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Abstract: Foraminifera are single-celled marine organisms that construct shells that remain as fossils
in the marine sediments. Classifying and counting these fossils are important in paleo-oceanographic
and -climatological research. However, the identification and counting process has been performed
manually since the 1800s and is laborious and time-consuming. In this work, we present a deep
learning-based instance segmentation model for classifying, detecting, and segmenting microscopic
foraminifera. Our model is based on the Mask R-CNN architecture, using model weight parameters
that have learned on the COCO detection dataset. We use a fine-tuning approach to adapt the
parameters on a novel object detection dataset of more than 7000 microscopic foraminifera and sedi-
ment grains. The model achieves a (COCO-style) average precision of 0.78 on the classification and
detection task, and 0.80 on the segmentation task. When the model is evaluated without challenging
sediment grain images, the average precision for both tasks increases to 0.84 and 0.86, respectively.
Prediction results are analyzed both quantitatively and qualitatively and discussed. Based on our
findings we propose several directions for future work and conclude that our proposed model is an
important step towards automating the identification and counting of microscopic foraminifera.

Keywords: foraminifera; instance segmentation; object detection; deep learning

1. Introduction

Foraminifera are microscopic (typically smaller than 1 mm) single-celled marine or-
ganisms (protists) that are ubiquitous in marine environments. During their life cycle,
they construct shells from various materials that readily fossilize in sediments, which
can be extracted and examined. Roughly 50,000 species have been recorded, of which
approximately 9000 are living today [1]. Foraminiferal shells are abundant in both modern
and ancient sediments. The foraminiferal faunal composition/abundance and chemical
composition within shells reflect the ambient environment in which they live and, when
fossilized, constitute records of past marine conditions. This makes the application of
foraminifera valuable across many diverse fields of geoscientific inquiry within both in-
dustry and science. The applications include but are not limited to: (1) establishing of
the overall foraminiferal concentration, abundance within groups (e.g., planktic, benthic
calcareous and benthic agglutinated), and shell fragmentation to infer primary produc-
tivity of the water mass, calcium carbonate dissolution, and preservation state within
sediments [2,3]; (2) usage of established modern foraminiferal distribution (e.g., Sejrup
et al. [4]) for transfer function-based reconstruction of paleoenvironmental and paleowater
mass property reconstruction [5,6]; (3) measurement of radiocarbon and stable isotopic-
and trace element composition in shell material, used for dating, chemostratigraphy, and
reconstruction of past climate and ocean conditions, including temperature, salinity, circu-
lation, and ice volume [7]; (4) usage of foraminiferal fauna composition and index species
as bio-indicators for timing, impact, and recovery related to anthropogenically introduced
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stress to the marine environment [8] and interpreting the ages and paleoenvironments of
sedimentary strata in oil wells via biostratigraphy [9].

After a sediment core has been retrieved from the seabed, a range of procedures
are performed in the laboratory before the foraminiferal specimens can be identified and
extracted under the microscope by a geoscientist using a brush or needle. From each core,
several layers are extracted, and each layer is regarded as a sample. To establish a statisti-
cally robust representation of the fauna, 300–500 specimens are identified and extracted per
sample. The time-consumption of this task is 2–8 h/sample, depending on the complexity
of the sample and the experience level of the geoscientist. A typical study consists of
100–200 samples from one or several cores, and the overall time-consumption in just identi-
fying the specimens is vast. Recently developed deep learning models show promising
results towards automating parts of the identification and extraction process [10–14].

Figure 1 shows an example of a prepared foraminifera sample—microscopic objects
spread out on a plate and photographed through a microscope. Of particular interest
is the classification of each object into high-level foraminifera classes, which then serves
as input for estimation of the environment in which sediment was produced. This task
consists of identifying relevant objects, particularly separate sediment from foraminifera,
and recognize foraminifera classes based on shapes and structures of each object.

First acquisition setup Second acquisition setup

Figure 1. Examples of images from the two different image acquisition setups used during three data
collection phases. The visible area in each image is approximately 10 mm× 10 mm and the scale bars
correspond to 1000 µm. (Left): Calcareous benthics photographed with the first acquisition setup
used during the first data collection phase. (Right): Calcareous benthics photographed with the
second acquisition setup used during the second and third data collection phases.

Object classification in images is one of the great successes of deep learning, and con-
quer new applications as new methods are developed and high-quality data are made
available for training and testing. In a deep learning context, a core task of object classifica-
tion is instance segmentation. Not only must the objects be separated from the background,
but the objects themselves must be separated from each other, so that adjacent objects are
identified, and not treated as one single object.

Automatic foraminifera identification has great practical potential for three main rea-
sons. Firstly, the time saved for highly qualified personnel is substantial, which can then be
made available for other tasks. Secondly, it is the overall proportion of foraminifera classes
that is the primary interest, and it is, therefore, robust to the occasional misclassification,
as opposed to, e.g., cancer detection, where overlooking a small region of cancer cells
can be fatal. Finally, the availability of deep learning algorithms that integrates object
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detection, instance segmentation, and object classification makes the creation of such a
method feasible.

The lack of publicly available datasets for this particular deep learning application has
been an obstacle, but, with a curated private dataset, soon-to-be published, there is now an
opportunity to investigate the potential of applying deep learning to foraminifera classifi-
cation.

The manuscript is organized as follows:
In Section 2.1, we describe the acquisition and preparation of the dataset, and its

final attributes. In Section 2.2, we give an overview of the Mask R-CNN model applied to
foraminifera images. In Section 2.3, we give a detailed description of the experimental setup.
To present the results, we have chosen to include training behavior (Section 3.1), since this
is a first attempt for foraminifera application. Further, we give a detailed presentation of the
performance from various aspects and different thresholds (Section 3.2) for a comprehensive
understanding of strengths and weaknesses. Section 4 then emphasizes and discusses the
most interesting findings, both in terms of promising performance and in terms of future
work (Section 4.1). We round off with a conclusion (Section 5) to condense the discussion
into three short statements.

2. Materials and Methods

The work presented in this article was performed in two distinct phases: first, a novel
object detection dataset of microscopic foraminifera was created, and then a pre-trained
Mask R-CNN model [15] was adapted and fine-tuned on the dataset.

2.1. Dataset Curation

All presented materials (foraminifera and sediment) were collected from sediment
cores retrieved in the Arctic Barents Sea region. The specimens were picked from sediments
influenced by Atlantic, Arctic, polar, and coastal waters representing different ecological
environments. This was done to ensure good representation of the planktic and benthic
foraminiferal fauna in the region. Foraminiferal specimens (planktics, benthics, aggluti-
nated benthics) were picked from the 100 µm to 1000 µm size fraction of freeze dried and
subsequently wet sieved sediments. Sediment grains representing a common sediment
matrix were also sampled from the 100 µm to 1000 µm size range. Additional details about
the sediment cores and materials can be found in Appendix B.

The materials were prepared and photographed at three different points in time,
with two slightly different image acquisition systems. During the first two rounds of
acquisition, every image contains either pure benthic (agglutinated or calcareous), planktic
assemblages, or sediment grains containing no foraminiferal specimens. In other words,
each image contained only specimens belonging to one of four high-level classes: agglu-
tinated benthic, calcareous benthic, planktic, and sediment grain. This approach greatly
simplified the task of labeling each individual specimen with the correct class. Examples of
specimens from each of the four high-level classes can be seen in Figure 2. In order to better
mimic a real-world setting with mixed objects, the third acquisition only contained images
where there was a realistic mixture of the four object classes. To get the necessary level of
magnification and detail, four overlapping images were captured from the plates on which
the specimens were placed, where each image corresponded to a distinct quadrant of the
plate. The final images were produced by stitching together the mosaic of the four partially
overlapping images.
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Calcareous benthicsAgglutinated benthics

Planktics Sediment grains

Figure 2. Examples of the four high-level classes of specimens found in the dataset.

All images from the first acquisition were captured with a 5 megapixel Leica Microsys-
tems (Austria, Vienna) DFC450 digital camera mounted on a Leica Microsystems Z16 APO
fully apochromatic zoom system. The remaining two acquisitions were captured using
a 51 megapixel Canon (Tokyo, Japan) EOS 5DS R camera mounted on a Leica Microsys-
tems M420 macroscope. The same Leica Microsystems CLS 150x (twin goose-neck combi-
nation light guide) was used for all acquisitions, but with slightly different settings. No
illumination nor color correction was performed, in an attempt to mimic a real-world
scenario of directly detecting, classifying, and segmenting foraminifera placed under a
microscope. Examples of the differences in illumination settings can be seen in Figure 1.

To create the ground truth, a simple, yet effective, hand-crafted object detection
pipeline [14] was run on each image, which produced initial segmentation mask candidates.
The pipeline consisted of two steps of Gaussian smoothing, then grayscale thresholding fol-
lowed by a connected components approach to detect individual specimens. Some parame-
ters, such as the width of Gaussian filter kernel, as well as threshold levels, were hand-tuned
to produce good results for each image in the dataset. A simple illustration of the prepro-
cessing pipeline can be seen in Figure 3. For full details, see Johansen and Sørensen [14].

Mask PreviewsInput Image Binary Masks
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"filename": "benthic.png",
"size": 54938342,
"regions": [{
  "shape_attributes": {
    "name": "polygon",
    "all_points_x": [...],
    "all_points_y": [...]
  },
  "region_attributes": {
    "category": "2"
  }, ...

Figure 3. High-level summary of the dataset creation pipeline.

After obtaining the initial segmentation mask dataset, all masks were manually veri-
fied and adjusted using the VGG Image Annotator [16,17] software. Additionally, approx-
imately 2000 segmentation masks were manually created (using the same software) for
objects not detected by the detection pipeline. The end result is a novel object detection
dataset consisting of 104 images containing over 7000 segmented objects. Full details on
the final dataset can be found in Table 1.
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Table 1. Detailed breakdown of the object dataset, where each row holds information for a specific
microscope image acquisition phase. The first and second phases contain only “pure” images
where every object is of a single class, whereas the third phase images contain only mixtures of
several classes.

Phase Images Objects
Objects per Class

Agglutinated Benthic Planktic Sediment

First 48 3775 172 897 726 1980
Second 41 2604 583 695 657 669
Third 15 633 154 156 155 168

Combined 104 7012 909 1748 1538 2817

2.2. Instance Segmentation Using Deep Learning

Mask R-CNN [15] is a proposal-based deep learning framework for instance segmen-
tation, and it is an extension to Fast/Faster R-CNN [18,19]. In the Fast/Faster R-CNN
framework the model has two output branches, one that performs bounding box regression
and another that performs classification. The input to these two branches are pooled
regions of interest (RoIs) produced from features extracted by a convolutional neural
network (CNN) backbone. This is extended in Mask R-CNN by adding an extra (decou-
pled) output branch, which predicts segmentation masks on each RoI. Figure 4 shows
a simple, high-level representation of the Mask R-CNN model architecture. Several al-
ternatives to Mask R-CNN exist, such as PANet [20], TensorMask [21], CenterMask [22],
and SOLOv2 [23]. We chose to use the Mask R-CNN framework for two key reasons: (1) it
predicts bounding boxes, class labels, and segmentation masks at the same time in a single
forward-pass, and (2) pre-trained model parameters are readily available, removing the
need to train the model from scratch.

ResNet-50 FPN
Feature Maps

Region
Proposals Prediction Branches

Mask

Class

Box

Prediction
Visualization

Figure 4. Simple, sketch-like depiction of the Mask R-CNN model architecture.

Due to its flexible architecture, there are numerous ways to design the feature extrac-
tion backbone of a Mask R-CNN model. We chose a model design based on a ResNet-50 [24]
Feature Pyramid Network (FPN) [25] backbone for feature extraction and RoI proposals.
To avoid having to train the model from scratch, we applied model parameters pre-trained
on the COCO dataset [26]. The object detection model and all experiment code was imple-
mented using Python 3.8, PyTorch 1.7.1 [27], and torchvision 0.8.2. The pre-trained model
weights were downloaded via the torchvision library.
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2.3. Experiment Setup and Training Details

The original Mask R-CNN model was trained using 8 GPUs and a batch size of
16 images, with 2 images per GPU. We did not have access to that kind of compute re-
sources, and were instead limited to a single NVIDIA TITAN Xp GPU, which also meant
our training batches only consisted of a single image. The end result of this was slightly
more unstable loss terms and gradients, so we carefully tested many different optimization
methods, learning rates, learning rate scheduling, and so on.

The dataset was split (with class-level stratification) into separate training and test
sets, using a 2.47:1 ratio, which produced 74 training images and 30 test images. The
training and test sets remained the same for all experiments. During training, images
were randomly augmented, which included horizontal and vertical flipping, brightness,
contrast, saturation, hue, and gamma adjustments. (The validity of flipping in this context
w.r.t. biological handedness is discussed in Section 4.1.2.) Both the horizontal and vertical
flips were applied independently, with a flip probability of 50% for both cases. Brightness
and contrast factors were randomly sampled from [0.9, 1.1], the saturation factor from
[0.99, 1.01], and hue from [−0.01, 0.01]. For the random gamma augmentation, the gamma
exponent was randomly sampled from [0.8, 1.2].

We ran the initial experiments using the Stochastic Gradient Descent (SGD) optimiza-
tion method with Nesterov momentum [28] and weight decay. The learning rates tested
were

{
10−3, 5×10−3, 10−5}, and the momentum parameter was set 0.9. For weight decay,

we tested the values
{

0, 10−4, 10−5, 5×10−5}. In some experiments, the learning rate was
reduced by a factor of 10 after either 15 or 25 epochs. Training was stopped after 50 epochs.
After the initial experiments with SGD, we tested the Adam [29] optimization method.
We tested the learning rates

{
10−3, 10−4, 10−5, 10−6}. The weight decay parameter values

were
{

0, 10−4, 10−6}. We used the same scheduled learning rate decay as with SGD for the
initial experiment, and training was stopped after 50 epochs.

From on our initial experiments with SGD and Adam, we saw that the latter gave
more stable loss terms during training. Based on this discovery, we also experimented
with a recent variant of the Adam optimizer with decoupled weight decay, referred to as
AdamW [30], since we believed it would further stabilize and improve model training. We
implemented a slightly adjusted scheduled learning rate decay, with a factor of 10 reduction
after both 25 and 45 epochs of training. Because we used model parameters pre-trained on
the COCO dataset, we also ran experiments with fine-tuning the backbone model to adapt
it to our target domain. For the fine-tuning experiments, we tested when to “freeze” and
“unfreeze” the backbone model parameters, i.e., when to fine-tune the backbone, as well as
which layers of the backbone to fine-tune.

Based on all probing experiments and the hyperparameter tuning, our final model was
trained using AdamW for 50 epochs. During the first 25 epochs of training, the last three
ResNet-50 backbone layers were fine-tuned, and then they were subsequently frozen. The
initial learning rate was set to 10−5 and was reduced to 10−6 after 25 epochs, and further
reduced to 10−7 after 45 epochs. We set the weight decay parameter to 10−4. Using this
configuration, we trained the model 10 times using different random number generator
states to ensure valid results and to measure the robustness of the model.

3. Results

Model performance is evaluated using the standard COCO metrics for object detection
and instance segmentation [31]. Specifically, we are using the average precision (AP) and
average recall (AR) metrics averaged over 10 intersection-over-union (IoU) thresholds and
all classes, where the IoU thresholds range from 0.5 to 0.95 in increments of 0.05. We also use
the more traditional definition of AP, which is evaluated at a specific IoU, e.g., AP50 denotes
the AP evaluated with an IoU of 0.5. Additionally, we present conventional precision-recall
curves with different evaluation configurations, e.g., per-class, per-IoU, and so forth. All
presented precision and recall results were produced by evaluating models on the test
split of the dataset. The mean precision and recall scores for repeated training runs are
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presented without the standard deviation since this fell below the significance level of all
presented results.

The precision and recall are calculated as a combination of detection and classification.
The ground truth consists of a segmentation mask, its minimum enveloping rectangle,
and the object class. The corresponding output is a segmentation mask, a bounding box,
and the object label. Note that the bounding box is not necessarily the minimum rectangle
of the segmentation mask, and we report the results separately.

In the bounding box setting, a detection is defined as an IoU between a bounding
box and a minimum rectangle above a pre-specified threshold. A true positive (TP) is a
detected object with label identical to the object class. A false positive (FP) has either no
IoU above the specified threshold, or its IoU is with an object with a different class. A
false negative (FN) is an undetected object. TP, FP, and FN are defined correspondingly in
the segmentation mask setting, with IoU calculated w.r.t. the ground truth mask and the
output mask.

3.1. Model Training

During training, all training losses were carefully monitored and reported both per-
batch and per-epoch. Four of the key loss terms for the Mask R-CNN model can be seen in
Figure 5, where each curve represents one of the 10 repeated training runs, with different
initial random state. At the end of every training epoch, we evaluated the model perfor-
mance in terms of the AP metric for both the detection and segmentation task on the test
images. The per-epoch results for all 10 runs can be seen in Figure 6.
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Figure 5. Evolution of the individual loss terms for each of the 10 training runs. (Top left): The loss
term for the RPN box regression sub-task. Fairly rapid convergence, but we can see the effect of the
single-image batches in the curves. (Top right): Bounding box regression loss for the detection branch.
The convergence is slower when compared to the RPN loss, and perhaps slightly less stable. (Bottom
left): Object classification loss for the detection branch. A similar story can be seen here as with the
bounding box regression, which suggests a possible challenge with the detection branch. (Bottom
right): The segmentation mask loss for the segmentation branch. Fast convergence, but, again, we
see the effect of the single-image training batches.
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Figure 6. Evolution of the AP for both the detection and segmentation task, for each of the 10 runs, per
epoch of training. Note that these results are based on evaluations using a maximum of 100 detections
per image. (Left): The AP for the detection (bounding box) task. A plateau is reached after about
30 epochs. (Right): The AP for the segmentation mask task. We observe that the same type of plateau
is reached here as with the detection task.

These results indicate that, even though we reached some kind of plateau during
training, we did not end up overfitting or otherwise hurt the performance on the test
dataset. The AP for both tasks also reach a plateau, which is almost identical for all of the
learned model parameters. This suggests that the training runs reached an upper limit on
performance given the dataset, model design, and hyperparameters.

3.2. Evaluating the Model Performance

After the 10 training runs had concluded, we evaluated each model on the test data
using their respective parameters from the final training epoch. Note that all precision
and recall evaluations presented from this point onward are based on a maximum of
256 detections per image, which is an increase from the maximum of 100 detections per
image used during training due to lower computational costs and faster evaluation. The
mean AP across all of the 10 run was evaluated as 0.78 for the detection task, and 0.80 for
the segmentation task. Table 2 shows a summary of the AP and AR metrics for both tasks,
where each result is the mean and standard deviation of all training runs. Note that this
table shows results averaged over all four classes, as well as with the “sediment” class
omitted from each respective evaluation, which will be discussed later.

Table 2. AP and AR scores for different IoU thresholds, evaluated with all object classes being
considered and with the “sediment” class excluded.

All Classes Sans “Sediment” Class

Bound. Box Segm. Mask Bound. Box Segm. Mask

AP50 0.90 0.90 0.94 0.95
AP75 0.88 0.90 0.94 0.94
AP 0.78 0.80 0.84 0.86

AR 0.83 0.84 0.89 0.90

The precision-recall curves computed by averaging over all 10 training runs can be
seen in Figure 7. Note the sharp and sudden drop in the curve around the recall threshold
of 0.75, for both tasks.
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Figure 7. The mean average precision-recall curves for the 10 training runs, for both the detection
and segmentation tasks. The area-under-the-curve (AUC) shown here is the same as our definition of
AP, which can be seen in Table 2.

In order to investigate the sharp drop in precision and recall, we computed per-class
precision and recall; the results can be seen in Figure 8. From the curves in the figure, it is
clear that the model is finding the “sediment” class particularly challenging. Notice how
the precision rapidly goes towards zero slightly after the recall threshold of 0.75.
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Segmentation mask

agglutinated
benthic
planktic
sediment

Figure 8. Precision-recall curves for each of the four object classes. (Left): Per-class curves for
the detection (bounding box) task. Performance is approximately the same for the “agglutinated”,
“benthic”, and “planktic” classes, but it is significantly worse for the “sediment” class. (Right): The
per-class curves for the segmentation task, which tells the same story as for the detection task.

We also wanted to determine how well the model performed at different IoU thresh-
olds, so precision and recall were evaluated for the IoU thresholds {0.5, 0.75, 0.85, 0.95}.
Figure 9 shows the precision-recall curves for all object classes, and Figure 10 shows the sans
“sediment” class curves. From these results, it is clear that the model performs quite well at
IoU thresholds up to and including 0.85, but, at 0.95, the model does not perform well.

Based on the per-class and per-IoU results, it became evident that some test images
containing only “sediment” class objects were particularly challenging. This can in part
be explained by the object density in these images, with multiple objects sometimes over-
lapping or casting shadows on each other. In the COCO context, these types of object
clusters are referred to as a “crowd”, and they receive special treatment during evaluation.
Importantly, none of the objects in our dataset have been annotated as being part of a
“crowd” due to the resources required to annotate more than 7000 objects based on their
proximity to other objects with sufficient precision and recall. Some examples of these
dense object clusters can be seen in Figures A2 and A3. By removing the “sediment” class
from the evaluation, the AP score for the bounding box increased to 0.84, and for instance
segmentation it increased to 0.86. Recall also increased significantly, which means that
more target objects were correctly detected and segmented. This increase can also be seen
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by comparing the per-IoU curves shown in Figure 10 with those in Figure 9, as well as the
results presented in Table 2.
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Figure 9. Precision-recall curves at different IoU thresholds, where each curve is based on the average
for all four object classes. (Left): PR curves for the detection (bounding box) task. There is a sharp
drop in precision at the approximate recall thresholds {0.65, 0.74, 0.8}, which corresponds to the
lower precision of the “sediment” class. (Right): The same drop in precision is observer for the
predicted masks, which can again be explained by the performance on the “sediment” class.
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Figure 10. The average PR curves without the “sediment” class, at different IoU thresholds for both
tasks. (Left): Without the “sediment” class, the curves for thresholds {0.5, 0.75, 0.85} are almost
identical, whereas there is still a major decrease for the 0.95 IoU threshold. (Right): The PR curves for
the segmentation task paint the same picture as for the detection task, indicating that few predictions
are correct above 0.95 IoU, and that very many targets are not being predicted.

3.3. Qualitative Analysis of Predictions

When evaluating the predictions manually, it became apparent that the overall ac-
curacy and quality of the segmentation masks produced by the model are good. The
boundary of the masks quite precisely delineates the foraminifera and sediment grains
from the background. For the most part, the predicted bounding boxes correspond well
with the masks. One of the biggest challenges seems to lie in the classification of object
labels; there are (for trained observers) many obvious misclassifications. The exact cause is
somewhat uncertain, but, in many cases, the objects are relatively small and feature-less.
It is not hard to imagine how a feature-less planktic foraminifera can be misclassified as
benthic, especially if the object is small. Other cases of misclassifications are likely caused
by a lack of training examples; many seem like out-of-distribution examples due to the
high confidence score. Examples of predictions can be seen in Figures 11 and 12.



Appl. Sci. 2021, 11, 6543 11 of 18

Predictions for benthic specimens Predictions for mixed specimens

Figure 11. Examples of predictions for two images from the test dataset. (Left): Predictions for purely
calcareous benthic specimens. The accuracy and quality of the predicted masks and bounding boxes
are good, but there are several misclassified objects. (Right): Predictions for a mixture of specimen
types. The accuracy and quality of the predicted masks and bounding boxes are good. However,
there are misclassified detections for this image, as well.

Predictions for planktic specimens Predictions for agglutinated specimens

Figure 12. Additional examples of predictions for two images from the test dataset. (Left): Predictions
for purely planktic specimens. There are a few false positives, but the accuracy and quality of true
positive detections are good. Note that some objects that have been misclassified. (Right): Predictions
for purely agglutinated benthic specimens. Good accuracy and quality of predicted masks and
bounding boxes the majority of detections. However, low quality masks and misclassified detections
are visible.

4. Discussion

The results presented clearly show that a model built on the Mask R-CNN architecture
is capable of performing instance segmentation of microscopic foraminifera. Using model
parameters pre-trained on the COCO dataset, we adapted and fine-tuned the model for
our novel dataset and achieved AP scores of 0.78 and 0.80 on the bounding box and
instance segmentation tasks, respectively. There were significant increases in precision
and recall when going from averaging over all IoU thresholds (i.e., AP and AR) to specific
IoU thresholds. When evaluated with an IoU of 0.5, precision increased to 0.90 for both
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tasks, and, with an IoU of 0.75, the precision was 0.88 for the detection task and 0.90 for
the segmentation task. This means that predicting bounding boxes and segmentation
masks that almost perfectly overlap with their respective ground-truth is challenging for
the given dataset, and possibly for the model architecture or hyperparameters. In all
manual annotated datasets, there is the occasional error, both in terms of inaccuracies at
the pixel-level, but also potential false positives or false negatives, meaning that achieving
perfect predictions are very unlikely. Importantly, depending upon the specific application
of an instance segmentation model, pixel-perfect predictions might not be a necessity.

Omitting the “sediment” class also lead to significant increases in model performance,
which can be explained by the challenging nature of some test images that contained very
dense clusters of sediment grains. This can in part be mitigated in practical applications
by ensuring objects are not clustered, but, ideally, this also should be addressed at the
model-level. It is possible that this can, to some extent, be overcome by introducing much
more training examples with crowded scenes, as well as correctly annotating all objects as
being in a crowd. Additionally, it is possible that the issue can also be reduced by tuning
the hyperparameters of the Mask R-CNN architecture.

Both quantitative and qualitative analysis of the predicted detections and segmen-
tation masks suggest that the model is performing well. However, the results also show
that there are some challenges that should to be investigated further and addressed in
future work.

4.1. Future Research

Based on the experiments and results, we propose a few research ideas worth investi-
gating in future efforts.

4.1.1. Expanding and Revisiting the Dataset

Expanding the dataset is perhaps the most natural extension of the presented work.
If carefully curated, a more exhaustive dataset should help improve some of the corner
cases where the model is struggling to produce accurate predictions. Additionally, with the
appropriate resources, it would be valuable to ensure every object in the existing dataset
is appropriately labeled as part of a “crowd” or not. Improving the accuracy of the
e.g., densely packed “sediment” objects, will improve model performance, as well as
make the model more applicable to real-world situations. Another important aspect of
expanding the dataset is introduce species-level object classes, as opposed to the high-level
categories used today. Accurately detecting microscopic foraminiferal species is vital to
most downstream geoscience applications.

4.1.2. Revising the Random Image Augmentations

Applying random image augmentations, such as rotation, flipping, and cropping, is
a common practice in deep learning, often leading to significant improvements in task
performance. It is essential to ensure that the applied random augmentations are valid in a
given context, e.g., ensuring that applying random flips does not interfere with biological
handedness. We suggest that artificially generated coiling directions due to the random
flipping of training images pose little to no interference when distinguishing between
overall groups of foraminifera. However, in future endeavors where the foraminiferal
fauna will be identified at the species level, random flipping of the specimen images should
not be done. This is critical for planktic foraminifera, especially in the Arctic region, where
the coiling direction has profound implications for paleoenvironmental research and in-
terpretation. For example, the species Neogloboquadrina pachyderma (“cold” species)
and Neogloboquadrina incompta (“warm” species) are visually distinguished primarily
via their coiling direction. Regarding benthic foraminifera, some studies have also been
conducted elucidating the underlying mechanisms behind the preferred coiling direc-
tion [32,33]. In the Arctic realm, varying coiling direction in benthic foraminifera is not a
well-studied phenomenon; little is known as to why this happens and what implications it
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might have for paleoreconstructions. We expect that novel information related to the coiling
direction of benthic foraminifera might be uncovered with carefully crafted experiments.

4.1.3. Additional Hyperparameter Tuning

If sufficient computational resources are available, performing more exhaustive hy-
perparameter tuning should be pursued. While this should include experiments with
optimizers, learning rates, and so forth, it should more crucially be focused on the numer-
ous hyperparameters of the Mask R-CNN model components. Specifically, the parameters
of the regional proposal network, and the fully-convolutional network (for mask prediction)
should be validated and experimented with. It is entirely possible some number of these
parameters are sub-optimal for the given dataset.

4.1.4. Improved GPU Training

While training on multiple GPUs might not lead to big improvements in model
performance, the increased effective batch size will help stabilize and speed up training.
Additionally, given the small size of the most objects relative to the image dimensions,
training without having to resize the images to fit in GPU memory will increase model
performance. This could be solved directly by using GPUs with more memory, or possibly
by partitioning each image across multiple GPUs, predicting on a sub-region per GPU.

4.1.5. Other Segmentation Models

We chose to use Mask R-CNN primarily because of its capabilities, but also because
proven, pre-trained weights were readily available. Recently, numerous models have been
published that surpass Mask R-CNN in several performance metrics, and importantly also
seem to have much faster inference times (which is important for real-world applications.)
Examples of alternative models that should be tested include PANet [20], TensorMask [21],
CenterMask [22], and SOLOv2 [23].

4.1.6. Uncertainty Estimation

We have shown that the model is robust to training runs with different random seeds,
and the next natural step is to investigate robustness with regards to different training/test
data splits, and to estimate the uncertainty of the model predictions. Some work has been
published on estimating model predictive uncertainty of Mask R-CNN models [34–36].
However, it should be possible to avoid the need for introducing Monte Carlo dropout
sampling [37], which requires making changes to existing models, by leveraging the more
recent Monte Carlo batch normalization sampling [38] technique instead.

5. Conclusions

The proposed model achieved an AP of 0.78 on the bounding box (detection) task and
0.80 on the segmentation task, based on 10 training runs with different random seeds. We
also evaluated the model without the challenging sediment grain images, and the AP for
both tasks increased to 0.84 and 0.86, respectively.

When evaluating predictions both qualitatively and quantitatively, we saw the pre-
dicted bounding boxes and segmentation masks were good for the majority of test cases.
However, there were many cases of incorrect class label predictions, mostly for small
objects, or objects that we hypothesize can be considered out-of-distribution.

Based on the presented results, our proposed model for semantic segmentation of
microscopic foraminifera is a step towards automating the process of identifying, counting,
and picking of microscopic foraminifera. However, work remains to be done, such as ex-
panding the dataset to improve the model accuracy, experimenting with other architectures,
and implementing uncertainty estimation techniques.
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Appendix A. Prediction Examples

Without confidence threshold Confidence threshold at 0.3

Figure A1. Examples of predicted bounding boxes and segmentation masks for the “planktic”
class. (Left column): Overlapping predictions can be seen near the middle of both images. The
confidence score for the overlapping predictions with low-quality masks is significantly lower than
the high-quality predictions. We can also see that some smaller objects in the top image have been
misclassified as the “benthic” class. (Right column): The overlapping predictions have been removed
by thresholding the confidence score at 0.3.
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Without confidence threshold Confidence threshold at 0.3

Figure A2. Examples of predicted bounding boxes and segmentation masks for the “sediment” class.
(Left column): Overlapping predictions can be seen near the middle of both images. In addition,
notice that several objects have been missed entirely. (Right column): Most of the overlapping
predictions have been removed by thresholding the confidence score at 0.3.

Without confidence threshold Confidence threshold at 0.3

Figure A3. Cont.
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Without confidence threshold Confidence threshold at 0.3

Figure A3. Additional examples of predicted bounding boxes and segmentation masks for the
“sediment” class. (Left column): A very obvious false positive detection of the “benthic” class can be
seen near the top-left corner of the first image. For the second image, several overlapping predictions
can be seen. (Right column): The false positive detection and the overlapping predictions have been
removed by thresholding the confidence score at 0.3.

Appendix B. Additional Dataset Details

Figure A4. Topographic map of the Barents Sea region with main surface currents and winter sea ice
margin. Coring sites marked with red dots. ESC = East Spitsbergen Current.
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Table A1. Details about collected materials (object type, approximate amount, approximate age) and corresponding core
information (location, water depth, core depth, coring method) used to create the presented dataset.

Materials Core

Object Type Amount Age [Years] Location Name Water Depth [m] Depth [cm] Type

Calcareous
benthic

30 Modern 200–0 Revsbotn IG15-1026-BCA 40 3–4 Multi-corer
400 Modern 200–0 SW Barents Sea GOL-F 60-12 390 0–1 Push-core
600 Modern 200–0 SW Barents Sea GOL-F 60-12 390 7–8 Push-core
400 Modern 200–0 SW Barents Sea GOL-F 250-12 390 2–3 Push-core
345 13,000 West Barents Sea JM09 KA11 345 208–209 Gravity core
100 Modern 200–0 North slope Barents Sea Test cast 810 0–1 Multi-corer

Planktic 500 Modern 200–0 SW Barents Sea ED50-1.2.250.PuC 350 8–9 Push-core
650 Modern 200–0 SW Barents Sea GOL-F 60-12 390 7–8 Push-core
400 Modern 200–0 North slope Barents Sea Test cast 810 0–1 Multi-corer

Agglutinated
benthic

300 Modern 200–0 Revsbotn IG15-1026-BCA 40 1–2 Multi-corer
450 Modern 200–0 Revsbotn IG15-1026-BCA 40 3–4 Multi-corer
100 Modern 200–0 SW Barents Sea GOL-F 60-12 390 0–1 Push-core
50 Modern 200–0 SW Barents Sea GOL-F 60-12 390 1–2 Push-core
10 Modern 200–0 SW Barents Sea GOL-F 60-12 390 7–8 Push-core

Sediments 600 Modern 200–0 Revsbotn IG15-1026-BCA 40 3–4 Multi-corer
700 Modern 200–0 SW Barents Sea GOL-F 60-12 390 0–1 Push-core
700 Modern 200–0 SW Barents Sea GOL-F 60-12 390 7–8 Push-core
800 13,000 West Barents Sea JM09 KA11 345 208–209 Gravity core
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