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Abstract: TiC-reinforced metal matrix composites were fabricated by laser cladding and FeCrCo-
NiAlTiC high entropy alloy powder. The heat of the laser formed a TiC phase, which was consistent
with the thermodynamic calculation, and produced a coating layer without interfacial defects. TiC
reinforcing particles exhibited various morphologies, such as spherical, blocky, and dendritic par-
ticles, depending on the heat input and coating depth. A dendritic morphology is observed in the
lower part of the coating layer near the AISI 304 substrate, where heat is rapidly transferred. Low
heat input leads to an inhomogeneous microstructure and coating depth due to the poor fluidity of
molten pool. On the other hand, high heat input dissolved reinforcing particles by dilution with the
substrate. The coating layer under the effective heat input of 50 J/mm2 had relatively homogeneous
blocky particles of several micrometers in size. The micro-hardness value of the coating layer is
over 900 HV, and the nano-hardness of the reinforcing particles and the matrix were 17 GPa and
10 GPa, respectively.

Keywords: laser cladding; high entropy alloys; metal matrix composites (MMC); titanium carbide;
hardness

1. Introduction

High entropy alloys (HEAs), which are solid solution alloys with five or more elements,
maintain a relatively simple phase due to high configurational entropy [1,2]. In particular,
the outstanding mechanical and high thermal properties of HEAs are expected to be
applied to various structural materials such as tools, dies, molds, and furnace materials.
Bulk materials manufactured by commercial casting or sintering have a size limitation [3].
On the other hand, when HEAs are used as a coating material, less amount of HEAs could
be used cost-effectively and provides functionality to the surface [4]. AISI 304 stainless steel
has a wide range of applications as a structural material due to its good formability and
weldability, high corrosion resistance, oxidation resistance, and good toughness. However,
the material requires a hard facing to overcome the disadvantages of lack of hardness and
poor wear resistance. When Ti is added to the face-centered-cubic (FCC) HEAs, body-
centered-cubic (BCC) HEAs, which have higher hardness and wear performance due to
the cocktail effect, are formed [5]. In addition, TiC is one of the most used reinforcing
materials due to its high mechanical properties, chemical stability, and good wettability
with Co, Ni, and Fe-based alloys [6]. Therefore, the use of Ti is expected to form TiC
phase and strengthen the matrix, resulting in an excellent metal matrix composite (MMC)
coating layer.

MMC coatings are prepared using various processes, such as gas tungsten arc cladding
(GTAC) [7,8], plasma transferred arc [9], thermal spray [10], etc. In particular, the coatings
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fabricated using laser cladding have the advantages of a fast cooling rate, narrow heat-
affected zone, and strong interfacial bonding. The MMC manufacturing method is divided
into two types, depending on whether reinforcing particles are added: the ex situ process
for directly supplying the premixed reinforcing particles with metal powder and the in situ
process in which the reinforcing particles are formed during the process by the reaction [11].
In the in situ synthesis method, the size of the reinforcing particles could be as small as a few
microns or less, and various morphologies could be controlled by the process conditions.

There have been several attempts to develop and control the microstructure of TiC rein-
forcing particles in the coating layer using cladding. A study by Emamian et al. [12] found
that the most crucial factor controlling the microstructure of a TiC-containing cladding
layer was the dilution rate. A high dilution rate resulted in the development of dendritic
structures, resulting in a rich melt pool from a high Fe content, showing lower liquidus
temperature on phase equilibrium. In the study by Saroj et al. [13], when the added
TiC fraction was low, TiC dissolved by dilution with the metal matrix. The remaining
particles showed that a dendritic structure developed under at a fast cooling rate. As
the TiC fraction increased, the spherical morphology was developed, and characteristics
were inhomogeneous due to randomly aggregated spherical particles [14]. In Hamedi’s
work [15], pulsed lasers were employed to suppress dendritic microstructures that de-
grade mechanical properties. Particle morphologies were controlled under specific pulse
conditions with a uniform distribution of carbon through the Marangoni convection flow.
However, even under the same conditions, the temperature gradient and solidification rate
vary with the depth of the melt pool, and the particle morphology was also different [16,17].
In the study by Cai [18], a MMC coating with FeMnCrNiCo high-entropy metal and TiC
reinforcing particles using the ex situ method was fabricated using laser cladding. Gibbs
free energy using thermodynamic calculations was employed to investigate the possibility
of the formation of other carbides during the process. The coating layer adding 15 wt%
of TiC had a hardness value of 288 HV. Liu [19] used laser cladding to form an in situ TiC
reinforced AlCoCrFeNi-based high-entropy alloy, and thermodynamic calculations were
used to predict the oxide phase resulting from the wear test. Ti contributed to the dispersion
strengthening, solid solution strengthening, and fine-grain strengthening, resulting in a
coating layer that reached a hardness of 860 HV.

Although research is being done on the manufacturing of MMCs using HEA powder
and laser cladding, hardness and wear need to be further improved for commercial use.
Due to its outstanding mechanical properties, the effect of laser heat input on the size,
morphology, and distribution of in situ formed reinforcing particles should be analyzed.
Additionally, it is also important to predict the newly formed phases during the process in
a multi-component metal matrix. In this paper, a MMC coating layer with in situ formed
TiC was fabricated by laser cladding using FeCrCoNiAlTiC high entropy alloy powder
and an AISI 304 substrate. Gibbs free energy was used in thermodynamic calculations to
predict the formation of carbide phases. In particular, the effect of the laser heat input on
the morphology, size, and dispersion of TiC was investigated. The behavior of solidification
and molten pool in the laser process was predicted by focusing on the characteristic change
of the reinforcing particle according to the depth of the coating layer. In addition, the
correlation between the microstructure and mechanical properties was analyzed through
the micro-Vickers hardness and nano-indentation tests. Measurements, evaluations, and
discussions in the paper make a critical contribution to future work on the application of
laser processing of high entropy alloy powders for coating materials.

2. Materials and Methods

The powder alloying was manufactured by mechanical alloying using a planetary
mill (Fritsch, Pulverisette 7, Germany), and the powder alloying process conditions were
the same as in previous studies [7]. The amount of elemental powder used for alloying
was calculated according to the molar ratio for producing FeCrCoNiAlTi1.5C1.5. Figure 1a
shows the experimental setup for the cladding process. The paste was prepared by adding
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distilled water and polyvinyl alcohol and then dried in an oven by blading on AISI 304
stainless steel with a thickness of 1.5 mm, as shown in Figure 1b. The composition of the
substrate and powder was analyzed with an inductively coupled plasma optical emission
spectrometer (ICP-OES), and is represented in Table 1. The cladding process was carried
out using a 6-axis robot (Kuka, KR 100-3, Germany) and a multi-mode disk high power
laser (Trumpf, HLD4002, Germany). A Yb:YAG solid-state laser with a wavelength of
1030 nm and a continuous wave was used. The laser beam was a circular beam with a
diameter of 3 mm on the surface of the substrate. The cladding layer was manufactured
in an area of 50 mm × 60 mm, moving at pass intervals of 2.5 mm (Figure 1c) and was
protected by argon gas. The laser output, which is the main variable, was selected by
considering the change in the microstructure in the feasibility test. The cladding speed was
constant at 10 mm/s, and the laser power was used in three conditions: 1.0 kW, 1.5 kW,
and 2.0 kW. The samples were named EEMMC1.0, EEMMC1.5, and EEMMC2.0, which
used entropy-enhanced metal matrix composites (EEMMC) and the laser power value. In
multi-pass cladding, all passes except both end passes had overlapping areas on both sides,
and the microstructure was analyzed in the non-overlapping zone. For each condition,
8 samples were taken and analyzed with an area of 12 mm × 8 mm.

Figure 1. (a) schematic of the experimental setup. (b) HEAs powder dried on the substate before laser cladding. (c) Coating
layer appearance after laser cladding.

Table 1. Chemical compositions of substrate and powder.

Name
Chemical Composition (wt%)

Fe Cr Ni Al Co Ti C

STS304 (substrate) 72.2 18.2 8.0 - - - 0.06
FeCrCoNiAlTi1.5C1.5 (powder) 16.3 14.9 17.2 7.9 17.2 21.0 5.3



Appl. Sci. 2021, 11, 6580 4 of 13

X-ray diffraction (XRD, Rigaku, MiniFlex, Japan) was employed for phase analysis.
The microstructure of the samples was observed in back-scattered electron (BSE) mode
using field-emission scanning electron microscopes (FE-SEM, Thermo Fisher, Quanta 200F,
Switzerland). The particle area distributions of the reinforcing particles were analyzed
using image processing software (Image-Pro Plus) using 8 FE-SEM images at 5000× mag-
nification. Element mapping was also measured using an electron probe microanalyzer
(EPMA, Cameca, SX-100, France). Micro-Vickers hardness (Mitutoyo, HM-200, Japan)
was measured by indenting 0.2 kg for 15 s. The hardness of the metal matrix and the
reinforcing particle was analyzed separately with an ultra nano-indentation tester (Anton
Paar, UNHT3, Austria). The test conditions were paused for 10 s at the maximum load of
20 mN, and the loading and unloading rates were performed at 120 mN/min.

3. Results and Discussion

Thermodynamics calculations by the Factsage® software (CRCT group at Ecole Poly-
technique de Montreal, Canada) developed by the CRCT group at Ecole Polytechnique de
Montreal were used to design the reinforcing phase by simulating the reaction of various
alloying elements with the carbon from the binder and powder. The software calculated
the equilibrium phase and thermodynamics parameters for a variety of multi-component,
multi-phase, and reactions. The Gibbs free energy for the formation (∆Gf) in Figure 2 shows
the most stable carbide among the reactions between the metal elements and one mole of
carbon. When using FeCrCoNiAlTiC powder, it was necessary to confirm whether titanium
carbide was a thermodynamically stable carbide in the in situ reaction. The powders were
mechanically alloyed and could be assumed to be completely homogenized. Laser cladding
is a non-equilibrium reaction with very fast temperature changes, which melts the powder
and then solidifies rapidly. Non-equilibrium phases could also be precipitated, but the
most thermodynamically stable phase is preferred. As a result of the calculation, TiC was
found to be the most stable phase among the alloying elements in this powder, followed by
chromium carbide. In Ti-free HEA alloy, the most stable chromium carbide phase except
for TiC is formed [20]. The second stable carbide phase, chromium carbide, is formed when
carbon capture Ti element enough and redundant C remains [21]. Both TiC and Cr23C6
are superior materials that enhance hardness and wear resistance higher than that of a
stainless-steel substrate, but TiC had better wear resistance than chromium carbides [22].
Therefore, the spontaneous formation of titanium carbide instead of chromium carbide by
adding Ti to multi-component alloy powders, such as HEAs, is important for the properties
of the coating layer.

Figure 2. Gibbs free energy for formation of carbide formation reaction between 1 mole of carbon and the metal component
in HEAs powder.
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TiC is formed by self-propagating high-temperature synthesis (SHS) reactions with a
laser heat source [23]. The laser heat source dilutes powder and substrate to form a molten
metal pool. The heat input and the flow of the molten pool affect the thickness of the
coating layer and the distribution of reinforcing particles. The reinforcing particles are
grown or dissolved through interaction with the liquid metal moving with the molten pool
flow, and the final cladding layer is formed with the solidification by cooling. In the case
of gas tungsten arc process, heat transfer occurs due to conduction and convection, and
the molten pool is driven due to the various effects of the electromagnetic force, buoyancy
force, arc drag force, and surface tension [24]. In the arc process, since the reinforcing
particles were not mixed in the depth direction, and the flow at the surface was governed
by the driving forces, it was difficult to distribute the reinforcing particles homogeneously
in the depth direction [8,25]. The laser process had a higher energy density and faster
process than the arc process, so the laser process could be a favorable environment for
transporting and dispersing reinforcing particles in the depth direction.

The coating thickness in Table 2 shows the average value and standard deviation
of a total of 10 values, 5 each for the peak measured at the center of the pass passed by
the laser and the valley where the thinnest coating layer is formed between the passes.
Effective heat input and coating thickness provide useful information about the relationship
between process parameters and clad quality. Effective heat input (Ea) was calculated by
the below equation: Ea = P/VD where P is laser power, V is scan speed of laser, D is laser
spot diameter. Since constants were used except for the laser power, the effective heat input
in this study was proportional to the laser power. The coating layers of 0.6 mm, 0.9 mm,
and 1.8 mm were obtained in EEMMC1.0, EEMMC1.5, and EEMMC2.0, respectively, and
the thickness of the coating layer increased with increasing laser heat input (Figure 3).
The coating thickness with in situ synthesized TiC by GTAC is usually 0.2–0.6 mm, and
interface defects frequently occur [26]. In laser cladding with an in situ reaction, a coating
layer of 0.6–1.8 mm thickness was prepared, which is similar to the thickness of the coating
by laser cladding [12]. When comparing EEMMC1.0 and EEMMC1.5, the coating thickness
increased in proportion to the laser power. However, the coating thickness of EEMMC2.0
increased significantly to 300% compared to that of EEMMC1.0. The higher the laser power,
the greater coating thickness by dilution with the substrate. EEMMC1.0 were observed
agglomeration of reinforcing particles as shown in Figure 3a. EEMMC1.0 is fabricated
under low laser power, where it is difficult to distribute particles evenly. EEMMC1.0 has a
relatively high standard deviation compared to a low coating thickness due to the irregular
development of the coating layer interface and the internal microstructure. As an effective
heat input increased above 50 J/mm2, most agglomerated reinforcing particles seen in
EEMMC1.0 were significantly reduced or disappeared.

Table 2. Cladding conditions and average thickness of the coating layer of the samples.

Sample Name Laser Power (kW) Effective Heat
Input Ea (J/mm2) Coating Thickness (mm)

EEMMC1.0 1.0 33.3 0.6 ± 0.20
EEMMC1.5 1.5 50 0.9 ± 0.26
EEMMC2.0 2.0 66.7 1.8 ± 0.38

Figure 4 shows the XRD results for the phase analysis of the specimens. EEMMC1.0
detected three phases of TiC, gamma phase with a FCC structure, and an alpha phase
with a BCC structure. The carbide formed in the coating layer in this process was TiC,
which was consistent with the predicted stable equilibrium phase by thermodynamic
calculations. The higher the laser output, the more the dilution with the substrate increased.
The substrate AISI 304 stainless steel consisted of Fe-Cr-Ni as the main components and
had a gamma phase. Therefore, the effect of increasing the content of Fe, Cr, and Ni should
be investigated. In Fe-TiC alloy, secondary phases, such as Fe2Ti, are generated [27]. When
Ni is added, Ti2Ni, NiTi, and Ni3Ti are developed [28,29], and Cr2Ti is detected in Cr-Ti [30].



Appl. Sci. 2021, 11, 6580 6 of 13

Because the metal matrix has a high configurational entropy and a fast cooling rate from the
laser process, secondary phases could be suppressed. Therefore, no secondary phase picks
were detected in XRD other than the main phases of gamma and alpha. The HEAs powder
used in this study is a type 2, which has BCC and FCC phases, with the addition of high
atomic radius elements, such as Al and Ti, to a type 1 (only FCC) [31]. In EEMMC1.5, the
TiC peak as a reinforcing phase exists, and alpha and gamma phases are detected as a metal
matrix phase. In EEMMC2.0, the TiC and alpha-related peaks almost disappeared, and
only the gamma-related peaks developed. This is because the dilution with the substrate
increased as the heat input increased.

Figure 3. Cross-section image of coating layer (a) EEMMC1.0, (b) EEMMC1.5, and (c) EEMMC2.0. The squares represent the
locations where the magnified microstructure images were taken, and the dotted lines are hardness measurement positions,
which are employed in the following figures.

Figure 4. Phase analysis result by X-ray diffraction (XRD) results for the coating layer.

The cladding layers, EEMMC1.0, EEMMC1.5, and EEMMC2.0, were divided into
three parts at 0.2-mm, 0.4-mm, and 0.8-mm intervals, respectively, considering the coating
layer thickness in the depth direction. The top part (T) close to the surface, the central
part (C), and the bottom part (B) close to the substrate were divided. The sample name
with the position was indicated by appending T, C, and B after the sample name. For
example, the top part of EEMMC1.0 was labeled as EEMMC1.0-T. The microstructure of
each section was analyzed by observing the locations marked by boxes in Figure 3. As a
result of EDS analysis, the particles with the gray darker than the metal matrix are TiC, and
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the black particles are Al2O3 in BSE mode images [7]. Figure 5 shows the microstructure
typically shown in the coating layer under the conditions of Figure 3a, and Figure 5a,c are
the microstructures from the top and bottom of the coating layer, respectively. As shown in
Figure 5a,c, the metal matrix region had a black particle fraction of 14%. The morphology
of the particles showed a dendritic structure. Figure 5b shows the agglomeration regions
composed of sub-micron-sized TiC and Al2O3.

Figure 5. Microstructure at the (a) top part, (b) center part, and (c) bottom part of EEMMC1.0.

EEMMC1.5 has a thicker coating layer with more heat input than EEMMC1.0. The
microstructure of EEMMC1.5 is shown in Figure 6 by dividing the coating layer into
three parts in the depth direction, as shown in Figure 3, and the particle distribution
was analyzed as shown in Figure 7. Most of the aggregated area of reinforcing particles
seen in EEMMC1.0 disappeared, and the particles were distributed relatively uniformly.
The particles formed in the EEMMC1.5 sample have a blocky morphology, indicated by
yellow arrows. The blocky particles are a primary TiC formed at high temperature and
have an isotropic polygonal shape. These particles are distinguished from secondary TiC
particles with needle-like or plate-like shape located at the grain boundary [32]. Blocky
particles are distinctly distributed in EEMMC1.5-T. EEMMC1.5-C had several dendritic
particles with short secondary arms, and EEMMC1.5-B consisted of blocky particles and
dendritic particles where secondary arms were highly developed. Dendritic particles are
indicated by white arrows. The particle distribution tends to widen toward the bottom
part of the coating layer due to the dendritic growth and dissolution of the particles
(Figure 6). Figure 7 shows the area distribution of particles by position in the coating
layer. EEMMC1.5-T had the largest number of particles with an area of 2–3 µm2 and had a
unimodal distribution. Since EEMMC1.5-C had the largest number of particles with an
area of 4–5 µm2, the particles grew more rapidly than the top part. In addition, the particle
distribution of the particles had a bimodal distribution, which increased the proportion of
small particles less than 1 µm2 and also increased particles with relatively large areas of
more than 15 µm2. EEMMC1.5-B exhibited the highest fraction of small particles of less
than 1 µm2, and particles as large as 40 µm2 were also found. The lower the cladding layer,
the faster the solidification rate and the broader the particle distribution.

EEMMC1.5-T showed a relatively uniform distribution and morphology of the par-
ticles than the other parts. The Marangoni convection created an outward flow moving
back and forth at the top tail [33]. This flow helped to form homogeneous reinforcing
particles on the top of the cladding layer. On the other hand, as the depth went down at the
cladding layer, the coating had a relatively high cooling rate and solidified rapidly. Thus,
EEMMC1.5-B had larger standard variations in particle size and developed a dendritic
microstructure. The microstructure of EEMMC2.0 is shown in Figure 8 by dividing the
coating layer into three parts in the depth direction, as shown in Figure 3, and the particle
distribution was analyzed, as shown in Figure 9. The microstructure has fine dendritic
and blocky particles. As the cladding layer lowered, like EEMMC2.0-B, the fraction of the
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particles less than 1 µm2 increased (Figure 9). EEMMC1.5-B had a larger particle deviation
than the top part. On the other hand, EEMMC2.0-B had a narrower deviation. The high
heat input of EEMMC2.0 dissolved the particles, and the powder at the top diluted with
the substrate and formed a coating layer. Thus, as the particles descended to the bottom of
the coating layer, the particle size became smaller or completely dissolved.

Figure 6. Microstructure of (a) EEMMC1.5-T, (b) EEMMC1.5-C, and (c) EEMMC1.5-B.

Figure 7. Area distribution of reinforcing particles in EEMMC1.5-T, EEMMC1.5-C, and EEMMC1.5-B.

Figure 8. Microstructure of (a) EEMMC2.0-T, (b) EEMMC2.0-C, and (c) EEMMC2.0-B.
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Figure 9. Area distribution of reinforcing particles in EEMMC2.0-T, EEMMC2.0-C, and EEMMC2.0-B.

EEMMC1.5-T and EEMMC2.0-T were analyzed by EPMA (Figure 10). In EEMMC1.5-T,
the particles consisted of Ti, C, and O, and the metal matrix had relatively high Al, Cr,
Co, Fe, and Ni contents. Most of the EEMMC2.0-T showed similar distributions with
EEMMC1.5-T, but the cobalt distribution was reversed, which is indicated by white ar-
rows. In EEMMC2.0-T, there was more cobalt content in the reinforcing particles than in
the matrix. The high heat input in EEMMC2.0-T dissolved the reinforcing particles and
contributed to the diffusion of cobalt from the matrix to the reinforcing particles. The
block-shaped particle of EEMMC1.5-T showed a distinct interface, whereas the particle of
EEMMC2.0-T had a smooth interface due to diffusion. EDS analysis was measured to ana-
lyze the composition of the particles and the metal matrix by separating the particles (P) and
the matrix (M) in the microstructure of each top part of the samples. M and P were added
after the existing names, and points were used as shown in Table 3. Block-shaped particles
had a very high Ti content, close to 90% in the EDS analysis (Table 3), whereas particles
with dendritic morphology of EEMMC1.0-T-P and dissolved particles of EEMMC2.0-T-P
had a relatively low Ti content.

Table 4 summarizes the morphology of reinforcing particles for each sample and the
main mechanisms for manufacturing them. EEMMC1.0 formed a thin and inhomogeneous
cladding layer due to the weak laser energy. The particles in EEMMC1.0 easily coalesce
with each other, and dendritic growth occurs. EEMMC1.5-T kept the reinforcing particles
homogeneously with blocky morphology and unimodal distribution. In EEMMC1.5-C
and EEMMC1.5-B, small particles dissolve as the particles descended, and large particles
develop dendritic growths, making the particle distribution wider than at the top part. In
the case of EEMMC2.0, the reinforcing particles were diluted with the substrate material
and dissolved or disappeared completely, forming a sharp distribution. The Ti content of
EEMMC2.0-T-P in the reinforcing particles decreases compared to EEMMC1.5-T-P.

Table 3. EDS point analysis data (average of 5 positions).

Sample Al (at%) Ti (at%) Cr (at%) Fe (at%) Co (at%) Ni (at%)

EEMMC1.0-T-M 5.3 4.8 26.2 50.7 3.3 9.7
EEMMC1.0-T-P 3.4 57.0 9.5 22.6 3.1 4.5
EEMMC1.5-T-M 13.1 1.4 24.3 39.3 7.5 14.3
EEMMC1.5-T-P 1.2 89.8 4.5 2.7 0.8 1.1
EEMMC2.0-T-M 5.8 2.7 20.0 57.1 3.1 11.3
EEMMC2.0-T-P 3.1 51.9 9.4 25.4 4.9 5.3
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Figure 10. EPMA results for (a) EEMMC1.5-T and (b) EEMMC2.0-T.

Table 4. Morphology, fraction, and formation mechanism of reinforcing particles.

Sample Particle Morphology Distribution
Characteristics

Dominant
Mechanism

Particle
Fraction

EEMMC1.0-T, C, B Blocky and dendritic and
agglomerated spherical 1 Inhomogeneous Growth and

coalescence 14 & 80 1

EEMMC1.5-T Blocky Unimodal Equilibrium
30EEMMC1.5-C, B Blocky and dendritic Bimodal Growth and

dissolution

EEMMC2.0-T, C, B Blocky and dendritic Sharp unimodal Dissolution 12
1 The characteristics of the area where the reinforcing particles are agglomerated, as shown in Figure 5b.

The micro-hardness was measured for each sample shown in Figure 11. All samples
were measured along the arrow lines in Figure 3, and EEMMC1.0 was measured at two
lines due to its inhomogeneous microstructure. In EEMMC1.0, the maximum hardness of
line B where spherical reinforcing particles were aggregated, was 1000–1100 HV, and the
hardness of line A was found to be 400 HV. EEMMC1.5 exhibited a 0.9-mm-thick coating
layer and a high hardness in the range of 700–900 HV, with values up to 900 HV near the
surface. EEMMC2.0 showed a low hardness value of 300–350 HV due to the small particle
fraction and the development of a gamma phase with a FCC structure.

Table 5 summarizes the mechanical properties of the coatings measured by a nano-
indentation test. The reinforcing particles of EEMMC2.0-T were too small to measure only
the reinforcing particles with a nano-indenter. Since the hardness values between particles
and matrix were measured similarly, EEMMC2.0-T-M and EEMMC2.0-T-P were averaged
together. From the loading/unloading curves, the micro-hardness (H) and the Young’s
modulus (E) were calculated, and the elastic recovery (Es) could be obtained from the
area of the graph (Figure 12). Es can be obtained through the value of S2/(S1+S2), S1 is
the area inside A-B-C, and S2 is the area inside B-C-D [34]. Thus, Es means the ratio of
elastic strain recovered during unloading to the total energy consumed in plasticity and
elasticity during loading, which means resistance to plastic deformation. H/E and H3/E2

are also important values that determine the wear resistance of the coating and resistance
to plastic deformation, respectively [35,36]. Blocky particles of EEMMC1.5-T-P had higher
values of factors, such as H, E, H/E, H3/E2, and Es, than particles of EEMMC1.0-T-P and
EEMMC2.0-T-P. EEMMC1.5-T exhibited a significantly higher hardness than 900 HV, even
with a 30% particle fraction. Therefore, the high hardness characteristics of EEMMC1.5
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were obtained, not only from the influence of the fraction of the particles, but also by the
excellent mechanical properties of the blocky-shaped reinforcing particles themselves.

Figure 11. Micro-Vickers hardness profile measured in-depth direction from the surface of a coating layer.

Table 5. Mechanical properties of the coatings measured using nano-indentation.

Sample H (GPa) E (GPa) H/E H3/E2 (GPa) Es (%)

EEMMC1.0-T-M 7.61 170.1 0.045 0.015 27.6
EEMMC1.0-T-P 13.78 230.6 0.060 0.049 40.4
EEMMC1.5-T-M 9.87 223.6 0.044 0.019 31.3
EEMMC1.5-T-P 17.09 231.6 0.074 0.093 44.1

EEMMC2.0-T-M,P 6.59 164.3 0.040 0.011 23.7
STS316 5.24 161.1 0.032 0.006 18.5

Figure 12. Load–displacement curves from nano-indentation.

4. Conclusions

FeCrCoNiAlTi1.5C1.5 high entropy alloy powder was used to coat a STS304 substrate
with laser cladding. The formation of a TiC phase using a high-temperature process and
high entropy alloy powder containing carbon was predicted and verified via thermody-
namic calculations and phase analysis. Therefore, the laser cladding here is an in situ
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reactive cladding, in which the formation of the cladding layer and the formation of TiC
reinforcing particles are synthesized simultaneously. The coating layer produced in this
study had a thickness of 0.9 mm without severe interface defects, such as pores, cracks, and
delamination. Important factors that determine the size and morphology of the reinforcing
particles were the heat input of the laser and the depth of the cladding layer. EEMMC1.0,
which had a low effective heat input, had a non-uniform coating depth and agglomerated
reinforcing particles. EEMMC2.0, fabricated with an effective heat input of 66.7 J/mm2, had
fine-sized reinforcing particles due to dissolution by the high energy density, increasing
the coating thickness and dilution with the substrate. Under the condition where the disso-
lution of particles was dominant, the closer to the substrate, the smaller the particles were
and the sharper the particle distribution. In EEMMC1.5, manufactured at an effective heat
input of 50 J/mm2, no significant agglomeration or dissolution of the reinforcing particles
was observed. Compared with the top part, the lower part had a broader and bimodal
particle distribution due to the dendrite growth of large particles and the dissolution of
small particles. Blocky-shaped particles of several micrometers are investigated in the
coating layer. The layer exhibited high micro-hardness of 700–900 HV, especially at the top
over 900 HV. As the depth of the coating layer increased, dendritic morphology developed,
and hardness decreased slightly. In the nano-indentation results, the particles with blocky
morphology and the matrix of EEMMC1.5 were 17 GPa and 10 GPa, respectively.
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