
applied
sciences

Article

KRDroid: Ransomware-Oriented Detector for Mobile Devices
Based on Behaviors

Senmiao Wang 1, Sujuan Qin 1,*, Jiawei Qin 1,*, Hua Zhang 1, Tengfei Tu 1, Zhengping Jin 1,* and Jing Guo 2

����������
�������

Citation: Wang, S.; Qin, S.; Qin, J.;

Zhang, H.; Tu, T.; Jin, Z.; Guo, J.

KRDroid: Ransomware-Oriented

Detector for Mobile Devices Based on

Behaviors. Appl. Sci. 2021, 11, 6557.

https://doi.org/10.3390/app11146557

Academic Editor: Eui-Nam Huh

Received: 1 June 2021

Accepted: 14 July 2021

Published: 16 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China; wangsenmiao@bupt.edu.cn (S.W.);
zhanghua_288@bupt.edu.cn (H.Z.); tutengfei.kevin@bupt.edu.cn (T.T.)

2 National Computer Network Emergency Response Technical Team/Coordination Center of China
(CNCERT/CC), Beijing 100029, China; guojing@cert.org.cn

* Correspondence: qsujuan@bupt.edu.cn (S.Q.); qinjiawei@bupt.edu.cn (J.Q.); zhpjin@bupt.edu.cn (Z.J.)

Abstract: Ransomware has become a serious threat on Android and new cases of ransomware are
continuously growing. Most existing ransomware detectors use sensitive text or APIs to detect
ransomware. Some goodware applications with the functionalities of locking screen and encrypting
files have similar behaviors with ransomware. It is difficult for ransomware detectors to identity
them. In this paper, we made detailed analyses of three kinds of active ransomware. We proposed
a behavior-based ransomware detector on Android, called KRDroid. KRDroid deploys on servers
or PCs, that is, ransomware cannot be activated and cause any loss during testing. Experiments
showed that our ransomware-oriented detector can find 1809 of 1862 unseen ransomware. It can also
distinguish goodware with similar ransom behaviors to ransomware with an accuracy of 97.5%.

Keywords: ransomware detector; behavior-pattern-based detection; ransomware analysis; Android

1. Introduction

With the unprecedented outbreak of different kinds of ransomware in recent years,
devices and files from all walks of life have been locked. It has brought economic
losses to both individuals and enterprises. Ransomware have been growing from the
last few years since 2017, and it has become a key threat to mobile devices [1]. There
are at least 150 countries with 300,000 users are attacked by the WannaCry (a kind
of ransomware) according to the statistics. It causes economic losses as high as USD
8,000,000,000. According to the new report released by Precise Security, WannaCry remains
one of the most influential ransomware in 2019. In 2019, a new kind of ransomware, Silex,
was found by researchers. The spread of these types of ransomware is rapid. Silex first
affected 350 devices and then quickly expanded to more than 1500 devices. According to
the statistics released by Coveware, the payment ransomware require in the second quarter
of 2020 is four times higher than in 2019 [2].

It is reported that the number of mobile devices based on the Android platform has
sharply increased [3–6]. It is worth noting that the number of Android devices will be
approximately 6.1 billion by the end of 2020 [6–9]. At present, ransomware running on
Android is still a threat to mobile devices. In this work, we mainly focus on detecting
ransomware based on the Android platform for mobile devices.

Ransomware detection on Windows has been relatively well established. For instance,
2entFOX can detect highly survivable ransomware with high detection accuracy and
low false-positive rate [10]. UNVEIL uses filesystem to monitor and OCR to detect
locking devices and encrypting files ransomware [11]. ShieldFS [12] and reference [13] can
identify ransomware by I/O request packets. EldeRan uses dynamic analysis to distinguish
ransomware from goodware [14]. Some works [15–18] focus on encrypting ransomware
detection by using traffic characteristics or sensitive APIs.

Appl. Sci. 2021, 11, 6557. https://doi.org/10.3390/app11146557 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11146557
https://doi.org/10.3390/app11146557
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11146557
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11146557?type=check_update&version=2

Appl. Sci. 2021, 11, 6557 2 of 18

The methods of detecting ransomware on other platforms could not be directly applied
on Android. On the one hand, detectors [15–18] use traffic to identify ransomware. This
means detected ransomware should have network access, while most ransomware on
Android can ransom without network access. On the other hand, Android has its own
security mechanism, meaning that there are many different files and features that can be
used for Android ransomware detection.

For Android, the approach for ransomware-oriented detection is incomplete. In 2016,
N.Andronio et al. [19] first proposed a ransomware detector based on machine learning.
To our best knowledge, HelDroid [19] and GreatEatlon [20] are the earliest ransomware-oriented
detectors based on static analysis with machine learning. They detect ransomware based on
threatening text detectors, lock detectors, and encryption detectors. If the ransomware uses
unseen language, it may cause many misjudgments. The execution time is nearly seconds
per sample on average [19]. There are also some detectors that use dynamic analysis to
identify ransomware. DNA-Droid [21] combines static and dynamic analysis to detect
ransomware. R-PackDroid [22] is a practical on-device detector of Android ransomware.
Azmoodeh et al. [23] focus on files encryption ransomware in IoT and detect them by using
energy consumption. If users need to detect large-scale samples by using detectors with
dynamic analysis, it may be time consuming.

Many ransomware detectors identify ransomware based on sensitive APIs. However,
there are some ransomware that use insensitive API callings to ransom. For example,
a ransomware application can make its interface be the top-level interface suspending on
the screen though users press Home buttons or Back buttons. Detectors may misjudge them
as goodware behaviors. Some goodware applications that have the functions of locking
devices and encrypting files have behaviors similar to ransomware. For example, some
goodware applications such as time management applications lock the devices according
to the time users have set. It is difficult for ransomware detectors to identity them.

Contributions. In the light of this, we made detailed analyses of three kinds of
active ransomware, including the different runtime behaviors, ransom codes and the
differences between ransomware and goodware with similar behaviors, for example,
screen beautification applications with lock function and files management applications
with an encryption function. Then, we constructed a multidimensional behavior pattern
based on ransom behaviors. Finally, we proposed a behavior-based Android ransomware
detector for mobile devices, called KRDroid. It retains the relational behavior patterns of
ransomware. The main contributions of this paper are as follows.

The analyses of three kinds of active ransomware. We collected three kinds of
active IoT Android ransomware from VirusTotal [24], AMD [25], and from open source
databases [26]. According to their runtime behaviors, we sorted out ransomware into three
groups: device lock ransomware, files encryption ransomware, and screen resource control
ransomware. We analyzed them from multiple dimensions for their extortion behaviors
and source code.

The construction of a ransomware-behavior-pattern-based multidimensional feature
set. We extracted features from API callings, permissions, intents, and other dimensions to
construct different kinds of ransom behavior patterns. In this way, the feature set can be
seen as a formal expression set that retains the relational behaviors of ransomware.

A behavior-based ransomware-oriented detector. We proposed a behavior-based
ransomware-oriented detector, KRDroid, to find Android ransomwares. KRDroid deploys
on servers or PCs, that is, ransomware cannot be activated and cause any loss during
testing. Experiments results show that KRDroid can detect unseen ransomware with the
accuracy of 97.5%.

2. Related Research

With the increase of threats of ransomware, ransomware-oriented detectors for IoT
devices have attracted more and more attention. In terms of related research, we mainly
review the ransomware detectors based on I/O, dynamic analysis, and static analysis.

Appl. Sci. 2021, 11, 6557 3 of 18

2.1. Ransomware Detection Based on I/O

Song et al. [23] proposed a method to detect ransomware using I/O rate, CPU usage,
and memory usage. It discriminates between normal processes and ransomware by
means of monitoring file events and computing resources. The method can protect users
from the damage caused by ransomware applications without any information about
ransomware codes.

Continella et al. [12] proposed ShieldFS, a ransomware detection file system. ShieldFS
detects ransomware by means of the I/O usage and the change of IRP loggers (I/O request
package logger). This method mainly detects files encryption ransomware, and it also can
recover files that have already been encrypted by ransomware.

Feng et al. [13] proposed a method to detect files encryption ransomware based on
deception and behavior monitoring. They created decoy files in the device at the very
beginning to induct ransomware encrypting decoy files. In this way, abnormal processes
can be detected.

Ko et al. [27] proposed a real-time ransomware detection with the help of intercepting
requests from APIs to read or write to a file and judges whether the file is encrypted based
on Shannon entropy.

In summary, ransomware detectors based on I/O usage are sensitive to files encryption
ransomware used for encryption needs with much input and output file stream. Ransomware
that lock devices or control screen resources may not applicable for these methods.

2.2. Ransomware Detection Based on Dynamic Analysis

Sgandurra et al. [14] proposed EldeRan, a ransomware-oriented detector based on
dynamic analysis and machine learning classification. EldeRan focuses on the installation
of applications to check for characteristics signs of ransomware by means of monitoring
the selected APIs [14].

Abdullah et al. [28] proposed an Android ransomware detector based on dynamic
analysis. It extracts system calls with the help of dynamic analysis and uses them as
features. Algorithms such as Random Forest, J48, and Naïve Bayes are used to train
the model.

Considering some ransomware may use complicated packing techniques, Chen et al. [29]
proposed RansomProber, a real-time ransomware detection system with dynamic analysis.
Instead of monitoring APIs, RansomProber uses information entropy to measure the
degree of data transformation in sensitive directories [29]. To some extent, it can detect
files encryption ransomware with customized cryptosystems.

Detectors with dynamic analysis can detect ransomware in real time. The analysis
time of detectors for an application is approximately 5 seconds [29]. When detecting the
large-scale samples, it will be time consuming.

2.3. Ransomware Detection Based on Static Analysis

Bibi et al. [30] proposed an effective Android ransomware detector. It extracts features
from traffic with the help of 8 different feature filtration techniques and chosen 19 important
features. Karimi et al. [31] proposed a method for Android ransomware detection based on
transforming the sequence of executable instructions into a grayscale image and exploited
valuable features by means of using LDA.

HelDroid [19] is a ransomware-oriented detector, which identifies ransomware by
means of sensitive text based on NLP, lock-device function, and file-encrypt function
based on FlowDroid [32]. According to the judge logic of the detector, a ransomware
behavior must have ransom text. It requires the training corpus to be all-inclusive of the
keywords of the ransom, as well as the language. When facing applications with unseen
language, the detector will not identify the ransomware even if it has ransom behaviors.
The execution time is nearly seconds per sample on average [19].

After approximately one year, some researchers improved HelDroid [19] and proposed
GreatEatlon [20], a new ransomware-oriented detector. It extends FlowDroid [32] to track

Appl. Sci. 2021, 11, 6557 4 of 18

encryption-related information flows to improve the encryption detector. It also adds
a lightweight prefilter to filter goodware behaviors from the analysis queue to shorten
execution time [20]. When facing ransomware with unseen language, the detector cannot
identify ransomware either.

In order to detect ransomware with confusion, R-PackDroid [22] was proposed in 2018.
Different from HelDroid [19] and GreatEatlon [20], it is designed as an application that can
be installed on mobile phones. This detector uses static detection and extract API packages
to represent the application and uses random forest for classification. R-PackDroid has
the resilience of the related information against obfuscation [22]. Due to the detection
mode of R-PackDroid [22] being “install–detect”, large-scale samples detection may be
time consuming.

3. Characterization of Ransomware

In order to have a better knowledge of ransomware, we collected 754 ransomware from
the AMD dataset [25] and VirusTotal [24]. This section will analyze the characterization of
different kinds of ransomware.

3.1. Analysis of Different Kinds of Ransomware

To our best knowledge, according to the behaviors, ransomware can be divided into
three groups. The R represents the set of ransomware. As shown in formula (1), R contains
three kinds of ransomware RDL, RSRC, and RFE. RDL represents device lock ransomware,
which ransom users by automatically modifying the passwords of devices. RSRC represents
screen resource control ransomware, which ransom users by constantly holding the screen
resource. RFE represents files encryption ransomware, which ransom users by encrypting
private files.

R = {RDL, RSRC, RFE} (1)

3.1.1. Device Lock Ransomware

Device lock ransomware behaviors are the most common and easy-to-implement
ransomware. After they are activated, they can automatically modify the passwords,
PINsm or gesture passwords. There were 461 device lock ransomware behaviors in the
collected data, and we summarized 186 features of device lock ransomware.

A typical device lock ransomware can be represented as RDL. As shown in formula (2),
rdl contains permission of BIND_DEVICE_ADMIN, typical API callings and sensitive strings.
pdl represents the permission of ransomware, such as android.permission.BIND_DEVICE_ADMIN.
After applying this permission, a ransomware application can obtain super administrator
rights. Android set the ransomware as the device manager to prevent being accidentally
uninstalled. sl represents sensitive or threaten strings in applications. A ransomware
application usually uses threaten strings to call for payment.

The tuple 〈Asub, Rr〉 represents API calling sequences. As shown in formula (3), Rr is
the subset of {ϕ, &, ‖}. ϕ represents the relationship between each API is none, & represents
the relationship between each API is and and ‖ represents the relationship between each
API is or. As shown in formula (4), Asub is the subset of Ak and Ak represents the universal
set of ak. ak represents APIs related to device lock. As shown in Table 1, resetPassword() is
used to reset the password of the device, resetView() is used to reset the gesture view of
the device, setParameter(SpeechConstant.SAMPLE_RATE, "8000") is used to set the voice password of
the device, and lockNow() is used to lock the device. A device lock ransomware may first
call resetPassword() to modify the password and then call lockNow() to lock the device. Both
API callings are indispensable.

RDL = {rdl = (pdl , 〈Asub, Rr >, sl) | l = 1, . . . , ‖sl‖} (2)

Rr ⊆ {ϕ, &, ‖} (3)

Asub ⊆ Ak = {a1, a2, . . . , ak | k = 1, . . . , ‖ak‖} (4)

Appl. Sci. 2021, 11, 6557 5 of 18

Table 1. Typical features of device lock ransomware applications.

Feature Meaning

resetPassword() Reset the password.

resetView() Reset the gesture view.

setParameter(SpeechConstant.SAMPLE_RATE,"8000") Set the voice password.

lockNow() Lock the device.

android.permission.BIND_DEVICE_ADMIN Apply and get super administrator rights.

Ladrt/R/ADRTLogCatReader AIDE (IDE in Android) feature.

3.1.2. Files Encryption Ransomware

Files encryption ransomware behaviors are also a kind of common ransomware.
After they are activated, ransomware applications automatically encrypt the privacy
files on the device, including photos, txt files, etc. There were 223 files encryption
ransomware behaviors in the collected data, and we summarized 411 features of files
encryption ransomware.

A typical files encryption ransomware can be represented as RFE. As shown in
formula (5), r f e contains permissions related to read or write, typical attack mode, and
sensitive strings. p f e represents related permissions such as android.permission.WRITE_EXTERN

AL_STORAGE, which allows ransomware writing files on storage. sl represents sensitive or
threaten strings in applications.

attk represents the attack mode of files encryption ransomware. As shown in formula
(6), attack mode contains attack time, attack target, encryption method, attack order, and
attack flow. The subset of attk contains the typical API calling sequences. atttime represents
the attack time. It includes encrypting files immediately and waiting for commands. atttarget
represents the encryption folder. attorder represents the attack order of the ransomware,
i.e., the ransomware application encrypts files after obtaining the complete file list or
encrypting each file when it is discovered by the ransomware. attenmethod represents the
encryption method, including calling AES(), DES() or other methods. att f ea represents the
attack flow of the ransomware. As shown in Table 2, the ransomware loops the storage
structure of the device to find the target type of the files by addCatefory()and createChooser();
Once it finds the eligible files, it obtains data by calling read() or FileInputStream(), then
calls encrypt API, such as Ljava/crypto/spec/IvParameterSpec to encrypt data; finally, it uses write()
or FileOutputStream() to write the encrypted file in the storage.

RFE =
{

r f e =
(

p f e, attk, sl
)
| k = 1, . . . , ‖attk‖, l = 1, . . . , ‖sl‖

}
(5)

attk =< atttime, a tttarget , a ttenmethod, a ttorder , a tt f ea > (6)

Table 2. Typical features of files encryption ransomware applications.

Feature Meaning

android.permission.WRITE_EXTERNAL_STORAGE Apply for reading and writing access to SDCard.

setCancelable() Applying for creating and deleting file permissions in SDCard.

e Landroid/content/Intent->addCategory()
Landroid/content/Intent->createChooser()
Ljavax/crypto/Cipher->getInstance() Traversing and encrypting the specified file.
Ljavax/crypto/Cipher-><init>
Ljavax/crypto/Cipher->doFinal()
Ljavax/crypto/spec/SecretKeySpec-><init>

Appl. Sci. 2021, 11, 6557 6 of 18

3.1.3. Screen Resource Control Ransomware

The screen resource control ransomware applications are uncommon ransomware.
There were only 70 screen resource control ransomware behaviors in the collected data.
After they are activated, there are 25 ransomware applications that make their interfaces
as the top-level interfaces suspending on the top of devices and disable the Home and
Back buttons. That is to say, other applications or other system functions cannot be
used. Although another 45 ransomware applications make their interfaces the top-level
interfaces, the user can press the Home and Back buttons to exit. However, this kind of
exit is temporary, and the interface of the ransomware will suspend on the screen in a
very short time to prevent users from using their phones normally. After analyzing these
applications, we summarized 378 features of screen resource control ransomware.

A typical screen resource control ransomware can be represented as RSRC. As shown
in formula (7), rsrc contains related permissions, intents, typical API callings, and sensitive
strings. psrc, insrc represent the related permissions and intents. sl represents sensitive or
threaten strings in applications.

The tuple 〈Asub, Rr〉 represents API calling sequences. As shown in formula (8) and
formula (9), Rr is the subset of {ϕ, &, ‖}. Asub is the subset of Ak and Ak represents the
universal set of ak. ak represents APIs related to the screen resource control. As shown
in Table 3, LayoutParams->FLAG_FULLSCREEN is used to suspend the interface as full screen.
setCancelable() and setFlags() are used to suspend the interface as well, for the parameters
of them have different meanings. Modifying the default parameter from True to False in
setCancelable() means that users cannot press the external area of the dialog, using parameter
1024 in setFlags() means that the system window will be set as a full-screen window.

Table 3. Typical features of screen resource control ransomware applications.

Feature Meaning

LayoutParams->FLAG_FULLSCREEN Suspend the interface.

Window->setFlags(I,I),v2,v4,v4 Set the top-level window by modifying parameter.

android.intent.category.HOME
onWindowFocusChanged() Monitor the Home button and disable the Home button.
sendBroadcast()

Dialog->setCancelable()
Set the current window cannot be cancelled or make it
constant appearing.

OnkeyDown() and OnAttachWindow() are used to disable Home and Back buttons;
for the Home button that is the system button, the KeyEvent barely captures the click events;
thus, developers need to rewrite the OnAttachWindow(). If the version of Android is version
2.3 and below, the method can be rewritten similar to Listing 1. If the version of Android is
version 4.0 and above, the method can be rewritten similar to Listing 2.

Listing 1. An example of OnAttachWindow.

Version July 14, 2021 submitted to Journal Not Specified 7 of 18

in Table 3, LayoutParams->FLAG_FULLSCREEN is used to suspend the interface as full screen.230

setCancelable() and setFlags() are used to suspend the interface as well, for the parameters231

of them have different meanings. Modifying the default parameter from True to False232

in setCancelable() means that users can’t press the external area of the dialog, using233

parameter 1024 in setFlags() means that the systemwindow will be set as a full-screen234

window.235

236
1 public void onAttachedToWindow(){237

2 this.getWindow().setType(WindowManager.LayoutParams.TYPE_KEYGUARD);238

3 super.onAttachedToWindow();239

4 }240241

Listing 1: An Example of OnAttachWindow

OnkeyDown() and OnAttachWindow() are used to disabled Home and Back buttons, for242

the Home button is the system button, the KeyEvent barely captures the click events, so243

developers need to rewrite the OnAttachWindow(). If the version of Android is version244

2.3 and below, the method can be rewritten like listing 1.If the version of Android is245

version 4.0 and above, the method can be rewritten like listing 2.246

If the version of Android is version 4.0 and above, the method can be rewritten247

like listing 2.248

249
1 public static final int FLAG_HOMEKEY_DISPATCHED = 0x80000000;250

2 public void onCreate(Bundle savedInstanceState){251

3 super.onCreate(savedInstanceState);252

4 this.getWindow().setFlags(FLAG_HOMEKEY_DISPATCHED,253

FLAG_HOMEKEY_DISPATCHED);254

5 setContentView(R.layout.main);}255256

Listing 2: An Example of OnAttachWindow

The OnKeyDown() will be rewritten like listing 3.257

258
1 public boolean onKeyDown(int keyCode, KeyEvent event){259

2 if (keyCode == event.KEYCODE_HOME){260

3 return true;261

4 }262

5 return super.o0nKeyDown(keyCode,event);263

6 }264

7 }265266

Listing 3: An Example of OnKeyDown

The API calling sequences shown in figure 3 are used to disable the Home but-267

tons. android.intent.category.Home is used to register the monitor of the Home button.268

Landroid/app/Activity->onWindowFocusChanged() is used to monitor whether the Home button is269

be clicked or not. sendBroadcast() is used to send the fake click broadcast. The button can270

be disabled by means of calling these API sequences.271

RSRC = {rsrc = (psrc, insrc,< Asub, Rr >, sl) | l = 1, . . . , ‖sl‖} (7)

Rr ⊆ {ϕ, &, ‖} (8)

Asub ⊆ Ak = {a1, a2, . . . , ak | k = 1, . . . , ‖ak‖} (9)

272

3.2. Differences Between Ransomware and Goodwares273

In our research, we found that some ransomware and goodwares have some similar274

runtime behaviors. Some typical behaviors like device lock and files encryption are also275

exist in goodwares. For example, as shown in figure 1, screen beautification applications276

and time management applications have the function of locking device. And files277

management applications have the function of encrypting files.278

If the version of Android is version 4.0 and above, the method can be rewritten
similar to Listing 2.

Appl. Sci. 2021, 11, 6557 7 of 18

Listing 2. An example of OnAttachWindow.

Version July 14, 2021 submitted to Journal Not Specified 7 of 18

in Table 3, LayoutParams->FLAG_FULLSCREEN is used to suspend the interface as full screen.230

setCancelable() and setFlags() are used to suspend the interface as well, for the parameters231

of them have different meanings. Modifying the default parameter from True to False232

in setCancelable() means that users can’t press the external area of the dialog, using233

parameter 1024 in setFlags() means that the systemwindow will be set as a full-screen234

window.235

236
1 public void onAttachedToWindow(){237

2 this.getWindow().setType(WindowManager.LayoutParams.TYPE_KEYGUARD);238

3 super.onAttachedToWindow();239

4 }240241

Listing 1: An Example of OnAttachWindow

OnkeyDown() and OnAttachWindow() are used to disabled Home and Back buttons, for242

the Home button is the system button, the KeyEvent barely captures the click events, so243

developers need to rewrite the OnAttachWindow(). If the version of Android is version244

2.3 and below, the method can be rewritten like listing 1.If the version of Android is245

version 4.0 and above, the method can be rewritten like listing 2.246

If the version of Android is version 4.0 and above, the method can be rewritten247

like listing 2.248

249
1 public static final int FLAG_HOMEKEY_DISPATCHED = 0x80000000;250

2 public void onCreate(Bundle savedInstanceState){251

3 super.onCreate(savedInstanceState);252

4 this.getWindow().setFlags(FLAG_HOMEKEY_DISPATCHED,253

FLAG_HOMEKEY_DISPATCHED);254

5 setContentView(R.layout.main);}255256

Listing 2: An Example of OnAttachWindow

The OnKeyDown() will be rewritten like listing 3.257

258
1 public boolean onKeyDown(int keyCode, KeyEvent event){259

2 if (keyCode == event.KEYCODE_HOME){260

3 return true;261

4 }262

5 return super.o0nKeyDown(keyCode,event);263

6 }264

7 }265266

Listing 3: An Example of OnKeyDown

The API calling sequences shown in figure 3 are used to disable the Home but-267

tons. android.intent.category.Home is used to register the monitor of the Home button.268

Landroid/app/Activity->onWindowFocusChanged() is used to monitor whether the Home button is269

be clicked or not. sendBroadcast() is used to send the fake click broadcast. The button can270

be disabled by means of calling these API sequences.271

RSRC = {rsrc = (psrc, insrc,< Asub, Rr >, sl) | l = 1, . . . , ‖sl‖} (7)

Rr ⊆ {ϕ, &, ‖} (8)

Asub ⊆ Ak = {a1, a2, . . . , ak | k = 1, . . . , ‖ak‖} (9)

272

3.2. Differences Between Ransomware and Goodwares273

In our research, we found that some ransomware and goodwares have some similar274

runtime behaviors. Some typical behaviors like device lock and files encryption are also275

exist in goodwares. For example, as shown in figure 1, screen beautification applications276

and time management applications have the function of locking device. And files277

management applications have the function of encrypting files.278

The OnKeyDown() will be rewritten similar to Listing 3.

Listing 3. An example of OnKeyDown.

Version July 14, 2021 submitted to Journal Not Specified 7 of 18

in Table 3, LayoutParams->FLAG_FULLSCREEN is used to suspend the interface as full screen.230

setCancelable() and setFlags() are used to suspend the interface as well, for the parameters231

of them have different meanings. Modifying the default parameter from True to False232

in setCancelable() means that users can’t press the external area of the dialog, using233

parameter 1024 in setFlags() means that the systemwindow will be set as a full-screen234

window.235

236
1 public void onAttachedToWindow(){237

2 this.getWindow().setType(WindowManager.LayoutParams.TYPE_KEYGUARD);238

3 super.onAttachedToWindow();239

4 }240241

Listing 1: An Example of OnAttachWindow

OnkeyDown() and OnAttachWindow() are used to disabled Home and Back buttons, for242

the Home button is the system button, the KeyEvent barely captures the click events, so243

developers need to rewrite the OnAttachWindow(). If the version of Android is version244

2.3 and below, the method can be rewritten like listing 1.If the version of Android is245

version 4.0 and above, the method can be rewritten like listing 2.246

If the version of Android is version 4.0 and above, the method can be rewritten247

like listing 2.248

249
1 public static final int FLAG_HOMEKEY_DISPATCHED = 0x80000000;250

2 public void onCreate(Bundle savedInstanceState){251

3 super.onCreate(savedInstanceState);252

4 this.getWindow().setFlags(FLAG_HOMEKEY_DISPATCHED,253

FLAG_HOMEKEY_DISPATCHED);254

5 setContentView(R.layout.main);}255256

Listing 2: An Example of OnAttachWindow

The OnKeyDown() will be rewritten like listing 3.257

258
1 public boolean onKeyDown(int keyCode, KeyEvent event){259

2 if (keyCode == event.KEYCODE_HOME){260

3 return true;261

4 }262

5 return super.o0nKeyDown(keyCode,event);263

6 }264

7 }265266

Listing 3: An Example of OnKeyDown

The API calling sequences shown in figure 3 are used to disable the Home but-267

tons. android.intent.category.Home is used to register the monitor of the Home button.268

Landroid/app/Activity->onWindowFocusChanged() is used to monitor whether the Home button is269

be clicked or not. sendBroadcast() is used to send the fake click broadcast. The button can270

be disabled by means of calling these API sequences.271

RSRC = {rsrc = (psrc, insrc,< Asub, Rr >, sl) | l = 1, . . . , ‖sl‖} (7)

Rr ⊆ {ϕ, &, ‖} (8)

Asub ⊆ Ak = {a1, a2, . . . , ak | k = 1, . . . , ‖ak‖} (9)

272

3.2. Differences Between Ransomware and Goodwares273

In our research, we found that some ransomware and goodwares have some similar274

runtime behaviors. Some typical behaviors like device lock and files encryption are also275

exist in goodwares. For example, as shown in figure 1, screen beautification applications276

and time management applications have the function of locking device. And files277

management applications have the function of encrypting files.278

The API calling sequences shown in Listing 3 are used to disable the Home buttons.
android.intent.category. Home is used to register the monitor of the Home button.
Landroid/app/Activity->onWindowFocusChanged() is used to monitor whether the Home button is being
clicked or not. sendBroadcast() is used to send the fake click broadcast. The button can be
disabled by means of calling these API sequences.

RSRC = {rsrc = (psrc, insrc,< Asub, Rr >, sl) | l = 1, . . . , ‖sl‖} (7)

Rr ⊆ {ϕ, &, ‖} (8)

Asub ⊆ Ak = {a1, a2, . . . , ak | k = 1, . . . , ‖ak‖} (9)

3.2. Differences Between Ransomware and Goodware

In our research, we found that some ransomware and goodware applications have
similar runtime behaviors. Some typical behaviors such as device lock and files encryption
also exist in goodware applications. For example, as shown in Figure 1, screen beautification
applications and time management applications have the function of locking devices.
Furthermore, files management applications have the function of encrypting files.

Figure 1. Goodware applications have the function of locking devices.

We randomly selected 50 screen beautification applications, time management
applications, and 50 files management applications from the internet [33] and uploaded
them to VirusTotal [24]. The result showed that 10% of screen beautification and time
management applications were misjudged as ransomware, and 19% of the files management
applications were misjudged as ransomware. That is, the similar behaviors between the
two may make detectors identify some goodware applications as ransomware.

Appl. Sci. 2021, 11, 6557 8 of 18

In order to have a better knowledge of the differences between ransomware and
goodware applications, we analyzed the differences between device lock ransomware, files
encryption ransomware, and goodware applications.

3.2.1. Device Lock and Screen Resource Control Ransomware vs. Goodware Applications

As shown in Figure 2, though both ransomware and goodware applications apply
the permission of BIND_DEVICE_ADMIN to obtain super administrator rights and use lockNow()
to lock the device, there are some differences between them in runtime behaviors and
source code.

Figure 2. Differences between device lock ransomware and goodware applications.

As shown in formula (10) and formula (11), goodware applications with similar behaviors
to ransomware can be represented as GD&S, gD&S contains related permissions pD&S. and
typical API callings ak. The feature intersection of goodware applications and the union
of device lock ransomware and screen resource control ransomware applications include
android.permission.BIND_DEVICE_ADMIN, lockNow(), etc. For these goodware applications, only
reset the wrappers or extend the device unlock time according to the settings of users.
Though goodware applications monitor the Power Off buttons and lock the devices, they
do not reset the PINs, gesture passwords, or voiceprints of the devices, that is, users can
unlock their devices with their own passwords and use their devices normally.

GD&S = {gD&S = (pD&S , ak) | k = 1, . . . , ‖ak‖} (10)

GD&S ∩ (RDL ∪ RSRC) = {LockNow(),permission.BIND_DEVICE_ADMIN, . . .} (11)

The device-locking ransomware applications lock the device and modify the original
passwords. The device cannot be returned to the Home menu by clicking Home buttons
or Back Buttons. When the user presses the Power Off button, it can be hibernated as
normal. However, when the user tries to reset the device again, the device is still locked
by the ransomware application. In this way, the user has to pay ransom to receive the
correct password.

The screen resource control ransomware applications set their own activities as the
top-level activities by setting particular parameters in the bytecode. The ransomware
disables Home buttons and Back buttons, in addition to disabling Power Off buttons. In this
way, the ransomware forces the device to constantly operate without being hibernated and
forces users to pay ransom for the exit password. Some ransomware applications continue

Appl. Sci. 2021, 11, 6557 9 of 18

to suspend the interfaces although the users click the Home or Back buttons. Moreover, some
researchers also found some ransomware applications disable the USB of devices to prevent
users from uninstalling the application by ADB commands. The detailed differences
between device lock and screen resource ransomware and goodware applications are
shown in Table 4.

Table 4. Differences between device lock and screen resource control ransomware and goodware applications.

Ransomwares Goodwares
Device Lock Screen Resource Control

lock screen X 1
2 X

reset password X # #

top-level interface # - 3
#

constant appear # - #

disable Home Button X - #

disable Back Button X - #

disable USB interface - - #

lockNow() X # X

resetPassword() X # #

setCancelable() # - #

Window->setFlags(I,I),v2,v4,v4 X X #

OnkeyDown()/OnkeyUp() - X #

onAttachedToWindow() - X #

1!means this kind of applications have the feature. 2#means this kind of applications don’t have the feature. 3 - means this kind of
applications may have the feature.

3.2.2. Files Encryption Ransomware vs. Goodware Applications

As shown in Figure 3, both files encryption ransomware and files management
applications can encrypt privacy files of devices, but there is still some differences between
them in encrypt–decrypt mode.

Files management applications are a kind of privacy protection application. They
give the users encryption options and wait orders to encrypt the customized files. These
goodware applications show progress indicator bars to remind users of the current encryption
progresses, and give corresponding prompts after the encryption operation is completed.
Users can decrypt the files by the passwords they set.

Figure 3. Differences between files encryption ransomware and goodware applications.

Ransomware applications first loop the target files and automatically encrypt these
files in devices without any information. As shown in formula (12) and formula(13),
Emode represents the encryption mode of ransomware and ei represents the encryption

Appl. Sci. 2021, 11, 6557 10 of 18

process. R represents read operation, E represents encrypt operation, W represents write
operation, N represents new operation, D represents delete operation, RE represents
rename operation, and M represents move operation. In this paper, we mainly introduce
five encryption modes.

Emode = {e1, e2, e3, e4, e5} (12)

Emode =

R E W N D M RE
e1 1 1 1 0 0 0 0
e2 1 1 1 1 1 0 1
e3 1 1 1 1 1 0 0
e4 1 1 1 1 1 0 0
e5 1 1 1 0 0 1 0

 (13)

e1 represents the encryption mode that is reading files, encrypting data, and then
writing them back to the original files.

e2 represents the encryption mode that is reading files, encrypting data, creating new
files, writing encrypted data to the new files, and deleting original files.

e3 represents the encryption mode that is reading files, encrypting data, creating
new files, writing encrypted data to the new files, renaming the new files, and deleting
original files.

e4 represents the encryption mode that is reading files, deleting original files, encrypting
data, creating new files, and writing encrypted data to the new files.

e5 represents the encryption mode that is moving original files to other folders, reading
files, encrypting data, writing the encrypted data back to the original files, and moving the
files back to the original location.

The detailed differences between files encryption ransomware and files management
applications are shown in Table 5.

Table 5. Differences between files encryption ransomware and goodware applications.

Files Encryption Ransomwares Goodwares

Encrypt file X X

User can choose which file to encrypt # X

Can recover encrypted with password user set # X

Backstage encrypt files automatically X #

Has target default encryption type of file X #

EndecodeUtils.deCrypto() # X

Landroid/content/Intent->addCategory

X

Landroid/content/Intent->createChooser
Ljavax/crypto/Cipher->getInstance

Ljavax/crypto/Cipher-><init>
Ljavax/crypto/Cipher->doFinal

Ljavax/crypto/spec/SecretKeySpec-><init>

4. A Ransomware-Oriented Detector

In this section, we introduce a ransomware-behavior-pattern-based, multidimensional,
ransomware-oriented detection approach for mobile devices. It uses static analysis to
analyze the source code and extract features based on behavior patterns; it also uses the
form of binary feature to represent the feature information of samples and XGBoost to
classify samples.

4.1. Workflow

The detailed workflow of the ransomware-oriented detector is shown in Figure 4.
When an application needs to be tested, the AndroidManifest.xml and classes.dex

are first extracted from the apk file. Second, Androguard [34], a static analysis tool, is
used to extract features. Then, features are divided into two parts. For the features that do

Appl. Sci. 2021, 11, 6557 11 of 18

not need to be counted for their frequency, we use 1 to represent their existence and 0 to
represent the opposite. Next, all the features are combined to form the feature vectors and
use XGBoost to classify them. Lastly, the detector outputs the results of the detection.

Figure 4. Workflow of the behavior-based, ransomware-oriented detector.

4.2. Feature Extraction

With the help of Androguard [34], a tool that can read the binary format of Android
XML files(AXML) and decompile DEXfiles [35], we extracted features from
AndroidManifest.xml and classes.dex. The feature set contains sensitive strings set and
other features set.

Sensitive Strings Set. The sensitive strings mentioned in this paper mean constant
strings declared in the Dalvik bytecode. In order to better distinguish ransomware from
other applications, we segmented the constant strings based on the word segmentation
method in NLP. As shown in Algorithm 1, the steps of building sensitive strings set are
as follows.

(1) Segmentation. We used special characters such as " " for the baseline of the
segmentation. Tr represents the text set of ransomware after segmentation, and To represents
the text set of other applications after segmentation.

(2) Deletion. We removed some meaningless words from Tr and To. The meaningless
words include stop words such as a, the, and some obvious common words. We used T′r to
represent the ransom text set after deletion and used T′o to represent other text sets.

(3) Keywords Extraction. We used tf-idf to calculate the weight of each word in T ′r
and T′o. The result of tf-idf refers to whether the word has the discrimination between
ransomware and other applications. The weight can be expressed similar to formula
(14). The ti,j represents the number of the word t appears in T′r and in T′o. The ∑i t′ri + ∑j t′oj

represents the total words in both T′r and T′o. The ∑ilabelri represents the number of

Appl. Sci. 2021, 11, 6557 12 of 18

ransomware, and the ∑jlabeloj represents the number of other applications. The ∑i,jlabeltij

represents the number of applications containing the word t.

weight =
ti,j

∑i tri + ∑j toj
log

(
∑i labelri + ∑j labeloj

∑i,j labelti + 1

)
(14)

Algorithm 1 The algorithm of building sensitive strings set

Input: apks, label
Output: S

1: Tr ← Segment(apks, labelr)
2: To ← Segment(apks, labelo)
3: T′r ← Deletion(Tr, meaningless_word)
4: T′o ← Deletion(To, meaningless_word)
5: for t ∈ T′r ∪ T′o do

6: weight← ti,j
∑i tri+∑j toj

log
(

∑i labelri+∑j labeloj
∑i,j labelti+1

)
7: if weight > threshold then
8: S← S ∪ t
9: end if

10: end for
return S

Other Features Set. The algorithm of building other features set is shown in Algorithm
2. The other features set can be represented as set F. As shown in formula (15), fm contains
permissions, intents, API callings, and sensitive strings. The pi represents permissions,
a kind of the security model of Android. Permissions need to be declared before calling
sensitive APIs. The ini represents intents, the runtime binding mechanism of Android.
Intents are responsible for internal communication. The sl represents sensitive strings
related to ransom, which we obtained based on tf-idf.

Algorithm 2 The algorithm of building feature set

Input: apks
Output: F

1: S = Sensitive Strings Set Aggregation(apks, label)
2: for each apk do
3: F ← Extract(pi, inj, ak, sl)

4: < Asub, Rr >← Extract
(
ai, . . . , aj, ϕ, &, ‖

)
5: if F = ϕ,< Asub, Rr >= ϕ then
6: continue
7: else
8: F∪ < Asub, Rr >
9: end if

10: end for
return F

As shown in formula (16) and formula (17), Rr is the subset of {ϕ, &, ‖}. Asub is the
subset of Ak, and Ak represents the universal set of ak. The ak represents API callings,
which provide certain functions for developers to access a set of routines based on Android.
Developers can use different API calling sequences to implement different functions.

F =

{
fm =

(
pi , inj,< Asub, Rr >, sl

)
|

i = 1, . . . ,‖pi‖, j = 1, . . . ,
∥∥inj

∥∥, l = 1, . . . ,‖sl‖

}
(15)

Rr ⊆ {ϕ, &, ‖} (16)

Asub ⊆ Ak = {a1, a2, . . . , ak | k = 1, . . . , ‖ak‖} (17)

Appl. Sci. 2021, 11, 6557 13 of 18

4.3. Classification

In this paper, we transfer the extracted features to vectors. As shown in formulas
(18) and (19), Vec represents the vector set, containing a binary vector set and a value vector
set. Vecvalue represents the value vector set. The value of each dimension of the vector is
float. Vecbinary represents the binary vector set. The value of each dimension of the vector is
int. If Veci exists in the feature set, no matter how many times it appears in the application,
the value of Veci is 1. Otherwise, the value of Veci is 0.

Vec = Vecbinary ∪ Vecvalue (18)

Vecbinary =

{
veci =

{
0, notin f eatureset
1, inthe f eatureset

| i = 1, . . . , ‖veci‖
}

(19)

Next, we combined the two groups of features as a whole vector, which represents the
information of the application. Then, we used XGBoost, a supervised approach, to train the
ransomware-oriented detector. We divided the ransomware and goodware applications
into two parts, randomly used 80 percent of them to train, and used 20 percent of them
to test.

5. Evaluation

We conducted three experiments to evaluate its detection capability and efficiency.
To test the detection performance of KRDroid, we first evaluated it on a dataset with
ransomware and other samples. Then, we compared the ransomware detection capability
with HelDroid [19], a well-known ransomware detector and R-PackDroid [22], an on-device
ransomware detector.

5.1. Dataset

D represents the dataset we used in our experiment. As shown in formula (20), D

contains three datasets, D1, D2, and D3. D1 contains 1862 different kinds of ransomware
in the period of 2014–2021 collected from reference [24–26,36,37], including Koler, Locker,
PronDroid, Simplocker, Svpeng, Congur, Fusob, Jisut, Pigetrl, Rkor, Piom, and other types of
ransomware. As shown in Figure 5, D1 contains 425 ransomware applications in the period
of 2014–2015, 767 ransomware applications in the period of 2015–2016, 240 ransomware
applications in the period of 2017–2018, and 430 latest ransomware applications in the
period of 2021.1–2021.6. We used D1 to test the capability of KRDroid and evaluate whether
KRDroid can still identify unseen ransomware when facing the latest samples.

D2 contains 1000 different kinds of malware (except ransomware), including Smsreg,
a malware family that makes users register to premium services unknowingly, Windadware,
an adware family that delivers adwares to devices, Emial, a malware family that monitors
SMS messages on devices, Agentspy, a malware family that steals privacy information on
devices, DroidKungFu, a kind of remote command and control (C&C) servers Trojans and
other types of malware. We used D2 to evaluate whether KRDroid misjudges malware
as ransomware.

D3 contains 1697 goodware applications, including screen beautification applications,
files management applications, and other goodware applications. We used D3 to evaluate
whether KRDroid misjudges goodware applications as ransomware or misjudges ransomware
as goodware applications.

D = {D1, D2, D3} (20)

Appl. Sci. 2021, 11, 6557 14 of 18

Figure 5. The composition of dataset.

5.2. Evaluation Metrics

In order to give a better evaluation of experiment results, we calculated accuracy,
precision, recall, F1-score, false-positive rate, and false-negative rate for ransomware-oriented
detector. As shown in formula (21)–(26), accuracy represents the total number of correct
ransomware and other applications divided by the total number of classifications. Precision
represents the accuracy of the detector in terms of data. The recall represents the sensitivity
of the detector. F1-score represents the combination of precision and recall. False-positive
rate represents the rate by which the detector misjudges negative ones as positive ones.
False-negative rate represents the rate by which the detector misjudges positive ones as
negative ones. In formula (21)–(26), the following are included:

(1) TP: The number of true positives, which means the classification of the detector is
correct, and the application is ransomware;

(2)FP: The number of false positives, which means the classification of the detector is
incorrect, and the application is not ransomware;

(3) FN: The number of false negatives, which means the classification of the detector
is incorrect, and the application is ransomware;

(4) TN: The number of true negatives, which means the classification of the detector
is correct, and the application is not ransomware.

accuracy =
TP + TN

TP + TN + FP + FN
(21)

precision =
TP

TP + FP
(22)

recall =
TP

TP + FN
(23)

F1score = 2× Precision × Recall
Precision + Recall

(24)

false positive rate =
FP

TN + FP
(25)

false negative rate =
FN

TP + FN
(26)

5.3. Experiments

In this work, we will answer the following three questions to evaluate the detection
performance of KRDroid. For each question, we first describe an experiment and give the
corresponding results. Then, we provide a brief insight to summarize. The training dataset
of all the experiments is the same.

We used 1526 ransomware in the period of 2014–2015 from reference [36], including
Koler, Locker, PronDroid, Simplocker, Svpeng, and unlabeled ransomware applications as positive
samples to train KRDroid. We used 400 malware and 1200 goodware applications in
the period of 2014–2015 as negative samples to train KRDroid; in KRDroid, the issue is

Appl. Sci. 2021, 11, 6557 15 of 18

not to only distinguish ransomware from malware applications but rather to distinguish
ransomware from goodware applications.

In addition, we compared the MD5 of each sample in the test dataset with the training
dataset before we started experiments to make sure that all the samples in the test dataset
of the following experiments are different from samples used for training.

Q1: What is the ransomware detection capability of KRDroid?
Q2: Will KRDroid misjudge other malware applications as ransomware?
Q3: Is the efficiency of KRDroid acceptable?

5.3.1. RQ1: What Is the Detection Effect of KRDroid?

In this experiment, we took D1 and D3 as the dataset for testing. The test dataset
contains 1862 ransomware and 1697 goodware applications from reference [24–26,36–
38]. In order to better evaluate the capability of KRDroid, we compared KRDroid with
two ransomware-oriented detectors, HelDroid [36] and R-PackDroid [38]. HelDroid is a
well-known ransomware-oriented detector, and we reproduced HelDroid from reference [36].
R-PackDroid is an on-device Android ransomware-oriented detector, and it can be download
from reference [38]. The detailed result of this experiment is shown in Table 6.

Table 6. The comparison results of KRDroid, R-PackDroid, and HELDORID.

Model
Positive(TP+TN)

Negative(FP+FN) Accuracy Precision Recall F1-Score
Ransomware Goodware

HelDroid 1558 1397 604 83.03% 83.67% 83.85% 83.76%
R-PackDroid 1692 1613 254 92.86% 90.87% 95.27% 93.02%

KRDroid 1809 1665 95 97.33% 97.15% 97.73% 97.44%

HelDroid correctly identified 1558 ransomware and 1397 goodware applications.
The accuracy of HelDroid is 83.03%. R-PackDroid correctly identified 1692 ransomware and
identified 1613 goodware applications. The accuracy of R-PackDroid is 92.86%. KRDroid
correctly identified 1809 ransomware and 1655 goodware applications. The accuracy of
KRDroid is 97.33%. The precision, recall, and F1-score of KRDroid are also higher than the
two detectors.

We randomly sampled 46 true negatives and further analyzed the result of HelDroid.
After the real machine test and decompile analysis, we found that there were 28 samples in
46 true negatives cannot be detected because of the unseen languages. Nine ransomware
applications in the rest of the true negatives cannot be detected because of the unsuccessful
lock detection. All of these samples had already been detected as sensitive text. In addition,
we found that there were four samples in these nine ransomware applications that belong
to screen resource control ransomware. As we mentioned before, this kind of ransomware
does not need some real lock APIs such as lockNow() to reach their goals. The last nine
ransomware applications that are misjudged are true negatives, which had not been detected.

The goal of R-PackDroid is to use a compact set of information more than enough to
detect a wide variety of samples [22]. When building the detector, it uses the system
API package list to represent the application rather than building multidimensional
attack-pattern-based features. To some extent, it may cause some misjudgments because of
the lack of effective information.

In addition, as is aforementioned, ransomware in D1 is in the period of 2014–2021.6.
KRDroid has good performance on identifying unseen ransomware in this experiment,
which means that KRDroid is still valid when facing the latest samples in 2021.

Insight. Due to the accurate characterization and comprehensive behavior-based
features build of ransomware applications, KRDroid can detect ransomware by analyzing
source code. It detects ransomware by means of detecting ransom behaviors. In this
way, national languages requirements do not need to be taken into consideration during
detection.

Appl. Sci. 2021, 11, 6557 16 of 18

KRDoid has good generalization. It can identify unseen ransomware similar to the
training samples and can also identify unseen ransomware applications after they have
already evolved. To some extent, it can also show that our analysis and behavior-based
feature extraction of ransomware applications is valuable.

5.3.2. RQ2: Will KRDroid misjudge other malware applications as ransomware?

Since a ransomware application is a kind of malware, we still need to test that the
accuracy of KRDroid is independent of malware classification. We randomly sampled
1000 ransomware in D1 and randomly sampled 1000 goodware in D3. These samples are
collected from reference [24,26]. We used these samples and 1000 malware in D2 as the
dataset for test in this experiment. As mentioned above, all the applications in D2 are
malware, which is different from ransomware.

As shown in Figure 6, we found that there are 981 samples that can be correctly
identified as ransomware, and only 19 ransomware misjudged as non-ransomware. There
are 1986 samples that can be correctly identified as non-ransomware, and only
14 non-ransomware misjudged as ransomware. The false-positive rate of KRDroid is
1.94%, and the false negative rate is 0.7%.

Figure 6. The confusion matrix of experiment 2.

Insight. KRDroid is a ransomware-oriented detector rather than a malware detector.
It does not misjudge other malware applications as ransomware because other malware
applications do not have typical ransom behaviors.

5.3.3. Is the Efficiency of KRDroid Acceptable?

We measured the efficiency of KRDroid on 450 samples collected from Virustotal [24].
Meanwhile, we used the same test dataset to test the HelDroid. Because R-PackDroid is
an Android on-device detector, we did not take it into consideration. We assessed the
execution time of HelDroid and KRDroid by running it on six cores of a MacBook Pro
laptop containing an Intel Core i7 CPU 0.6 GHz processor.

The execution time of HelDroid was nearly 4 h 30 min, and the main bottleneck is the
locking strategies detection [19]. The average CPU usage of Heldroid is nearly 90%, and
memory usage is 18%. The execution time of KRDroid was nearly 5 s. The CPU usage of
KRDroid is 1.6%, and the memory usage is less than 1%.

Insight. The efficiency of KRDroid is acceptable for detecting large-scale applications.
It can detect a number of applications with fewer resources.

6. Limitations and Future Work

KRDroid is an Android ransomware-oriented detector that deploys on servers or PCs.
KRDroid detects ransomware applications based on behavior patterns with the help of
static analysis. Though KRDroid can identify most ransomware applications with less
time and high accuracy, and it can identify ransomware even if evolved, there is still some
ransomware applications that may be misjudged. Because these ransomware applications
are implemented with the help of obfuscation, steganography, reflection, and reinforcement
as goodware for these methods can prevent applications from being totally decompiled

Appl. Sci. 2021, 11, 6557 17 of 18

and KRDroid could not obtain some core codes of ransomware. In the future, we will pay
more attention to the detection of ransomware with code protection methods with the help
of dynamic analysis. In addition, our research only focused on ransomware applications
on Android. In the future, we will also turn our attention to the ransomware appoications
in other platforms.

In addition, how to stop or prevent ransomware on Android devices is very essential
for users. In our future work, we will pay our attention to on-device ransomware detectors
and real-time files and devices protection against ransomware on Android devices.

7. Conclusions

In this paper, we made a detailed analysis of three kinds of active ransomware
applications for mobile devices, including the different runtime behaviors and ransom
code. To ensure the extracted features have discrimination, we made a comparative
analysis to find out the differences between ransomware and goodware applications
with similar behaviors. Then, we proposed a ransomware-oriented detector with a
behavior-pattern-based multidimensional feature set. The detection can successfully
identify more ransomware applications and can also distinguish ransomware from goodware
with similar behaviors. It has a low false-positive rate and takes less time for detection.

Author Contributions: Conceptualization, S.W.; Data curation, S.W. and Z.J.; Funding acquisition,
J.G.; Investigation, T.T.; Methodology, S.Q.; Project administration, J.Q.; Resources, H.Z.; Software,
S.W.; Writing–original draft, S.W.; Writing—review and editing, S.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Key R&D Program of China under Grant
No. 2018YFB0804703.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported in part by the National Key R&D Program of China
under Grant No. 2018YFB0804703.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McAfee Labs 2017 Threats Predictions. 2017. Available online: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-

threats-predictions-2017.pdf (accessed on 12 July 2019).
2. Available online: https://www.coveware.com/blog/q2-2020-ransomware-marketplace-report (accessed on 1 December 2020).
3. Fake Super Mario Run App Steals Credit Card Information. 2017. Available online: https://blog.trendmicro.com/trendlabs-

security-intelligence/fake-super-mario-run-app-steals-credit-card-information/ (accessed on 21 April 2017).
4. McAfee Labs Threats Report. 2019. Available online: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-

threat-report-2019.pdf (accessed on 5 April 2020).
5. Avast Highlights the Threat Landscape for 2019. 2019. Available online: https://www.mcafee.com/enterprise/en-us/assets/

reports/rp-quarterly-threats-dec-2018.pdf (accessed on 5 April 2020).
6. Wu, P.; Liu, D.; Wang, J.; Yuan, B.; Kuang, W. Detection of Fake IoT App Based on Multidimensional Similarity. IEEE Internet

Things J. 2020, 7, 7021–7031. [CrossRef]
7. Fake Alexa Setup App Is Topping Apple’s App Store Charts. 2018. Available online: https://www.engadget.com/2018/12/27

/fake-alexa-app-topping-apple-app-store-charts/ (accessed on 2 March 2019).
8. Scam iOS Apps Promise Fitness, Steal MONEY instead. 2018. Available online: https://www.welivesecurity.com/2018/12/03

/scam-ios-apps-promise-fitness-steal-money-instead/ (accessed on 3 March 2019).
9. Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017, up 31 Percent from 2016. 2017. Available online:

Https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-
in-2017-up-31-percent-from-2016 (accessed on 9 July 2017).

10. Mohammad Mehdi, A.; Shahriari, H.R. 2entFOX: A framework for high survivable ransomwares detection. In Proceedings of the
2016 13th International Iranian Society of Cryptology Conference on Information Security and Cryptology (ISCISC), Tehran, Iran,
7–8 September 2016.

https://www.mcafee.com/enterprise/en-us/assets/reports/rp-threats-predictions-2017.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-threats-predictions-2017.pdf
https://www.coveware.com/blog/q2-2020-ransomware-marketplace-report
https://blog.trendmicro.com/trendlabs-security-intelligence/fake-super-mario-run-app-steals-credit-card-information/
https://blog.trendmicro.com/trendlabs-security-intelligence/fake-super-mario-run-app-steals-credit-card-information/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
http://doi.org/10.1109/JIOT.2020.2981693
https://www.engadget.com/2018/12/27/fake-alexa-app-topping-apple-app-store-charts/
https://www.engadget.com/2018/12/27/fake-alexa-app-topping-apple-app-store-charts/
https://www.welivesecurity.com/2018/12/03/scam-ios-apps-promise-fitness-steal-money-instead/
https://www.welivesecurity.com/2018/12/03/scam-ios-apps-promise-fitness-steal-money-instead/
Https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
Https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016

Appl. Sci. 2021, 11, 6557 18 of 18

11. Kharraz, A.; Arshad, S.; Mulliner, C.; Robertson, W.; Kirda, E. UNVEIL: A Large-Scale, Automated Approach to Detecting
Ransomware. Usenix Secur. Symp. 2016, 16, 757–772.

12. Continella, A.; Guagnelli, A.; Zingaro, G.; De Pasquale, G.; Barenghi, A.; Zanero, S.; Maggi, F. ShieldFS: A self-healing,
ransomware-aware filesystem. In Proceedings of the 32nd Annual Conference ACM, Los Angeles, CA, USA, 5–8 December 2016.

13. Song, S.; Bongjoon, K.; Sangjun, L. The Effective Ransomware Prevention Technique Using Process Monitoring on Android
Platform. Mob. Inf. Syst. 2016, 2016, 1–9. [CrossRef]

14. Sgandurra, D.; Munoz-Gonzalez, L.; Mohsen, R.; Lupu, E.C. Automated Dynamic Analysis of Ransomware: Benefits, Limitations
and use for Detection. arXiv 2016, arXiv:1609.03020.

15. Aurélien, P.; Le Bouder, H.; Lanet, J.L.; Le Guernic, C.; Legay, A. Ransomware and the Legacy Crypto API. In Proceedings of the
International Conference on Risks and Security of Internet and Systems 2017, Dinard, France, 19–21 September 2017.

16. Moore, C. Detecting Ransomware with Honeypot Techniques. In Proceedings of the Cybersecurity & Cyberforensics Conference
IEEE, Amman, Jordan, 2–4 August 2016

17. Cabaj, K.; Mazurczyk, W. Using Software-Defined Networking for Ransomware Mitigation: The Case of CryptoWall. IEEE Netw.
2016, 30, 14–20. [CrossRef]

18. Manabu, H.; Kobayashi, R. Machine Learning Based Ransomware Detection Using Storage Access Patterns Obtained From
Live-forensic Hypervisor. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems, Management
and Security (IOTSMS) IEEE, Granada, Spain, 22–25 October 2019.

19. Andronio, N.; Zanero, S.; Maggi, F. Heldroid: Dissecting and detecting mobile ransomware. In Recent Advances in Intrusion
Detection (RAID); Springer: Berlin/Heidelberg, Germany, 2015; pp. 382–404.

20. Zheng, C.; Dellarocca, N.; Andronio, N.; Zanero, S.; Maggi, F. Greateatlon: Fast, static detection of mobile ransomware. In
SecureComm, volume 198 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 617–636.

21. Gharib, A.; Ghorbani, A. DNA-Droid: A real-time android ransomware detection framework. In NSS 2017; LNCS; Yan, Z., Molva,
R., Mazurczyk, W., Kantola, R., Eds.; Springer: Cham, The Natherland, 2017; Volume 10394, pp. 184–198.

22. Michele, S.; Davide, M.; Francesco, M.; Corrado, V.A.; Fabio, M.; Giorgio, G. R-PackDroid: Practical On-Device Detection of
Android Ransomware. In SAC 2017; ACM: Marrakech, Morocco, 2017.

23. Azmoodeh, A.; Dehghantanha, A.; Conti, M.; Choo, K.K.R. Detecting crypto-ransomware in IoT networks based on energy
consumption footprint. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 1141–1152. [CrossRef]

24. Available online: https://www.virustotal.com/gui/contact-us/technical-support (accessed on 2 August 2019).
25. Available online: http://amd.arguslab.org (accessed on 20 December 2020).
26. Available online: https://koodous.com/ (accessed on 20 December 2020).
27. Ko, J.; Jo, J.; Kim, D.; Choi, S.; Kwak, J. Real Time Android Ransomware Detection by Analyzed Android Applications. In

Proceedings of the 2019 International Conference on Electronics, Information, and Communication (ICEIC), Auckland, New
Zealand, 22–25 January 2019; pp. 1–5. [CrossRef]

28. Abdullah, Z.; Muhadi, F.W.; Saudi, M.M.; Hamid, I.R.A.; Foozy, C.F.M. Android Ransomware Detection Based on Dynamic
Obtained Features. In Recent Advances on Soft Computing and Data Mining; SCDM 2020; Advances in Intelligent Systems and
Computing; Ghazali, R., Nawi, N., Deris, M., Abawajy, J., Eds.; Springer: Cham, The Natherlaand, 2020; Volume 978.

29. Chen, J.; Wang, C.; Zhao, Z.; Chen, K.; Du, R.; Ahn, G.J. Uncovering the Face of Android Ransomware: Characterization and
Real-time Detection. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1286–1300. [CrossRef]

30. Bibi, I.; Akhunzada, A.; Malik, J.; Ahmed, G.; Raza, M. An Effective Android Ransomware Detection Through Multi-Factor
Feature Filtration and Recurrent Neural Network. In Proceedings of the 2019 UK/ China Emerging Technologies (UCET),
Glasgow, UK, 21–22 August 2019; pp. 1–4. [CrossRef]

31. Karimi, A.; Moattar, M.H. Android ransomware detection using reduced opcode sequence and image similarity. In Proceedings
of the 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 26–27 October 2017;
pp. 229–234. [CrossRef]

32. Available online: https://blogs.uni-paderborn.de/sse/tools/flowdroid/ (accessed on 3 February 2020).
33. Available online: https://developer.android.google.cn/ (accessed on 3 February 2020).
34. Available online: https://github.com/androguard/androguard (accessed on 11 December 2019).
35. Available online: https://developer.android.google.cn/reference/dalvik/system/DexFile (accessed on 3 February 2020).
36. Available online: https://github.com/necst/heldroidlynomials (accessed on 5 August 2020)
37. Available online: https://appstore.anva.org.cn/homePage/webinfoCommonList/1 (accessed on 30 June 2021).
38. Available online: http://prag.diee.unica.it/it/RPackDroid (accessed on 1 January 2020).

http://dx.doi.org/10.1155/2016/2946735
http://dx.doi.org/10.1109/MNET.2016.1600110NM
http://dx.doi.org/10.1007/s12652-017-0558-5
https://www.virustotal.com/gui/contact-us/technical-support
http://amd.arguslab.org
https://koodous.com/
http://dx.doi.org/10.23919/ELINFOCOM.2019.8706349
http://dx.doi.org/10.1109/TIFS.2017.2787905
http://dx.doi.org/10.1109/UCET.2019.8881884
http://dx.doi.org/10.1109/ICCKE.2017.8167881
https://blogs.uni-paderborn.de/sse/tools/flowdroid/
https://developer.android.google.cn/
https://github.com/androguard/androguard
https://developer.android.google.cn/reference/dalvik/system/DexFile
https://github.com/necst/heldroidlynomials
https://appstore.anva.org.cn/homePage/webinfoCommonList/1
http://prag.diee.unica.it/it/RPackDroid

	Introduction
	Related Research
	Ransomware Detection Based on I/O
	Ransomware Detection Based on Dynamic Analysis
	Ransomware Detection Based on Static Analysis

	Characterization of Ransomware
	Analysis of Different Kinds of Ransomware
	Device Lock Ransomware
	Files Encryption Ransomware
	Screen Resource Control Ransomware

	Differences Between Ransomware and Goodware
	Device Lock and Screen Resource Control Ransomware vs. Goodware Applications
	Files Encryption Ransomware vs. Goodware Applications

	A Ransomware-Oriented Detector
	Workflow
	Feature Extraction
	Classification

	Evaluation
	Dataset
	Evaluation Metrics
	Experiments
	RQ1: What Is the Detection Effect of KRDroid?
	RQ2: Will KRDroid misjudge other malware applications as ransomware?
	Is the Efficiency of KRDroid Acceptable?

	Limitations and Future Work
	Conclusions
	References

