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L’udovít Kovanič 1,* , Peter Blistan 1 , Martin Štroner 2 , Rudolf Urban 2 and Monika Blistanova 3

����������
�������
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Abstract: The study presented in this paper analyses the results of measurements and data processing
for documentation and quantification of material in heaps in large areas, where UAVs may no longer
be effective due to a large range. Two test heaps were selected from a whole area, where the aim was
to confirm the suitability of using the method of digital aerial photogrammetry by manned (crewed)
aerial vehicle. For comparison, a commonly used GNSS RTK method was also used. Terrestrial
laser scanning was chosen as the control reference method. TLS measurement is a trusted method
with high accuracy. The methods were compared with each other through the quality of the mesh,
analysis of the cross-sections, and comparison of the volumes of heaps. As a result, the determination
of heap volumes and documentation using digital aerial photogrammetry can be confirmed as an
appropriate, efficient, fast, and accurate method. The difference in the detected volume was less than
0.1%, the mean difference of the meshes was less than 0.01 m, and the standard deviation was less
than 0.05 m.

Keywords: aerial photogrammetry; SfM; TLS; point cloud; TIN model; mesh; volume analysis;
cross-section analysis

1. Introduction

In industrial plants, such as mining and metallurgical plants, there is a frequent
requirement for the periodical quantification of the amount of materials stored in the input
or waste dumps. The stored material usually consists of a loose consistency gravel, sand,
iron ore pellets, steelmaking slag, gangue, fly ash, etc. Given the logistics of the production
process, the materials entering into production usually have a heap shape. Materials of
different kinds or fractions are stored in separate heaps. Material loading and removal
occur in small heaps realized by tracked or wheeled loaders; at larger scale heaps, a belt or
giant gantry machines are preferably used.

A required quantification parameter is the volume of the deposited material in the
desired moment. The methodology of the work consists of geodetic measurements in
the field, data processing, and calculation. When choosing a surveying method, it is
essential to consider the specific size and shape of the measured object, its accessibility in
terms of personnel safety while surveying, and the time period in which it is necessary to
make measurements in the field [1]. An important aspect is the required accuracy of the
determined volume, which depends mainly on the precision and detail of the resultant 3D
model, i.e., primarily the amount and precision of measured points [2]. Several geodetic
methods can be used for this purpose. Global navigation satellite systems (GNSS) and the
real-time kinematics method (RTK) are suitable for such works.
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The tachymetric measurement on the principle of the spatial polar method using
electronic total station (TS) can be considered as a base method for geodetic spatial data
collection [3]. The non-prism distance measurement use is suitable for detailed point
measurements of minimal personnel movement on the heap body and accelerating field-
works [3]. The motorized total stations with automatic scanning option and mainly terres-
trial laser scanners (TLS) are the current trend of spatial polar method use in surveying
instruments [4].

These surveying technologies are most commonly used for direct spatial data collec-
tion. Their advantage is simplicity with appropriate accuracy; the disadvantage is mainly
the long time period required to carry out measurements in the field, often in dangerous
conditions on the bulk material.

The TLS measurement method has been used as a validated and reference method for
comparing the results of several tested measurement methods and for evaluating surfaces
in high-altitude environments [5,6].

Gallay et al. [7], Hofierka et al. [8], and Pukanská et al. [9] also used TLS measurements
in the mapping of underground and surface karst areas. Erdélyi et al. [10] used TLS
measurements to determine the deformation of a bridge and to document the facade
elements of a high-rise building. They used a high scan point density of 3 mm to capture
small-scale details on the measured object. In [11], the TLS method was used as a reference
in the investigation of the spatial deformation of a bridge.

TLS measurement can be used in an industrial environment to document industrial
machinery, such as rotary kilns [12] and boiler drums [13]. Another use is the ability to
accurately determine the volumes of mined reserves and determine the specific gravity of
heterogeneous materials [14].

Křemen used high-density terrestrial laser scanning in the documentation of historical
monuments [15,16], and Koska [17] and Janowski [18] combine TLS and SfM photogrammetry.

We consider aerial photogrammetry (AP) as a traditional surveying method. Com-
pared to the aforementioned methods, it is suitable for larger territorial unit mapping or
larger object documentation [19]. The most common products of aerial image process-
ing are vector maps, orthophoto maps, digital terrain models (DTM), and digital surface
models (DSM) [20–22]. In recent years, digital aerial cameras and appropriate software de-
velopment have provided sensors with higher resolution, allowing the Earth’s surface to be
captured with detail-level improvement at the same flight height, respectively reducing the
necessary number of images and thus flight time and cost of imaging [23]. The minimizing
of fieldwork time, rapidity of photogrammetric data collection and processing, and high
detail and accuracy of the terrain models generated by modern software currently take
aerial photogrammetry forward as an exciting alternative in terms of quality and efficiency
in comparison with terrestrial geodetic methods [24].

Unmanned aerial systems (UAS) are preferred for smaller-scale areas today, mainly
because of their ease of use and low acquisition costs.

Rusnák et al. provided a template for the application of unmanned aerial vehicles
(UAV) in mapping a river landscape [25]. Its outputs can also be applied to the map-
ping and documentation of quarries and landfills. Zeybek [26], Štroner et al. [27], and
Ren et al. [28] evaluated the quality and accuracy of UAV photogrammetry data using
RTK GNSS methods. Without GCPs (ground control points), they achieved a positional
accuracy of 1–3 cm and height accuracy of 4–6 cm. Burdziakowski addressed the qual-
ity of UAV-based DEM models affected by poor lighting conditions by comparing point
clouds [29]. The filtering and classification of point clouds were dealt with by Zeybek [30]
and Klápště et al. [31].

The analysis of spatial solids approximated by a regular solid was applied by Janowski
et al. [32]. Speed and morphology change using cross-section processing was implemented
by Kociuba [33]. Kociuba et al. in their works also dealt with the issue of the volume
of moved material of eroded banks in Svalbard. They studied the bedload transport of
material in a glacial river (see discussion) [34,35].
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The current trend in photogrammetric processing is the SfM method. It can be used
to process both terrestrial and aerial photogrammetric images [36]. In addition, there are
many commercial and open-source software solutions [37].

Mapping using manned aerial systems is justified, especially for larger areas such as
the tasks of investigating flood events [38], soil, gullies, shore erosion [39,40], landslides [41],
and volcanological surveying [42] or of analysing the slope stability of hard-to-reach or
larger units [43–45]. In practice, in addition to creating DEMs and DSMs, it is also used
to create updates to orthophoto maps and large-scale maps. Other types of sensors with
their economic and technological benefits, such as thermal [46], multi, and hyperspectral
cameras and Lidars [47–52], can also be placed on airborne platforms. The AP method
using manned aerial vehicles is currently competing with the cheaper and more operational
UAS photogrammetry, but it effectively covers a smaller area and takes measurements
from a lower altitude. This study aims to demonstrate that the use of AP achieves the
required accuracy and detail of outputs. After validation on a test area of 1000 m× 350 m,
it can be assumed that usage in larger areas (open-pit mines, large landfills, etc.), i.e., where
the use of conventional rotary or fixed-wing UAVs would be less economical, will meet
the requirements and needs. We also see a use in obtaining data on industrial heaps and
dumps as a secondary product when mapping larger parts of the territory if carried out in
the required time.

Given the large range of the area of interest, the terrestrial measurement would force
more days of shut down, which, at a frequent periodic measurement for the company
operating in the area, represents an unacceptable loss of production. Therefore, from
the available methods for performing the required measurements, the method of aerial
photogrammetry has been chosen as likely the most appropriate way to fulfil the purpose
of measurement. The advantages of this method consist of the very short time for measure-
ment, fast and automated data processing procedures, sufficient precision, the non-contact
method of measuring, and the minimized working time in the factory [3,18,23].

However, it was necessary to confirm the suitability of the digital aerial photogram-
metry method as a primary method for future measurements regarding comparability
and reliability of results with previous measurements. For this purpose, a one-time vali-
dation project of heap documentation and volume determination was realised with data
collected by aerial photogrammetry compared to the reference method TLS and GNSS as
previously used methods. This case study presents verifying the appropriateness of the
photogrammetric techniques for the documentation and volume determining of material
deposited in dumps of larger scale. The requirements for the measurement and processing
methods are determined in particular by continuous operation in the plant (and therefore
also in a landfill), the minimal forced shutdown of loaders, and the adequate accuracy of
the determined volumes.

2. Materials and Methods
2.1. Study Area

Measurements were realized in the largest integrated iron and steel company in
Eastern Slovakia near the town of Košice (Figure 1a). Dimensions of the study area at
the time of measurements were approximately 1000 m × 350 m. There were 29 heaps of
different materials of different shapes and sizes with a height of 10–15 m (Figure 1b). Two
typical adjacent heaps were selected for this study.
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for receiving GPS and GLONASS signals was used. In this study, it was used in the coor-
dinates of ground control points (GCP) determining the absolute orientation of photo-
grammetric images. Quick static GNSS method was used. Horizontal and vertical accu-
racy is expressed as follows according to the manufacturer data: standard deviation in 
position σp = 5 mm + 0.5 ppm and in height σh = 10 mm + 0.5 ppm. GNSS RTK measure-
ment method was also used for the detailed measurement of two reference heap surfaces. 
Manufacturer declares horizontal and vertical accuracy in terms of relations σp = 10 mm + 
1 ppm and σh = 20 mm + 1 ppm [53]. 

2.2.2. TLS Leica ScanStation C10 
Reference measurement was made by the TLS Leica ScanStation C10 device with the 

rotating mirror along a horizontal axis. For distance measurement, the green 3R pulse 
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Range of measurement described by the manufacturer is 300 m at 90% reflectivity and 134 

Figure 1. Study area: (a) overall localization; (b) surveyed heaps (AP model).

2.2. Surveying Equipment
2.2.1. GNSS Receiver Leica GPS900CS

Dual-frequency GNSS rover Leica GPS 900CS equipped with hardware and soft-
ware for receiving GPS and GLONASS signals was used. In this study, it was used in
the coordinates of ground control points (GCP) determining the absolute orientation of
photogrammetric images. Quick static GNSS method was used. Horizontal and vertical
accuracy is expressed as follows according to the manufacturer data: standard deviation
in position σp = 5 mm + 0.5 ppm and in height σh = 10 mm + 0.5 ppm. GNSS RTK
measurement method was also used for the detailed measurement of two reference heap
surfaces. Manufacturer declares horizontal and vertical accuracy in terms of relations
σp = 10 mm + 1 ppm and σh = 20 mm + 1 ppm [53].

2.2.2. TLS Leica ScanStation C10

Reference measurement was made by the TLS Leica ScanStation C10 device with the
rotating mirror along a horizontal axis. For distance measurement, the green 3R pulse
visible laser with a wavelength of 532 nm is used. Standard deviation of single measured
point position in the space is σp = 6 mm, standard deviation of distance measurement
is σd = 4 mm (for lengths up to 50 m), standard deviations of horizontal directions and
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vertical angle measurement are σα = σz = 12”, and precision of modelled surface is 2 mm.
Range of measurement described by the manufacturer is 300 m at 90% reflectivity and
134 m at 18% reflectivity surface. Maximum measurement speed is up to 50,000 points per
second. Field of view is 360◦ horizontal and 270◦ vertical [54].

2.2.3. Digital Aerial Photogrammetric Camera Microsoft UltraCamLp, Aircraft Tecnam MMA

Photogrammetric data collection was performed by digital aerial photogrammetric
camera Microsoft UltraCamLp (Figure 2a). Image size is 11,704 × 7920 pixels, and output
format is jpeg or tiff. Pixel size is 6 µm, and CCD chip area is 70.22 mm × 47.52 mm.
Panchromatic lens has focal length of 70 mm. Field of view from vertical is 52◦ at the cross-
track direction and 37◦ at along-track direction. Maximal image acquisition speed is one
image per 2 s. Weight of the camera is about 55 kg [55]. The photogrammetric equipment
carrier was a twin-propeller aircraft Tecnam MMA (Multi Mission Aircraft) (Figure 2b). Its
length is 8.7 m, wingspan is 11.4 m, maximum takeoff weight is 1230 kg, and top speed
is 145 knots [56]. The camera was mounted on an aircraft in a gyro-stabilizing basement,
which significantly eliminates tilts of the aircraft. Aircraft technology was supplemented by
GNSS and inertial measurement unit (IMU) in the product Applanix POSTrack ™, which
stores the position and tilt of the camera at the time of exposure and provides input data
for the calculation of the analytical aerotriangulation [57].
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Figure 2. Aerial equipment: (a) Camera Microsoft UltracamLP; (b) Aircraft Tecnam MMA.

2.3. Data Acquisition and Processing

For the validation project of documentation and volume determination of bulk ma-
terial heaps, surveying methods listed above were used. In addition, two neighbouring
reference heaps were selected in which we assume the occurrence of error for points in a
cloud, due to parts of the image that are too bright (overexposed) or fractions that are too
soft (dust); thus, a smooth structure reduces the accuracy of the correlation, which was
confirmed in the processing. For purposes of 3D model comparison, obtained by listed
methods, the network of control points (CP) for terrestrial measurement and of ground
control points (GCP) for aerial photogrammetry was created and surveyed. The coordi-
nates of these points were determined in a common coordinate system ETRS 89 (European
Terrestrial Reference System) by quick static method using relative GNSS measurements
and transformed into the positional coordinate system S-JTSK (The Uniform Trigonometric
Cadastral Network) and height system Bpv (Balt after adjustment). Both listed coordinate
systems are used as a mandatory geodetic base in the Slovak Republic. Workflow diagram
is shown in Figure 3. All field measurements and data acquisition GNSS, TLS, and AP
were performed in one day during the shutdown of the production to prevent any changes
in the morphology and size of the examined heaps.
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2.3.1. GNSS Measurement

The GNSS measurement of selected heaps was carried out to compare the quality of
measurements on the same day as TLS and AP data collection. RTK VRS method was used
with a connection to a network of permanent reference stations, SKPOS® serving as a base
for relative measurements in the Slovak Republic. Virtual reference station was generated
at the site of measurement. Positional accuracy of the measurement is indicated by the
coordinate standard deviation σxy < 20 mm and height accuracy σh < 40 mm. At heap No.
1, 205 points were measured, and at heap No. 2, a total of 534 points.

2.3.2. Terrestrial Laser Scanning

Laser scanning was performed from six stations (Figure 4) at ground level (green
mark) and one at an elevated level in the platform of the loading machine (blue mark).
Georeferencing to the surveying network was carried out by the resection method. Network
points (purple) were signalized by 6-inch targets for high-definition scanners (HDS) on
tripods. The scanning resolution value was set to 5 cm at 100 m distance. For both heaps,
12.5 million points were measured (raw data) (Figure 5a). During the data processing,
unnecessary and erroneous points in the scan were filtered, such as a loading machine,
belt conveyors, error points, etc. (Figure 5b). Scanned data were further divided into
single files for each heap and spatially subsampled to resolution of 5 cm. Resulting files
contained approximately 181,000 points for heap No. 1 and 449,000 points for heap No.
2. Leica Cyclone 7.3®, Microstation V8i® with Terrascan v.13®, and Trimble RealWorks
6.5® software were used. Filtering and classification of the point cloud were performed as
ground extraction in Terrascan® software.
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2.3.3. Aerial Photogrammetry

A priori analysis was performed to determine the expected accuracy of the determined
volume. It depends mainly on the area of the surface and the accuracy of the height
coordinates of the detailed points. When estimating the accuracy, a heap height of 10 m
and the horizontal heap dimensions 100 m × 100 m were assumed. Photogrammetric
software producer declares the standard height error of DSM points as 1.5 times the size of
the pixels on the ground. If the maximum error does not exceed twice the mean error, and
one pixel has a size of 5 cm, then the maximum difference in heap volume determining has
a maximum value of 1.5%. Therefore, this accuracy is fully acceptable.

At the stage of flight plan creation for data collection, images with a resolution of 5 cm
per pixel were proposed, which, regarding the parameters of the camera, corresponds to
the flight altitude of 580 m above the ground. Four flight axes were realized (Figure 6).
Mutual transverse overlap was 75%. Longitudinal overlap of images in the flight direction
was 65%. Redundant number of frame pairs increases the accuracy of the resulting DSM
and alternatively allows some images to be omitted: for example, blurred images due to
turbulence during the flight.
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Figure 6. GCP (5001–5006) scheme with SfM model background.

Ten ground control points were stabilised for absolute image orientation in the coordi-
nate system (Figure 6). GCPs were signalized by square black and white plastic signs with
a size of approximately 30 cm× 30 cm. GCPs were determined by GNSS fast static method
with post-processing and 20 min observation on each point. In addition, virtual reference
station generated in the middle of the surveyed location (using SKPOS reference network
data) was used.

Overall, 56 images were made in the case study area. Flight time between first and
last image was approximately 15 min. The images were radiometrically corrected and
calibrated. Data recorded by onboard GNSS receiver and IMU devices were post-processed
and attached to the coordinate system ETRS89 and, together with the coordinates of control
points and camera calibration parameters (internal orientation), provided input data for
the block alignment of images and calculation of external orientation elements of the
analytical aerotriangulation using photogrammetric software. The resulting coordinates
were transformed into the coordinate system S-JTSK. Residual deviations of the ground
control point coordinates after the analytical aerotriangulation solution reached values
smaller than 20 mm for positional coordinates and 30 mm for the height coordinate.

From these modified aerial images, DSM was automatically generated in the form of
a point cloud. Points were generated for every second pixel of the aerial image. About
1.7 million points (raw data) were processed. Unnecessary and erroneously generated
points were filtered and removed similarly as described for TLS processing. Such modified
point clouds contained about 168,000 points for Heap 1 and 445,000 points for Heap 2.

2.3.4. Data Processing

The single mesh models were created for every set of points obtained by the above-
listed methods, which formed the upper terrain of selected heaps. Points bounding the
heap and points on the ground plate have formed the lower terrain. Filtration removed
erroneously generated (AP) and measured (TLS) points using Microstation software V8i®

with Terrascan v.13®. Such modified point clouds are referenced and were the starting
basis for the creation of final mesh models and further analysis. As the reference surfaces
at both heaps, mesh models obtained by the TLS were considered.

For the purpose of compliance rate description of the compared surfaces, the Z
coordinate differences were calculated. Applying the AP and GNSS methods, obtained
data were compared with the reference model (TLS).

Residuals represent the vertical difference between the Z value in the data file and the
interpolated Z value on a reference surface at every position X, Y of the data file point. In
this case, the bilinear interpolation method was used.
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The formula used to compute a residual value is

Zres = Zdat − Zre f , (1)

where: Zres is the difference value, Zdat is the Z value in the compared data file, and
Zre f is the interpolated Z value on the surface at each X, Y point coordinate on the
reference surface.

The standard deviation σ of the data file is the square root of the variance of the file
and is, in general, calculated by the formula

σ =

√
1

(n − 1)

n

∑
i = 1

(zi − z)2, (2)

where: n is the number of observations, zi is the data value, and z is the mean.
Creation of the cross-sections was performed by the Surfer® software. For both heaps,

three vertical sections parallel to each other were created (Figure 7). They were situated
parallel to the longest dimension of the heap in the heap centre and its side slopes. In each
section, about 120 data points were evaluated without removing outliers. As the reference
surface, the model surveyed by the TLS method was chosen.
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Figure 7. Location of cross-sections: (a) Heap 1 (distance of cross-sections approx. 10 m), (b) Heap 2 (distance of cross-
sections approx. 20 m).

3. Results

The main characteristics of the created point clouds are listed in Tables 1 and 2.

Table 1. Characteristics of point clouds: Heap No. 1.

Method No. of Points No. of Triangles
in Mesh

Density of
Points

Average
Distance

between Points

GNSS RTK 205 377 0.1/m2 3 m

TLS 181 360 362 524 196/m2 0.07 m

AP 168 084 335 826 100/m2 0.10 m
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Table 2. Characteristics of point clouds: Heap No. 2.

Method No. of Points No. of Triangles
in Mesh

Density of
Points

Average
Distance

between Points

GNSS RTK 534 1 034 0.1/m2 3 m

TLS 449 404 898 551 196/m2 0.07 m

AP 446 629 891 591 100/m2 0.10 m

3.1. Analysis of Surfaces

The Trimble Realworks® ver. 11.3. software was used for the twin surface compari-
son as a coloured mesh with differential scale (Figure 8). The comparison expresses the
compliance rate of the compared surfaces.
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sult, the correlation coefficient 0.96 was calculated. For TLS vs. GNSS values of residuals 
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Figure 8. Coloured mesh twin surface comparison.: (a) TLS vs. AP—Heap No. 1; (b) TLS vs. GNSS—Heap No. 1; (c) TLS
vs. AP—Heap No. 2; (d) TLS vs. GNSS—Heap No. 2.

Regarding the large number of evaluated points, the compliance differences of the
compared surface residuals were evaluated graphically as a frequency histogram, where
on the X axis, the intervals of residuals are displayed, and on the Y axis, the frequency
of residuals in intervals from −0.2 m to + 0.2 m are displayed (Figure 9). The single bin
size was set to 5 mm; the number of intervals was therefore 80. The values of residuals of
TLS vs. AP (Figure 9a,c) were determined as processed for two separate heaps. Then, as a
result, the correlation coefficient 0.96 was calculated. For TLS vs. GNSS values of residuals
(Figure 9b,d), the correlation coefficient value was 0.75.
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Figure 9. Histogram of frequency of surface differences of residuals in intervals. (a) TLS vs. AP—Heap No. 1, (b) TLS vs.
GNSS—Heap No. 1, (c) TLS vs. AP—Heap No. 2, (d) TLS vs. GNSS—Heap No. 2.

Tables 3 and 4 show the percentage frequency of points at intervals up to ±20 mm,
±40 mm, ±60 mm, and ±80 mm based on residual differences of surfaces obtained by the
selected surveying methods.

Table 3. Surface differences evaluation—Heap No. 1.

Heap 1 Frequency of Residuals for Compared Surfaces in Intervals

up to ±20 mm up to ±40 mm up to ±60 mm up to ±80 mm

TLS vs. AP 53% 73% 78% 92%

TLS vs. GNSS 18% 30% 53% 72%
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Table 4. Surface differences evaluation—Heap No. 2.

Heap 2 Frequency of Residuals for Compared Surfaces in Intervals

up to ±20 mm up to ±40 mm up to ±60 mm up to ±80 mm

TLS vs. AP 44% 73% 80% 92%

TLS vs. GNSS 21% 40% 53% 73%

3.2. Analysis of Cross-Sections

Tables 5 and 6 show the percentage frequency of points at intervals up to ±20 mm,
±40 mm, ±60 mm, and ±80 mm based on residual differences of surfaces in cross-sections
obtained by the selected surveying methods. The cross-sections comparison result of
surfaces obtained by the AP and GNSS methods represents the data file in which the height
differences against the reference surface were contained.

Table 5. Cross-sections differences evaluation—Heap No. 1.

Heap 1 Frequency of Residuals in Compared Cuts in Intervals

up to ±20 mm up to ±40 mm up to ±60 mm up to ±80 mm

TLS vs. AP 57% 72% 80% 91%

TLS vs. GNSS 16% 31% 50% 67%

Table 6. Cross-sections differences evaluation—Heap No. 2.

Heap 2 Frequency of Residuals in Compared Cuts in Intervals

up to ±20 mm up to ±40 mm up to ±60 mm up to ±80 mm

TLS vs. AP 42% 73% 85% 93%

TLS vs. GNSS 17% 39% 55% 72%

A graphical representation of these differences in sections for the surfaces obtained by
the AP and GNSS methods is presented (Figure 10).
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Figure 10. Graphical evaluation of the surface differences in cross-sections without removal of peak values. (a) TLS vs.
AP—Heap No. 1, (b) TLS vs. GNSS—Heap No. 1, (c) TLS vs. AP—Heap No. 2, (d) TLS vs. GNSS—Heap No. 2.
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3.3. Analysis of Volumes

The volume calculation was realized for each heap and method separately. The upper
surface was formed by the heap body points, while the lower surface was created by points
on the ground plate in the heap surrounding. Volumes were therefore determined indepen-
dently on the mutual registration of point files. Volume calculation was performed by the
Trimble Realworks® software. The designated volume and the absolute and percentage
comparison are shown in Table 7.

Table 7. Volume differences comparison.

Heap Surveying Method Volume (m3) Volume Difference (m3) (%)

Heap 1

TLS 4584 - -

AP 4588 4 0.09

GNSS 4430 −154 −3.36

Heap 2

TLS - -

AP 14 0.08

GNSS −311 −1.67

4. Discussion

The mesh surface comparison (Figure 8) was the initial analysis in this research. It
shows a level of agreement of the compared surfaces obtained by different surveying
methods. TLS vs. AP surface evaluation (Figure 8a,c) is almost identical at both heaps. The
most significant differences between the surfaces were detected mainly on the upper part
of the heap and partly on its sidewalls (red and blue colours). This can be assigned to the
absence of a sufficient number of points at these locations measured by the TLS method.
Despite the goal of making TLS measurements with a full coverage of heaps and with a
raised instrument station position, these areas were hidden by obstacles. The TLS vs. GNSS
surface comparison (Figure 8b,d) identifies significant differences of surfaces at both heaps.
These are mainly found on the edges of the formed planar areas and on the circumference
at the base of the heaps. This is due to the substantially lower density of points in the
model created from the GNSS RTK measurements. Furthermore, all the direct methods,
including GNSS, are influenced by human factors: when moving on the heap, it is not easy
for the operator to select the appropriate measured points for optimal surface description.

To obtain numerical values for comparison, the frequency difference histograms were
created in sets with a 5 mm size for the residual values of −0.2 m to + 0.2 m (Figure 9). TLS
vs. AP surface analysis has confirmed the initial assumption about the possible correlation
of surface models obtained by the employed method. TLS vs. AP surface validation shows
a standard deviation σ = 39 mm for Heap no. 1 and σ = 42 mm for Heap No. 2. TLS
vs. GNSS surface validation shows a standard deviation σ = 67 mm for Heap no. 1 and
σ = 68 mm for Heap No. 2. When comparing the TLS vs. AP surface validation residuals,
there is a mean error value of 9 mm for Heap No. 1 and 6 mm for Heap No. 2. TLS vs.
GNSS surface validation residuals show a mean error value of 12 mm for Heap No. 1 and
a mean error value of 15 mm for Heap No. 2. The correlation coefficient was calculated
from the frequency of residual values at the selected intervals of 5 mm of the same data
collection methods and processed in two separate heaps. The correlation coefficient value
was 0.96 for the AP and 0.75 for the GNSS measurement. This parameter shows a high
reliability, especially for the results obtained by the AP.

Cross-section analysis (Figure 10) was performed on smaller datasets relative to surface
analysis, which corresponds to the evaluated standard deviations according to initial
assumptions. TLS vs. AP cross-sections validation has a standard deviation σ = 53 mm
for Heap No. 1 and σ = 49 mm for Heap No. 2. TLS vs. GNSS surface validation shows a
standard deviation σ = 100 mm for Heap No. 1 and σ = 91 mm for Heap No. 2. TLS vs.
AP cross-sections validation residuals show a mean value z = 6 mm for Heap No. 1 and
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z = 3 mm for Heap No. 2. TLS vs. GNSS surface validation shows a mean value z = 11 mm
for Heap No. 1 and z = 8 mm for Heap No. 2.

Yourtseven [58] compared photogrammetric DSMs obtained from different flight
altitudes up to 350 m AGL using UAS. The reference model was DSM obtained by TLS.
When comparing GNSS and TLS measurements by comparing the Z coordinate in the
sections, he achieved a standard deviation of 73 mm. When comparing GNSS and AP from
a height of 350 m AGL, the standard deviation was approximately 60 mm. The values
correspond to our achieved results. When comparing TLS and AP, a standard deviation
value of up to 76 mm was reached.

The comparison of the specified volumes (Table 7) confirms the results of previous
analyses. Volume difference values were specified for the comparison of TLS vs. AP as
0.09% at Heap No. 1 and 0.08% at Heap No. 2, and for the comparison of TLS vs. GNSS as
−3.36% for Heap No. 1 and −1.67% for Heap No. 2. Regarding the relatively large size
difference of both heaps, these results are at the level of expected values and correspond to
small values of the mean error of residuals to the reference surface.

The determination of volumes by contact methods such as the spatial polar method
using total stations and the RTK method using GNSS was summarized by Ajayi [3] as
comparable. This is mainly due to approximately the same density of measured points.
This has the most significant impact on the quality of the model and the derived results.
By comparing volumes with a reference value, he determined an error in determining the
volume with a value of 2.9% [3], which is in line with our results of the GNSS comparison.
Tamin et al. [59] achieved a volume difference of 0.002% between TLS and AP. For AP data
acquisition, a UAS was used at the height of 100 m AGL.

The results show that the AP method for volume determination and documentation is
in its precision comparable with the reference method TLS (the calculated volumes differ by
less than 0.1%) and is significantly more accurate and reliable than the RTK GNSS method
(volumes differ in ones of percentages).

The advantage is the high density of surveyed points and thus almost true shape
capture of the measured object. In areas with poorer texture, e.g., smooth surfaces and
shadowy places, the error points occur, but these can be effectively removed using appro-
priate filtering tools. In the case of multistage measurements, it is appropriate to make a
flight with the same parameters and external orientation using the same control points [60].

Although the TLS measurement method achieves excellent results, it has some limits:
in particular, the need for field measurements and the incompleteness of the point cloud and
3D model. It is, therefore, suitable for smaller areas or separate objects [34]. Furthermore,
the AP method with a correct measurement setup provides a higher work efficiency and
model quality [5,17].

Ajayi [3] also compared the time required for field measurements by the different
methods. If we do not consider the time required for flight and GCP preparation, conven-
tional measurement is more time consuming than AP. In our case study, a large area was
surveyed. Therefore, fieldwork is only a small part of the surveying process. The total
time required for AP acquisition is, then, shorter than using terrestrial measurement [36].
However, with a large number of images, it is necessary to take into account the longer
time of post-processing software processing [37].

A disadvantage of AP use is that it only allows for measuring objects visible from
above. It depends on suitable weather, which allows the flight to be made and provides
good lighting conditions. Measurements can be made only in daylight, ideally in the
midday hours. Risk factors in terms of industrial plants also include the direction and
strength of the wind, which could impair visibility by smoke from nearby chimneys or
swirling dust from heaps. These risks should be considered during mission planning
and scheduling. Nevertheless, the accuracy, efficiency, speed, and economic view of AP
compared with other methods make it the first choice for solving problems associated with
data collection for terrain modelling and volume calculation with larger scale territory
and objects.
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5. Conclusions

The presented validation study aimed to compare the modern geodetic technologies
TLS and AP for determining the volume of heaps of material and their spatial documen-
tation. In addition, the GNSS RTK method and TLS were also compared to bind actual
measurements with previously used surveying methods. As the reference method, TLS
was chosen because of the high density, the number of measured points, and the high
measuring accuracy.

AP measurements are very fast and can cover a large area in a short time and from
a high flight altitude (even compared to UAVs). The time required for fieldwork in
comparison with conventional surveying techniques is markedly shorter. The method
is therefore also suitable when dynamic change detection in a short time is needed. The
measurement is non-contact, and thus it can be safely implemented even in harmful or
hazardous environments.
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15. Křemen, T. Measurement and documentation of St. Spirit Church in Liběchov. In Advances and Trends in Geodesy, Cartography amd
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