SoDa Web service. Environ. Model. Softw. 2006, 21, 1555–1561. [CrossRef]

32. Lanham, A.B.; Ricardo, A.R.; Coma, M.; Fradinho, J.; Carvalheira, M.; Oehmen, A.; Carvalho, G.; Reis, M.A. Optimisation of
glycogen quantification in mixed microbial cultures. Bioresour. Technol. 2012, 118, 518–525. [CrossRef]

http://doi.org/10.1016/j.biotechadv.2020.107567
http://www.ncbi.nlm.nih.gov/pubmed/32470594
http://doi.org/10.1016/j.watres.2013.10.051
http://www.ncbi.nlm.nih.gov/pubmed/24361516
http://doi.org/10.1016/j.copbio.2018.12.007
http://www.ncbi.nlm.nih.gov/pubmed/30708205
http://doi.org/10.1016/j.watres.2006.06.011
http://doi.org/10.1016/j.algal.2019.101672
http://doi.org/10.1016/j.biortech.2017.02.025
http://doi.org/10.1007/s00253-004-1811-3
http://doi.org/10.1016/j.watres.2017.11.010
http://doi.org/10.1016/j.scitotenv.2021.148501
http://doi.org/10.1007/s00216-012-6073-9
http://doi.org/10.1016/b978-0-444-63663-8.00023-9
http://doi.org/10.1016/j.trac.2020.116166
http://doi.org/10.1021/ac010863q
http://www.ncbi.nlm.nih.gov/pubmed/11922318
http://doi.org/10.1016/j.addr.2015.04.003
http://www.ncbi.nlm.nih.gov/pubmed/25868453
http://doi.org/10.1016/j.jpba.2017.06.070
http://www.ncbi.nlm.nih.gov/pubmed/28711673
http://doi.org/10.1007/s00216-016-0068-x
http://doi.org/10.1007/s00216-016-9824-1
http://doi.org/10.1016/j.heliyon.2019.e03088
http://www.ncbi.nlm.nih.gov/pubmed/31909261
http://doi.org/10.1021/es1016526
http://www.ncbi.nlm.nih.gov/pubmed/20949949
http://doi.org/10.1021/acs.est.8b01388
http://www.ncbi.nlm.nih.gov/pubmed/29943965
http://doi.org/10.1016/j.watres.2019.03.025
http://doi.org/10.1038/s41396-019-0399-7
http://doi.org/10.1016/j.algal.2016.03.016
http://doi.org/10.3390/s16111808
http://doi.org/10.1016/j.watres.2014.07.004
http://doi.org/10.1016/j.envsoft.2006.05.002
http://doi.org/10.1016/j.biortech.2012.05.087


Appl. Sci. 2021, 11, 6600 16 of 16

33. Lanham, A.B.; Ricardo, A.R.; Albuquerque, M.G.; Pardelha, F.; Carvalheira, M.; Coma, M.; Fradinho, J.; Carvalho, G.; Oehmen, A.;
Reis, M.A. Determination of the extraction kinetics for the quantification of polyhydroxyalkanoate monomers in mixed microbial
systems. Process. Biochem. 2013, 48, 1626–1634. [CrossRef]

34. American Public Health Association/American Water Works Association/Water Environment Federation (APHA/AWWA/WEF).
Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA/AWWA/WEF: Washington, DC, USA, 2005;
ISBN 0875532357.

35. Dias, J.M.; Pardelha, F.; Eusébio, M.; Reis, M.A.; Oliveira, R. On-line monitoring of PHB production by mixed microbial cultures
using respirometry, titrimetry and chemometric modelling. Process. Biochem. 2009, 44, 419–427. [CrossRef]

36. Lueker, T.J.; Dickson, A.G.; Keeling, C.D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations
for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 2000, 70,
105–119. [CrossRef]

37. Ludwig, B.; Murugan, R.; Parama, V.R.R.; Vohland, M. Accuracy of Estimating Soil Properties with Mid-Infrared Spectroscopy:
Implications of Different Chemometric Approaches and Software Packages Related to Calibration Sample Size. Soil Sci. Soc. Am.
J. 2019, 83, 1542–1552. [CrossRef]

38. Mendes, T.D.O.; Rodrigues, B.V.M.; Porto, B.L.S.; da Rocha, R.A.; de Oliveira, M.A.L.; de Castro, F.K.; Anjos, V.D.C.D.; Bell, M.J.V.
Raman Spectroscopy as a fast tool for whey quantification in raw milk. Vib. Spectrosc. 2020, 111, 103150. [CrossRef]

39. Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42,
493–541. [CrossRef]

40. Ma, H.; Xue, Y.; Zhang, Y.; Kobayashi, T.; Kubota, K.; Li, Y.-Y. Simultaneous nitrogen removal and phosphorus recovery using an
anammox expanded reactor operated at 25 ◦C. Water Res. 2020, 172, 115510. [CrossRef]

41. Majed, N.; Gu, A.Z. Phenotypic dynamics in polyphosphate and glycogen accumulating organisms in response to varying
influent C/P ratios in EBPR systems. Sci. Total Environ. 2020, 743, 140603. [CrossRef]

42. Kobayashi, T.; Yamamoto, J.; Hirajima, T.; Ishibashi, H.; Hirano, N.; Lai, Y.; Prikhod’Ko, V.S.; Arai, S. Conformity and precision of
CO2 densimetry in CO2 inclusions: Microthermometry versus Raman microspectroscopic densimetry. J. Raman Spectrosc. 2012,
43, 1126–1133. [CrossRef]

43. Jost, V.; Schwarz, M.; Langowski, H.-C. Investigation of the 3-hydroxyvalerate content and degree of crystallinity of P3HB-co-3HV
cast films using Raman spectroscopy. Polymer 2017, 133, 160–170. [CrossRef]

44. Izumi, C.; Temperini, M.L.A. FT-Raman investigation of biodegradable polymers: Poly(3-hydroxybutyrate) and poly(3-
hydroxybutyrate-co-3-hydroxyvalerate). Vib. Spectrosc. 2010, 54, 127–132. [CrossRef]

45. De Gelder, J.; Willemse-Erix, D.; Scholtes, M.J.; Sanchez, J.I.; Maquelin, K.; Vandenabeele, P.; De Boever, P.; Puppels, G.J.; Moens,
L.; De Vos, P. Monitoring Poly(3-hydroxybutyrate) Production in Cupriavidus necator DSM 428 (H16) with Raman Spectroscopy.
Anal. Chem. 2008, 80, 2155–2160. [CrossRef] [PubMed]

46. Valverde Perez, B. Wastewater Resource Recovery via the Enhanced Biological Phosphorus Removal and Recovery (EBP2R)
Process Coupled with Green Microalgae Cultivation. Ph.D. Thesis, Technical University of Denmark, DTU Environment, Lyngby,
Denmark, 2015.

47. Moros, J.; Garrigues, S.; de la Guardia, M. Evaluation of nutritional parameters in infant formulas and powdered milk by Raman
spectroscopy. Anal. Chim. Acta 2007, 593, 30–38. [CrossRef] [PubMed]

http://doi.org/10.1016/j.procbio.2013.07.023
http://doi.org/10.1016/j.procbio.2008.12.007
http://doi.org/10.1016/S0304-4203(00)00022-0
http://doi.org/10.2136/sssaj2018.11.0413
http://doi.org/10.1016/j.vibspec.2020.103150
http://doi.org/10.1080/05704920701551530
http://doi.org/10.1016/j.watres.2020.115510
http://doi.org/10.1016/j.scitotenv.2020.140603
http://doi.org/10.1002/jrs.3134
http://doi.org/10.1016/j.polymer.2017.11.026
http://doi.org/10.1016/j.vibspec.2010.07.011
http://doi.org/10.1021/ac702185d
http://www.ncbi.nlm.nih.gov/pubmed/18266340
http://doi.org/10.1016/j.aca.2007.04.036
http://www.ncbi.nlm.nih.gov/pubmed/17531821

	Introduction 
	Materials and Methods 
	Reactor Operation and Sampling 
	Reference Analytical Methods 
	Raman Spectroscopic Method 
	Chemometric Analysis 

	Results and Discussion 
	Development of PLS Calibration Models 
	Evaluation of PLS Calibration Models 
	Nitrate (NO3) 
	Ammonia (NH3) 
	Phosphate (PO4) and Total Phosphorus (Total P) 
	Total Carbohydrates and Polyhydroxyalkanoates (PHAs) 
	Volatile Fatty Acids (VFA) and Total Organic Carbon (TOC) 
	Total Suspended Solids (TSSs) and Volatile Suspended Solids (VSSs) 
	Carbon Dioxide (CO2) 

	Conclusions 
	References

