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Abstract: Ultrasonic non-destructive testing is an effective means of examining objects without
destroying them. Among such testing, ultrasonic nonlinear evaluation is used to detect micro-
damage, such as corrosion or plastic deformation. In terms of micro-damage evaluation, the data that
comes from amplitude comparison in the frequency domain plays a significant role. Its technique
and parameter are called ultrasonic nonlinear technique and nonlinearity. A certain portion of
nonlinearity comes from the equipment system, while the other portion of nonlinearity comes from
the material. The former is system nonlinearity, while the latter is material nonlinearity. System
nonlinearity interferes with interpretation, because its source is not from the material. In this study, in
order to minimize system effects, a mixing technique is implemented. To use the large area inspection
ability of the guided wave, the main research issue in this paper is focused on the guided wave
mixing technique. Moreover, several bulk wave mixing theory equations become good concepts for
guided wave mixing theoretical study, and the conventional nonlinear technique and guided wave
mixing experimental results are compared in this study to confirm the reliability. This technique can
play an important role in quantitatively discriminating fine damage by minimizing the nonlinearity
of the equipment system.

Keywords: nonlinearity; system nonlinearity; bulk wave mixing; guided wave mixing; dispersion

1. Introduction

Ultrasonic waves and radiation are normally used for non-destructive testing. In the
case of ultrasonic testing, the velocity, time, and distance of ultrasonic waves help the user
to find defects. However, these simple parameters do not satisfy all evidence for evaluating
micro-damage in a material, such as damage from corrosion, plastic deformation, or
microstructure variation. The estimation ability of nonlinear information in the frequency
domain also needs to be improved.

In ultrasonic nonlinear techniques, it is important to measure the second harmonic
component. The ratio between the primary and secondary harmonic wave amplitudes
becomes the nonlinear parameter called nonlinearity. Based on the nonlinearity derived
from the second harmonic component, many research results have been widely studied for
micro-damage assessments [1–3]. Even though nonlinearity indicates good micro-damage
assessment sensitivity, it usually shows relative results. One of the main reasons that it
shows relative results is that the nonlinearity is affected by the experimental setup. A
certain portion of nonlinearity comes from the system, which includes the equipment,
sensors, and cables. As such, nonlinearity influenced by the system acts as an error. This
means that reducing system nonlinearity could increase the accuracy of the results. One of
the few techniques that can reduce system nonlinearity is the wave mixing technique [4].
Currently, many researchers are researching a nonlinear method to measure the third
harmonic ratio, but the third harmonic has a very small relative ratio, so many variables
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exist, and as such it is difficult to apply in practical applications, and theoretical and
experimental verification is being performed [5,6].

There are two reasons why the mixing technique could minimize the system non-
linearity. The first reason is that the key point of the wave mixing technique is that one
mixing wave is generated from two primary waves. In contrast to conventional ultrasonic
nonlinear techniques, the received signal does not come directly from the equipment,
which thus does not influence the mixing signal much. In the words, the mixing technique
has less system nonlinearity [7]. The second reason is that mixing techniques are classi-
fied into two types depending on the frequency, or the sum or difference of the primary
wave frequencies. Theoretically, each primary wave signal produces the same or similar
system nonlinearity. If the mixing signal were to have the difference of the primary wave
frequencies, the system nonlinearity would theoretically be canceled out [7,8].

Mixing technique theory has been studied for a long time, but there are not as many
experimental studies as theoretical studies. Jones et al. [8] and Taylor et al. [9] developed a
theoretical mixing basement. Based on basic equations, wave mixing terms and information
are derived. The major features of its study consider equations to contain linear and
nonlinear information. The main factors include the interaction angle and mixing signal
propagation. Hu, L. et al. [10] numerically analyzed the one-way mixing of S0 and A0
modes using simulation, and Bin, W. et al. [11] detected micro-defects with nonlinear
mixing experiments and simulations in S0 single mode. Croxford et al. [7] measured the
material nonlinearity using a non-collinear mixing technique, conducting experiments on
large and thick specimens. Moreover, Liu et al. [4] theoretically and experimentally studied
a collinear mixing technique. Recently, research to study nonlinearity by constructing
four-wave mixing (FWM) using highly nonlinear fiber (Bi-HNLF) and laser has also been
actively conducted [12,13].

All researchers mentioned in this paper have tried to reduce the system influence
on the results. However, these studies were limited to bulk waves, and guided wave
mixing has not been studied as much, because guided waves have a dispersive characteris-
tic [14–18]. Nonetheless, guided waves are more appropriate than bulk waves for scanning
large areas such as plates and long pipes. In addition, previous researchers have conducted
guided wave mixing studies in a single mode [19–22]. Representatively, Adachi, T. et al. [23]
numerically and experimentally shows the non-collinear mixing of low-order asymmetric
Rayleigh-Lamb waves in the SH0 single mode. Guided waves have various modes, and
the experimental results vary greatly depending on the mode selection and the angle of
incidence. Therefore, the guided wave mixing technique deserves study [24–29].

In this study, guided wave mixing was theoretically analyzed and experimentally
verified. To use bulk wave mixing theory and overcome the difficulty of interpreting
guided waves with different modes and frequencies, several assumptions are applied.
Several assumptions help guided wave displacement components (in-plane and out-of-
plane displacement) be treated as longitudinal and transverse waves. The guided wave
mixing and the conventional ultrasonic nonlinear technique are compared by using the
same specimen. The significant contents in this study are as follows:

1. Based on bulk wave mixing theory and several assumptions, guided wave mixing
technique is studied theoretically.

2. Based on theoretical study, an experimental test is conducted. Both the available
mixing condition and non-available mixing condition are experimented with.

3. As the distance is changed, nonlinearity is measured by the conventional technique
and the guided wave mixing technique for comparison.

2. Theory
2.1. Guided Wave Mixing Theory

A bulk wave consists of a longitudinal wave and transverse wave, and has the same
velocity, regardless of frequency. The characteristics of bulk waves make studying and
applying them easy. Guided wave study is more difficult to use for experiments. The
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most important feature of a guided wave is dispersion. The wave velocity has a variety of
value ranges that depend on the mode and frequency, and the specimen depth makes the
magnitude of displacement different.

Guided wave displacement consists of in-plane displacement (u1), and out-of-plane
displacement (u3). In-plane displacement takes place horizontal to the propagation direc-
tion, while out-of-plane displacement takes place vertical to that direction. Figure 1 shows
the in-plane and out-of-plane placement coordinate diagram. In the figure, x and t denote
the propagation direction and thickness, respectively. These components are expressed in
Equations (1) and (2) [30,31]. These indicate scalar potential (ϕ) and vector potential (ψ),
as in Equation (3). This is called Helmholtz decomposition. Equations (1) and (2) can be
simplified into Equations (4) and (5):

u1 =

(
∂φ

∂x1
+

∂ϕ2

∂x3

)
=

(
ikΦ(x3) +

∂

∂x3
(Ψ(x3))

)
exp(i(kx1 −ωt)) (1)

u3 =

(
∂φ

∂x3
− ∂ϕ2

∂x1

)
=

(
∂

∂x3
(Φ(x3))− ikΨ(x3)

)
exp(i(kx1 −ωt)) (2)

u = ∇φ +∇× ϕ (3)

u(1)
1 = A1 exp i(k1x−ω1t) (4)

u(1)
3 = A2 exp i(k3x−ω1t) (5)

where, k and ω are the wave vector and frequency, respectively, and A shows the positive
wave amplitude.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 16 
 

2. Theory 
2.1. Guided Wave Mixing Theory 

A bulk wave consists of a longitudinal wave and transverse wave, and has the same 
velocity, regardless of frequency. The characteristics of bulk waves make studying and 
applying them easy. Guided wave study is more difficult to use for experiments. The most 
important feature of a guided wave is dispersion. The wave velocity has a variety of value 
ranges that depend on the mode and frequency, and the specimen depth makes the 
magnitude of displacement different. 

Guided wave displacement consists of in-plane displacement (𝑢 ), and out-of-plane 
displacement  (𝑢 ) . In-plane displacement takes place horizontal to the propagation 
direction, while out-of-plane displacement takes place vertical to that direction. Figure 1 
shows the in-plane and out-of-plane placement coordinate diagram. In the figure, 𝑥 and 𝑡 denote the propagation direction and thickness, respectively. These components are 
expressed in Equations (1) and (2) [30,31]. These indicate scalar potential (𝜑) and vector 
potential (ψ), as in Equation (3). This is called Helmholtz decomposition. Equations (1) 
and (2) can be simplified into Equations (4) and (5): 

( ) ( )( ) ( )( )2
1 3 3 1

1 3 3

expu ik x x i kx t
x x x

ϕφ ω
   ∂∂ ∂= + = Φ + Ψ −   ∂ ∂ ∂     

(1) 

( )( ) ( ) ( )( )2
3 3 3 1

3 1 3

expu x ik x i kx t
x x x

ϕφ ω
   ∂∂ ∂= − = Φ − Ψ −   ∂ ∂ ∂     

(2) 

u φ ϕ= ∇ + ∇ ×  (3) 

( ) ( )1
1 1 1 1expu A i k x tω= −  (4) 

( ) ( )1
3 2 3 1expu A i k x tω= −  (5) 

where, 𝑘  and 𝜔  are the wave vector and frequency, respectively, and 𝐴  shows the 
positive wave amplitude. 

 
Figure 1. In-plane (𝑢 ) and out-of-plane (𝑢 ) displacement coordinate diagram. 

In the bulk wave, the longitudinal component is horizontal to the propagation 
direction, while the transverse component is vertical to the propagation direction. This 
concept becomes equivalent to the in-plane and out-of-plane displacement of the guided 
wave. These displacement components cannot be separated out in one guided wave 
signal, but the ratio of the two components changes with the mode and frequency. 
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Figure 1. In-plane (u1) and out-of-plane (u3) displacement coordinate diagram.

In the bulk wave, the longitudinal component is horizontal to the propagation direc-
tion, while the transverse component is vertical to the propagation direction. This concept
becomes equivalent to the in-plane and out-of-plane displacement of the guided wave.
These displacement components cannot be separated out in one guided wave signal, but
the ratio of the two components changes with the mode and frequency. Analyzing wave
structure helps to determine the component ratio.

utt − c2
l uaa =

(
3c2

l + C111/ρ
)

uauaa +
(

c2
l + C166/ρ

)
(vavaa + wawaa) (6)

vtt − c2
s vaa =

(
c2

l + C166/ρ
)
(uavaa + vauaa) (7)

wtt − c2
s waa =

(
c2

l + C166/ρ
)
(uawaa + wauaa) (8)

u(1) = A sin(kl x−ωlt) (9)

v(1) = B sin(ksx + ωst) (10)
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where, C111 and C116 indicate the third order elastic moduli, and cl and cs indicate the
longitudinal and transverse wave’s velocities respectively. ρ denotes the constant density.
Subscripts a and t mean the spatial coordinate and time, and ‘(1)’ indicates primary waves.

Some conditions are assumed to use some parts of bulk wave mixing theory in
guided wave mixing theory. If the in-plane displacement is greater than the out-of-plane
displacement, the guided wave signal is treated as a longitudinal wave. If the out-of-plane
displacement is greater, the signal is treated as a transverse wave in this paper.

Figure 2 illustrates the guided wave mixing concept. The case in which one component
has dominant in-plane displacement, and another component has dominant out-of-plane
displacement, is shown in the plate. Each signal is defined by Equations (9) and (10). These
are input primary waves in this mixing theory study. Because the directions show opposite,
the marks inside of the sine functions in Equations (9) and (10) are different. Moreover,
Equations (6)–(8) express nonlinear wave equations (Goldberg, 1961) [32]. These nonlinear
wave equations represent wave behavior in nonlinear conditions. The nonlinearity (βs) is
defined as βs = −

(
c2

l + C166/ρ
)
. Based on these derived equations and two input primary

waves (Equations (9) and (10)), mixing wave components can be derived.
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Equation (11) can be derived by substituting two primary waves based on
Equations (9) and (10) in Equation (7). After a few rearrangement steps, Equation (12)
is obtained. Here, there are two out-of-plane dominant mixing waves. The frequency of
the first one is the difference of the two primary wave frequencies (ω1 −ω2), while that
of the second one is the sum (ω1 + ω2). The point of interest is the difference-frequency
mixing signal for dominant out-of-plane displacement, so the sum-frequency component
is ignored.

v(2)tt − c2
s v(2)aa = βs(ABklk2

s cos(kl x−ωlt) sin(ksx + ωst) + ABk2
l ks sin(kl x−ωlt) cos(ksx + ωst)) (11)

v(2)tt − c2
s v(2)aa = βs(

1
2

ABklks(kl + ks) sin((kl + ks)x− (ω1 −ωs)t) +
1
2

ABklks(kl − ks) sin((kl − ks)x− (ωl + ωs)t)) (12)

After perturbation method processes and several steps, the final form of the mixing
component is expressed as Equation (13) [33,34]. It contains the difference frequency of
primary waves. One in-plane dominant wave is mixed with the other one out-of-plane
dominant wave to generate an out-of-plane dominant mixing signal with the difference of
the primary waves’ frequencies: u(ω1) + v(ω2)→ v(ω1 −ω2). Whether the propagation
direction is the same as that of a longitudinal component defined can be determined by
checking the mark in the sine function of Equation (13). Figure 3 explains this.
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Equation (14) shows the amplitude term of a mixing signal (Equation (13)). Even
though the concept of the mixing technique is similar to second harmonic generation,
experimental signal detection is much more difficult. A few considerations are therefore
needed to detect a mixing signal.

v(2) = C sin((kl + ks)x− (ωl −ωs)t) (13)

C =
1
2

βs AB
klks(kl + ks)

−(ωl −ωs)
2 + c2

s (kl + ks)
2 (14)

∴
ωs

ωl
=

c1 − c2

2c1
=

cl − cs

2cl
(15)
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The mixing signal amplitude (Equation (14)) is a function of the primary wave fre-
quencies. Additionally, when the denominator becomes zero, the value becomes infinite.
Based on these concepts, the primary wave frequencies are decided. Equation (15) de-
notes the frequency ratio for the theoretical maximum amplitude. If a specimen is set,
the longitudinal and transverse wave velocities are constants, because longitudinal and
transverse wave velocities are determined by the material property. Therefore, their ratio is
also constant.

For an aluminum specimen (Al1050), the longitudinal and transverse wave velocities
are (6.36 and 3.01) mm/µs, respectively. The frequency ratio that results in the maximum
mixing wave amplitude is ωs/ωl= 0.263, which is simplified as: u(ω1) + v(0.263ω1)→
v(0.737ω1) .

2.2. Phase Matching Mode Theory

The phase matching mode technique is normally used for measuring guided wave
nonlinearity in a plate. The most important phenomenon of nonlinearity is the second
harmonic wave. Generally, its signal has double the frequency of the primary wave. In a
bulk wave, the primary wave velocity is the same as the second harmonic wave velocity.
Therefore, the two components arrive at the same time, so measuring the bulk wave
nonlinearity becomes simple. However, in a guided wave, the two components have
different velocities because of the dispersion characteristic. This makes studying nonlinear
guided waves difficult. Because the arrival times of the two components are different,
signal reception at the same position is almost impossible. However, fortunately there are
a few mode cases where the primary and second harmonic wave velocities are equal. This
combined mode and frequency is called the phase matching mode [35]. Based on the phase
matching mode, nonlinearity measurement could be conducted in a plate or pipe using
guided waves.
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Equations (16) and (17) shows the symmetric mode equation and double frequency
harmonic symmetric mode equation, respectively. Equation (17) represents the second
harmonic component. k and h mean the wave number and half of plate thickness respec-
tively. In this study, only the symmetric mode is considered for the phase matching mode
experiment. Here, p and q are given by p2 = (ω/cl)

2− k2 and q2 = (ω/cs)
2− k2. Figure 4a

shows the phase velocity dispersion curves, while Figure 4b shows the group velocity
dispersion curve based on Equations (16) and (17) for aluminum (Al 1050):

tan(qh)
tan(ph)

= − 4k2 pq

(k2 − q2)2 (16)

tan(2qh)
tan(2ph)

= − 4k2 pq

(k2 − q2)2 (17)
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One example of phase matching mode is the component with 3.4 MHz frequency
and S1 mode, and the second harmonic wave with 6.8 MHz frequency and S2 mode.
Both frequency components are the intersection point (black circle) of each dashed line in
Figure 4a,b. These two components have the same phase velocity and group velocity. The
phase matching mode concept was studied by Deng et al. [35]. Experimental application of
the phase matching mode was studied by Li et al. [36].

3. Experimental Setup
3.1. Experimental Setup for Guided Wave Mixing Generation

A guided wave mixing signal was generated using an aluminum specimen (Al 1050).
The specimen thickness is 1 mm. The main purpose of this experiment is to generate an
out-of-plane dominant mixing signal from one in-plane dominant signal and one out-of-
plane dominant signal. Table 1 shows the primary wave frequencies and modes that are
decided based on Equation (18). The primary waves consist of an in-plane-dominant wave
(7.83 MHz, S2) and out-of-plane dominant wave (2.06 MHz, S0). In Tables 1 and 2, in
order to express the relative magnitude between in-plane and out-of-plane displacement,
alphabet letters a, b, c, d are used. Without this object, a, b, c, d do not have any other means.

u(ω1) + v(0.263ω1) = v(0.737ω1)
u(7.83 MHz) + v(2.06 MHz)→ v(5.77 MHz)

(18)
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Table 1. Primary wave information.

Frequency 7.83 MHz 2.06 MHz
Mode S2 S0

|u3/u1|, Dispersion ratio 0.4446 9.1419
cp[mm/µs], Phase velocity 5.8072 4.3877
cg[mm/µs], Group Velocity 3.3344 2.3600
u1, In-plane displacement 45.7428 a 5.0964 b

u3, Out-plane displacement 20.3373 a 46.5905 b

Table 2. Information for the two types of modes at 5.77 MHz.

Frequency 5.77 MHz 5.77 MHz
Mode S1 A1

|u3/u1|, Dispersion ratio 2.8279 2.3929
cp[mm/µs], Phase velocity 4.7282 3.4265
cg[mm/µs], Group Velocity 2.3490 2.4114
u1, In-plane displacement 61.7937 c 295.5737 c

u3, Out-plane displacement 174.7443 d 707.2642 d

In the dispersion curve, several modes exist at 5.77 MHz that are mixing waves.
However, there are only two out-of-plane dominant modes: S1 and A1 (Table 2). Both
mixing signals have the possibility of becoming wave mixing signals. Figure 5a,b show
the dispersion curves with the primary waves (Red diamond) and mixing waves (Black
square). Figure 6 shows the basic sensor arrangement. To mix the two primary waves, each
sensor distance is set differently. The quantity b indicates the propagation distance of the
mixing signal from the mixing point. The experimental setup is configured as shown in
Figure 7. The pulser and receiver use RITEC co.’s RAM-5000 and generate a sine wave.
Pulser #1 and #2 are used with amplifiers installed, and the received signal can be verified
with an oscilloscope. RAM-5000 has two pulsers and two receivers and is actively used in
ultrasonic mixing experiments. Each sensor was tested using an Olympus’s sensor.
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The mixing signal propagation direction was calculated for the two possible modes.
Figure 8 shows four experimental setups with different modes and propagation direc-
tions. The distances of the sender and receiver sensors are defined as a = 100 mm and
|b| = 20 mm.

1 : u(6.83 MHz) + v(2.06 MHz)→ v(4.77 MHz)
2 : u(7.83 MHz) + v(2.06 MHz)→ v(5.77 MHz)
3 : u(8.83 MHz) + v(2.06 MHz)→ v(6.77 MHz)

(19)
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Equation (19) represents the frequency combination for the experiment. The second
part of Equation (19) has exactly the same equation as Equation (18), and maximizes
the mixing signal amplitude. The first and third frequency combinations have different
calculated frequency ratios. These two ratios were implemented to find whether a mixing
signal is detected at only the calculated frequency ratio. The second frequency setup is
applied to the four experimental setups with different modes and directions. The first
and third frequency combinations of Equation (19) are only experimented with when the
mixing signal appears in the second frequency combination of Equation (19).

To check if primary waves are generated with a determined mode and frequency, each
signal needs to be analyzed individually. Pulse and echo experiments are performed at
a 100 mm total distance on plate. The arrival times of primary waves u(7.83 MHz) and
v(2.06 MHz) are (39.99 and 52.37) µs, respectively. Figures 9 and 10 show the analysis
results, which verify that each primary wave is generated properly.
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Figure 10. Wave velocity and frequency analysis for 2.06 MHz (S0 mode).

The mixing signal is represented by four FFT functions as shown in Figure 11, and the
result for number 4 in Table 3 is shown by removing the sum of a and c from b. Figure 12
shows the frequency analysis for the four experimental setups and with different mode and
direction. These results show that the mixing signal is only detected in the setup with A1
mode and the forward direction (Figure 12c). Figure 13a,b are the results for the first and
third frequency setup of Equation (19) with A1 mode and the forward direction. In both
figures, no mixing signal is detected. This means that a mixing signal is only generated at
the calculated frequency ratio (Equation (18)) that maximizes the mixing amplitude.
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Table 3. Data used for analysis, u(7.83 MHz) + v(2.06 MHz)→ v(5.77 MHz ).

No. Type of Data Explanation Remarks

1 2.06 MHz Only 2.06 MHz is generated Experimental result

2 5.77 MHz Both (2.06 and 7.38) MHz are
generated at the same time Experimental result

3 7.83 MHz Only 7.83 MHz is generated Experimental result

4 5.77 MHz No.2 (−) (No.1 + No.3) Signal processing result
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3.2. Standard for Guided Wave Mixing Signal Detection

It is necessary to give standards for guided wave mixing signal detection, and to
determine whether a signal is a mixing signal. The frequency of the two primary waves
and mixing wave is set by Equations (15) and (18). Table 3 shows the signal data used for
analysis to determine standards for detecting a mixing signal. Primary waves are generated
individually using No. 1 and 3 in Table 3. Primary waves are generated together using
No. 2 in the table. These three sets of data are sufficient for analysis. No. 4 is provided for
when the sum of Nos. 1 and 3 is removed from No. 2 for signal processing.

A guided wave mixing single is detected when the following standards are met: Data
types No. 2 and 4 have a mixing frequency component (5.77 MHz) in the frequency domain.

The mixing frequency component of No. 2 has much greater amplitude than the other
data types in the frequency domain.

4. Results
4.1. Experimental Result of Guided Wave Mixing Signal Generation

A mixing signal appears at S1 mode, and the forward direction in the theoretical
analysis, but not in the experiment. This result could be interpreted based on the phase
velocity. The wedge angle can be determined from the phase velocity. For S1 and A1
modes, the phase velocities of the mixing wave components at 5.77 MHz are (4.7282 and
3.3465) mm/µs, respectively. The two primary wave phase velocities are (5.8072 and
4.3877) mm/µs, respectively. The S1 mode mixing signal phase velocity is more akin to
the primary wave phase velocities than that of the A1 mode. This means that the wedge
angle is very similar. In other words, the sensor and wedge receive both the mixing signal
and primary waves in the mixing generation experiment with S1 mode. Its situation
interrupts frequency analysis. In contrast, the sensor and wedge receive only the mixing
signal relatively in the mixing generation experiment with A1 mode, compared to that
with S1 mode. Therefore, A1 mode is better for detecting a mixing wave. In mixing signal
generation with A1 mode and the forward direction, only a mixing component is detected.

4.2. Comparison of Guided Wave Mixing Technique and Phase Matching Mode Experimental
Setup and Results

To examine the feasibility of the guided wave mixing technique, the results were
compared with phase matching mode results for the same specimen. Figure 14a,b show the
experimental diagrams for the phase matching mode technique and guided wave mixing
technique. b means the mixing wave propagation distance (the scan range). As the distance
is changed, nonlinearity is also measured (a = 125 mm, b = 50 mm, 55 mm, · · · , 85 mm).
Tables 4 and 5 give information about the experimental setup. Even though the two
experimental setups are based on different mode and frequency, it is worthwhile to compare
the results, because the data type that is used for study is not absolute data, but relative
data (nonlinearity variation). Through nonlinearity variation, sensitivity information
is estimated.

Table 4. Experimental conditions for phase matching mode technique.

Frequency Type Frequency Wedge Angle

Pulser 3.5 MHz ω1 = 3.41 MHz 25◦

Receiver 7.5 MHz ω2 = 6.82 MHz 25◦

Table 5. Experimental conditions for guided wave mixing technique.

Frequency Type Frequency Wedge Angle

Pulser 10 MHz
2.25 MHz

ω1 = 7.83 MHz
ω2 = 2.06 MHz

25◦

37◦

Receiver 7.5 MHz ω1 −ω2 = 5.77 MHz 52◦
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Figure 15 shows the nonlinearity variation as the receiver distance (b) is increased.
Both graphs show the nonlinearity increment. The same tendencies are observed for the
different techniques. To compare the degree of variation and sensitivity, a graph with
the same vertical axis range of the two graphs is inserted in Figure 15a. The results for
the guided wave mixing technique represent a big nonlinearity variation difference. This
means that the technique is more appropriate for evaluating nonlinearity variation than
the phase matching mode technique. The reasons for the good nonlinear sensitivity are
as follows:
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A mixing signal is not generated directly from the equipment, but is instead newly
generated and mixed in the specimen by two primary waves. Therefore, it has less influence
from the system. This means the mixing signal contains reduced system nonlinearity.
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In the case of the difference frequency mixing component, the system nonlinearity
commonly included in the primary waves is canceled out, so the system nonlinearity
is reduced.

5. Conclusions

The main purpose of this study is the theoretical and experimental verification of
a guided wave mixing technique. The biggest advantage of the mixing technique is the
reduction of system nonlinearity. Because the system nonlinearity is not what a user wants,
it interrupts the evaluation. We can expect clear nonlinearity variation if the measured
nonlinearity contains less system nonlinearity. A part of bulk wave mixing theory was
applied for simple or assumed guided wave signals. In order to simplify the guided wave
mixing theory study, wave structure was considered. In-plane and out-of-plane dominant
displacements for each guided wave were considered as longitudinal and transverse waves
in a bulk wave.

It was theoretically and experimentally verified that a certain frequency ratio must
be considered for mixing. The guided wave mixing result showed the same tendency
as the phase matching mode result, but the guided wave mixing technique had better
sensitivity for nonlinear variation, because it has less system nonlinearity. Because of the
experimental difficulty, the experimental result contains a large error, so repeated and
accurate experiments are necessary. Moreover, nonlinearity variation was only evaluated
according to distance. For field applications, experiments with micro-damage, such as that
from corrosion, are essential. The significant results in this study are as follows:

In this study, guided wave mixing equations and terms such as frequency ratio and
mode are derived, and calculated successfully.

The experimental results and the theoretical expectation matched well. The mixing
signal only detected the calculated frequency ratio condition.

Comparison of the results between the conventional technique and guided wave mix-
ing technique indicates that the guided wave mixing technique has less system nonlinearity
and more sensitive nonlinear variation.

The final result of this study is that the guided wave mixing technique is the proper
method for nonlinear evaluation, compared with the conventional technique, because less
system nonlinearity is included.

The nonlinear ultrasonic technique used in this study is used by many researchers as
an innovative method that can detect micro-defects, but it was used without considering
the nonlinearity of the equipment. Analyzing only the nonlinearity of the material without
considering the nonlinearity of the system cannot guarantee the reliability of the results.
The guided ultrasonic mixing technique that can reduce system nonlinearity is expected to
decrease experimental errors and analyze micro-defects in materials more quantitatively.
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