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Abstract: Power system state estimation is an important component of the status and healthiness of
the underlying electric power grid real-time monitoring. However, such a component is prone to
cyber-physical attacks. The majority of research in cyber-physical power systems security focuses
on detecting measurements False-Data Injection attacks. While this is important, measurement
model parameters are also a most important part of the state estimation process. Measurement
model parameters though, also known as static-data, are not monitored in real-life applications.
Measurement model solutions ultimately provide estimated states. A state-of-the-art model presents
a two-step process towards simultaneous false-data injection security: detection and correction.
Detection steps are χ2 statistical hypothesis test based, while correction steps consider the augmented
state vector approach. In addition, the correction step uses an iterative solution of a relaxed non-linear
model with no guarantee of optimal solution. This paper presents a linear programming method
to detect and correct cyber-attacks in the measurement model parameters. The presented bi-level
model integrates the detection and correction steps. Temporal and spatio characteristics of the power
grid are used to provide an online detection and correction tool for attacks pertaining the parameters
of the measurement model. The presented model is implemented on the IEEE 118 bus system.
Comparative test results with the state-of-the-art model highlight improved accuracy. An easy-to-
implement model, built on the classical weighted least squares solution, without hard-to-derive
parameters, highlights potential aspects towards real-life applications.

Keywords: bi-level model; cyber-physical security; false data injections; real-time monitoring

1. Introduction

The Power System State Estimator (PSSE) is a major tool for real-time grid monitoring.
The end-goal of PSSE is to estimate the system states, typically buses complex voltages,
given a set of measurements. Several protection schemes and grid functionality rely on the
output of the State Estimation (SE) process. The main inputs of PSSE are measurements
set and model parameters. The first is a collection of different system measurement types.
For example, circuit breaker status, real and reactive power flows, real and reactive power
injection, and voltage magnitudes. The measurement model parameters represent the
components of the underlying physical system. With any perturbation in the measurement
set and/or model parameters, the PSSE will result in a wrong estimate of the system states.
Much research has addressed measurement cyber-attacks. These are usually modeled as
False Data Injection (FDI). Measurement model parameters cyber-attacks, on the other
hand, have limited research in the field of power systems. In fact, these parameters are
considered static and without error during the SE process. Hence, no monitoring scheme
is presented in real-life applications. These parameters are prone to cyber-attacks. The
cyber-attack in this context could be in the form of an external entity who is able to access
the database and alter some of those parameters, or an internal entity who is able to gain
super user privileges to change the database [1–5]. The former is a class of cyber-attack
called Remote to User attack (R2U) while the latter is known as User to Root attack (U2R).
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In the literature, research on detecting FDI pertaining to SE measurements is much
explored [3,6–9]. The work in [10–13] investigated FDI attack in measurements only. More-
over, a DC model state estimation is considered. The work in [14] considered attack into
states in addition to measurement FDI. However, the DC model assumes that states are
linearly related to measurements. In addition, voltage magnitudes are assumed to be
1 pu. Such assumption is not accurate in some studies where accurate system model is
needed. The AC state estimation, on the other hand, provides an accurate model com-
pared to DC state estimation, since the relationship between states and measurements
is non-linear. The work in [15] proposed a convexification framework for the AC state
estimation based on semi-definite programming (SDP) for solving cyber attack pertain-
ing measurements sensors. In addition to modeling solutions, Machine Learning (ML)
based solutions are also presented [16–18]. The problem of detecting cyber-attacks in the
measurement model parameters, on the other hand, has been much less considered [19].
Further, the presented solutions considered that cyber-attacks on measurements have been
already corrected [20]. However, if a simultaneous attack happened, i.e., on measurements
and parameters, how can a measurement correction be made? Existing work towards
parameter cyber-attacks [21–24] considers a two-step approach: detection and correction.
In the detection step, the measurements’ residual is analyzed and a pattern is extracted.
An attack to a line parameter would result in the normalized residual of the measurements
associated with that line to have a higher value compared to the other measurements,
assuming no FDI attack [25]. In the correction step, the line’s parameters are corrected in an
iterative process using WLS in conjunction with Taylor series expansion. After correction,
a SE routine is executed again to check if the normalized residual test does not detect
errors. Otherwise, the correction routine is repeated until SE does not flag. In [26], errors
on system parameters are addressed while estimating system states. Hence, an augmented
objective function is built on the minimization of measurement and parameter residuals.
While it is effective to have such a state estimator in a single level model, and eliminating
post-processing detection algorithms, the work in [26] assumed errors in parameters are
varied in a small range, not considering the possibility of R2U and U2R attacks that enables
an adversary to alter those parameters in any range. In addition, the final estimate is
sensitive to Gaussian noise in the measurements set and extended redundancy due to the
increase size of the state vector.

The aforementioned solutions come with the cost that a non-linear system is linearized
using Taylor series expansion and solved in an iterative process to estimate the system
parameters. In addition, a simultaneous parameter attack would result in estimating all
suspicious parameters under attack in a sequential order. Thus, the correction of one attack
depends on the other. Hence, the choice of what attack to correct first might influence the
result while there is no guarantee of convergence to the correct physical solution.

In this work, a simultaneous cyber-attack detection and correction bi-level model
is presented, towards the solution of previously mentioned state-of-the-art limitations.
The bi-level model combines the two steps in a single optimization framework. The
presented framework takes advantage of the temporal and spatio characteristic of the grid.
In addition, the formulated optimization problem eliminates the effect of the presence of
measurements Gaussian noise on parameter correction. Hence, the contribution of this
paper towards the state-of-the-art are two-fold:

1. An explicit mathematical bi-level model for detecting and correcting cyber-attack
pertaining state estimator static data.

2. Using the temporal and spatio characteristics of the grid to eliminate non-linearity
in parameter correction and providing a sliding-window for an online monitoring
scheme of the measurement model parameters.

The remainder of this paper is organized as follows. Section 2 presents background
theory on the SE and measurement and parameter attack modelling. Bi-level model and
framework is presented in Section 3. Section 4 presents a case study and concluding remarks
are provided in Section 5.
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2. Background
2.1. State Estimation

AC State estimation aims solving a non-linear algebraic differentiable set of equations
that have the following form [27]:

z = h(x) + e. (1)

where z ∈ Rm is the measurement vector, x ∈ RN is the state variables vector (typically
voltage magnitudes V and voltage angles θ), h(x):Rm → RN , (m > N) is a non-linear dif-
ferentiable function that relates the states to the measurements, e is the measurement error
vector assumed with zero mean, standard deviation σ and having Gaussian probability
distribution, and N = 2n− 1 is the number of unknown state variables and n is the number
of buses in the system. Hence, in classical Weight Least Square State Estimation (WLS SE),
the approach consists of solving the following minimization problem:

min
x

J(x) = [z− h(x)]TW[z− h(x)]. (2)

where W is a diagonal weight matrix composed by the inverse of the squared values of
measurement standard deviations (σ): W = diag([σ−2

1 , . . . , σ−2
m ]T). J(x) index is a norm in

the measurements vector space.
The measurement model in (1) relies on two data sets: measurements set and grid

graph, i.e, connectivity and system parameters. If corrupted data is used, then the ob-
tained solution will mislead the operators who monitor the grid. Corrupted data could be
attributed to measurement(s) and/or system parameters (database). Given the non-linear
relationship, it would be a difficult task to distinguish the source of bad data when there is
a simultaneous attack [25]. Hence, in this work, the way is paved for the model to be able
to clearly distinguish the error source in the measurement model seen in (1), i.e., is the FDI
on the measurement set, system model parameters, or both, and how to correct this?

The database in this context is the model representation of different components that
compose the physical power grid. For instance, a typical model of a long transmission
system line is represented by the π-model. Hence, in SE, this model contributes to the
bus admittance matrix, i.e., Ybus through its parameters such as line conductance gkm,
line susceptance bkm and shunt admittance bsh

km. Depending on the system under study, a
combination of those parameters might be considered. For instance, in short and medium
transmission lines, bsh

km has a negligible effect on the voltage. Hence, it could be excluded
from the model. For long transmission lines, however, bsh

km is important for estimating the
voltage. The challenging scenario is when all parameters are included. Therefore, with
any perturbation in these parameters, the state estimator might lead to a solution that does
not depict the true underlying physical system. The task would be even more challenging
when both measurements and parameters have contributed to estimate an untrue states,
i.e., V and θ, how one could identify the source of erroneous with confidence?

The classical WLS model in (2) minimizes the residual. The work in [28] proved,
however, that the error in (1) has a unique decomposition; detectable and undetectable
components. The error can be written as follows

‖e‖2 =‖eD‖2 +‖eU‖2 . (3)

where eD is the detectable error while eU is the undetectable error. Hence, the Innovation
concept, i.e., I I, is used to quantify the undetectable part as follows:

I Ii =

∥∥∥ei
D

∥∥∥∥∥∥ei
U

∥∥∥ =

√
1− Pii√

Pii
. (4)
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where Pii is the ith entry in the projection matrix P. The P matrix is obtained based on the
Jacobian matrix H = ∂h

∂x and measurements weight W calculated as follows:

P = H(HTWH)−1HTW. (5)

Hence, the error in (3) is then composed by using the Innvoation Index in (4) to obtain
the Composed Measurement Error CME in its normalized form for each measurement i
as follows:

CMEN
i =

ri
σi

√1 +
1

I Ii
2

. (6)

where ri is the ith measurement mismatch which is the detectable part of the error, and σi
is the standard deviation of the ith measurement. Therefore, the minimization problem
in (2) should minimize the composed error in (6) instead of the residual [21].

2.2. Bi-Level Optimization

Bi-level optimization is a mathematical programming framework where a constraint in
an optimization problem is another optimization problem. The main optimization problem
is generally called upper (leader) model while the constraint which is another optimization
problem is called lower (follower) model. This type of optimization framework arises
in situation where hierarchical decision-making is involved. In other words, a decision
from one task affects the decisions of the other task and vice versa. This framework has
two types of variables, the upper-level variables and the lower-level variables [29].

3. Framework

The SE process is run every 60–90 s to monitor the status of the grid [27]. After every
run, an estimate of system states (typically complex bus voltages) and measurements are
obtained. Processing these outputs would yield valuable temporal information considering
the next run. Hence, this paper addresses the following question: knowing prior states
and database, can one retrieve the current database? To address this question, a model is
constructed based on the non-linear algebraic equations used in AC SE.

3.1. Preliminaries

Consider a transmission line connecting bus k and bus m, and represented in a π-
model. With the line admittance ykm, the conjugate of the complex power flow through
that line can be written as [27]:

S∗km = Pk − jQk = E∗k Ikm. (7)

where Ek is the complex voltage at bus k, Ikm is the complex current flowing from bus k to
bus m , and the ∗ indicates the conjugate of the complex quantity. Using
Ikm = (Ek − Em)ykm, we can write the complex power as:

S∗km = V2
k ykmVke−jθk (Vkejθk −Vmejθm) + jbsh

km. (8)

where ykm is the admittance between bus k and bus m, Vk and Vm are the magnitudes of
the complex voltages at bus k and m, respectively, θk and θm are the angles of the complex
voltages at bus k and m, respectively, and bsh

km is the shunt admittance of the line connecting
bus k and bus m. Expanding the right hand side of (7) and decomposing the expression
into real and imaginary parts, one can obtain the following:

Pkm = (V2
k −VkVm cos θkm)gkm − (VkVm sin θkm)bkm. (9)

Qkm = (−VkVmsinθkm)gkm + (−V2
k )b

sh
km + (VkVmcosθkm −V2

k )bkm. (10)
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where gkm is the real part of the line admittance connecting bus k and bus m, i.e., <{ykm},
and bkm is the imaginary part of the line admittance connecting bus k and bus m, i.e.,
={ykm}. Equations (9) and (10) represent the real and reactive power flows in the line
connecting bus k and bus m, respectively. With the real power flow from bus m to bus k,
i.e., Pmk (by changing bus index), one can express the real power loss of the same line as:

Ploss
km = Pkm + Pmk

= gkm(V2
k + V2

m − 2VkVmcosθkm)

= gkm|Ek − Em|2.

(11)

where Ek and Em are complex voltages at bus k and bus m, respectively. Similar procedure
to (11), an expression of the reactive power loss in the line can expressed as:

Qloss
km = Qkm + Qmk

= −(V2
k + V2

m)b
sh
km − (V2

k + V2
m − 2VkVmcosθkm)bkm

= −(V2
k + V2

m)b
sh
km − (|Ek − Em|2)bkm.

(12)

Equations (9)–(12) are the basic equations that govern a line connecting bus k and bus m
from the SE perspective. In AC SE, Equations (9) and (10) are used when Pkm and/or Qkm
are present in the measurements set. The relationship between gkm and bkm can be derived
from the actual impedance of the line as:

ykm = gkm + jbkm =
1

zkm
=

1
Rkm + jXkm

. (13)

gkm = <{ 1
zkm
} = Rkm

R2
km + X2

km
. (14)

bkm = ={ 1
zkm
} = − Xkm

R2
km + X2

km
. (15)

If (14) is divided by (15), the following expression is obtained:

bkm
gkm

= −Xkm
Rkm

. (16)

Therefore, (16) correlates line conductance to its susceptance. Further, the term
(

Xkm
Rkm

)
is known as X/R ratio and commonly used in short circuit studies. In transmission sys-
tems, this ratio is higher compared to distribution systems. In addition, this ratio is a
characteristic of the line that indicates the tangent angle between line resistance and line
inductance. Hence, having this factor will eliminate the non-linearity in retrieving the
original measurement model parameters that will be presented in Section 3.3.

3.2. Cyber-Attack Model

With the mathematical concepts presented in Section 3.1, a FDI in line parameters can
be modeled. Consider a line connecting buses k and m has a FDI in its parameter model.
Then, this FDI can be modeled as follows:

gpert
km = gkm + ∆gkm. (17)

bpert
km = bkm + ∆bkm. (18)

bsh,pert
km = bsh

km + ∆bsh
km. (19)
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where gkm, bkm, and bsh
km are the true line parameters, ∆gkm, ∆bkm, and ∆bsh

km are the deviation

(due to attack) in line parameters, and gpert
km , bpert

km , and bsh,pert
km are the perturbed quantities.

By substituting (17)–(19) into (9) and (10) one can derive:

Ppert
km = (V2

k −VkVm cos θkm)gpert
km − (VkVm sin θkm)b

pert
km . (20)

Qpert
km = (−VkVmsinθkm)gpert

km + (−V2
k )b

sh,pert
km + (VkVmcosθkm −V2

k )b
pert
km . (21)

where Ppert
km and Qpert

km are the attacked (deviated) real and reactive power, considering
values obtained in (9) and (10), respectively, due to a FDI in line parameter(s). Note that
the voltages at buses k and m are the same as the ones estimated to obtain Pkm and Qkm
in (9) and (10). Hence, with this notion, the system operators can make use of data already
available from SE to further secure the state estimator routine over time. In addition, it
can be viewed as a filtering stage prior to run SE routine to validate system database after
initialization. Hence, any flag from SE after validating system database would be identified
to measurement set considering a previously defined confidence level.

3.3. Bi-Level Optimization Model

Having established the necessary mathematical concepts in Sections 3.1 and 3.2, an
optimization framework for estimating measurement model parameters (i.e., gkm, bkm and
bsh

km) for any line connecting bus k and bus m can be formulated. The framework hypothesis
that a free of attack SE output sample exists. Let us label this sample with t−. Hence, at time
t−, system states are estimated (i.e., Et−

k and Et−
m ). If {Pkm or Pmk} and {Qkm or Qmk} are part

of the measurement set, then estimated measurements hP
km and hQ

km are already available.
If not, an estimated measurement out of {Pkm, Pmk} and an estimated measurement out of
{Qkm, Qmk} are generated after SE is converged. This step can be augmented to the existing
SE routine without a major modification. Therefore, the bi-level model can be derived as:

min
xu

m

∑
i=1

(
1 +

1

I Ii(xu, xl)
2

)
Wiir2

i (xu, xl). (22)

s.t. ri = zi − hi(xu, xl), ∀i = 1, 2, . . . m (23)

gkm = gpert
km − ∆gkm, ∀km ∈ L (24)

bkm = bpert
km − ∆bkm, ∀km ∈ L (25)

bsh
km = bsh,pert

km − ∆bsh
km, ∀km ∈ L (26)

xl ∈ Ψ(xu) (27)

where xu is the decision variable vector for the upper-level optimization problem, i.e.,
voltage magnitude V and voltage angle θ for all buses, and xl is the decision variable vector
for the lower-level optimization problems, i.e., deviations in system database ∆gkm, ∆bkm,
and ∆bsh

km for all lines. The variable L is the set of lines in the system under study, and
Ψ(xu) is a parameterized range constraint for the lower-level decision vector xl . Such
constraint is obtained through the lower-level (follower) optimization problem defined
as follows:

min
xl

∆gkm + ∆bkm + ∆bsh
km (28)

s.t. ∆gkm = gpert
km − gkm (29)

∆gkm = gpert
km − gkm (30)

∆bkm = bpert
km − bkm (31)

∆bsh
km = bsh,pert

km − bsh
km (32)
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bkm = gkm

(
X
R

)ratio,km
(33)

Pkm = ( f g
Pkm

)gkm + ( f b
Pkm

)bkm (34)

Qkm = ( f g
Qkm

)gkm + ( f b
Qkm

)bkm + ( f bsh

Qkm
)bsh

km (35)

Pmk = ( f g
Pmk

)gkm + ( f b
Pmk

)bkm (36)

Qmk = ( f g
Qmk

)gkm + ( f b
Qmk

)bkm + ( f bsh

Qmk
)bsh

km (37)

Ppert,loss
km = Pkm + Pmk + ( f g

Pkm
+ f g

Pmk
)∆gkm + ( f b

Pkm
+ f b

Pmk
)∆bkm (38)

Ppert,loss
km = (|Et−

k − Et−
m |2)gpert

km (39)

Qpert,loss
km = Qkm + Qmk + ( f b

Qkm
+ f b

Qmk
)∆bkm + ( f

bsh
km

Qkm
+ f

bsh
km

Qmk
)∆bsh

km (40)

Qpert,loss
km = ( f g

Qkm
)gpert

km + ( f b
Qkm

)bpert
km + ( f bsh

Qkm
)∆bsh,pert

km (41)

gkm, bsh
km ≥ 0 (42)

bkm ≤ 0 (43)

In the upper-level model, the weighted norm of the error at time t− is minimized [28].
After ∆t seconds, the inner-level model, the parameters delta gpert

km , bpert
km , and bsh,pert

km , which
are the current status of the database at time t = ∆t + t−, which the system operator would
like to check, are optimized. The variables gkm, bkm, and bsh

km are the unknown true states of

the database that we seek to obtain. The (X/R)(ratio) is the known ratio of line inductance
to line resistance. The function f param

measkm is a function evaluation of the coefficient associated
with the given parameter param from bus k to bus m for the specified measurement type
meas as (9) and (10). The inner model is evaluated using the states V and θ of the two
buses connecting line km at previous time t−. Ppert,loss

km and Qpert,loss
km are losses in the line

evaluated given the states at time t− and the current status of system database at time t.
In (34)–(37), only one estimated measurement of each type at time t− is required. The other
two can be free to be obtained by the chosen optimization solver.

From the previous bi-level model, line parameters can be obtained independently
from each other. This allows the system operators to take advantage of parallel compu-
tation. In addition, the inner optimization problem is linear in its decision variables. The
constraint (33) ensures the optimal solution of parameter values are unique and correspond
to the correct physical solution. Hence, any off-the-shelf solver can be used to seek solution.
The flowchart of the presented framework is shown in Figure 1.

As illustrated in Figure 1, from the prospective of SE, the process starts by uploading
data of measurements and system model parameters. The SE routine is executed by system
operator every often to monitor the grid. The framework presented in Section 3.3 is initial-
ized with a true sample that is free from measurement and parameter errors. This sample is
labeled as t−. Then, for a sample t, SE routine is performed. On such, the bi-level model is
executed. If SE detects an error, then the presented inner (lower) level model in Section 3.3
is performed to check if the error source is due to measurement model parameters. To do
so, current status of the measurement model parameters are sent to the presented model
to be executed. After execution, if errors in line parameters are above certain threshold,
defined considering a level of confidence, then the corresponding line is updated to the
solution obtained by the model in Section 3.3 and SE is executed again. Otherwise, no
parameter error is detected [19]. If error is detected after updating measurement model
parameters, then the source of this error is due to errors in measurement. In such case, [30]
is run. After correcting errors from data at sample t, the base data in the presented model
can be updated if the sample t is trusted by system operator. Considering Figure 1, the
contribution of this work towards the WLS SE state-of-the-art process is highlighted with
the boxes colored in green.
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Figure 1. Flowchart of the inclusion of the proposed framework.

4. Case Study

The presented bi-level model was validated using the IEEE 118-bus system. By
using the MATLAB package MATPOWER [31], 21,600 samples (i.e., one day’s worth) of
measurements were generated with Gaussian noise based on a common daily load profile
that contains temporal information of a power system’s changing state. The measurement
set includes real and reactive power flows, power injections, and all voltage magnitudes,
resulting in 712 measurements with Global Redundancy Level (GRL = m/N) of 3.029,
which relates the number of measurements (m) to the number of states (N) to be estimated.
Measurement’ standard deviations are considered as 1% of their absolute values. For
optimization, Gurobi solver [32] is used for solving the bi-level model. All simulations are
conducted on a personal Apple Mac computer: macOS High Sierra 32 GB RAM 1876 MHz
DDR3, 4 GHz Intel Core i7.

Towards validation, five independent 100 Monte Carlo simulations were conducted
for a selected sample. In each simulation, a line is selected randomly to have cyber-attacks,
modeled as FDI in model parameters, i.e, gkm, bkm, and bsh

km. The size of the cyber-attacks is
drawn from a uniform distribution between ±5% and ±40% of their actual values. The
optimization framework presented in Section 3.3 and Figure 1 is conducted after each
attack. Case study results are presented in Figure 2. Figure 2 shows that the absolute error
after correcting line parameters is less than an order of 3.

To further evaluate the accuracy and performance of the presented bi-level model,
around 20% of the samples (out of 21,600) are selected randomly to be compromised with
parameter cyber-attacks. Each of those samples, a random line is selected to have a FDI
parameter attack. The attack is in the same range as those performed for the aforementioned
simulations. The confusion matrix for the SE output using χ2 test as a detection method is
illustrated in Table 1. The χ2 threshold is calculated based on two parameters: number of
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measurements and confidence level. In this test, the number of measurements is 712 and
the confidence level is chosen to be 95% [19]. As seen, a substantial amount of samples
were not detected by χ2 test. Meanwhile, the presented bi-level model was executed
after each SE run. All anomaly samples were not only detected, but also corrected in a
single optimization run. Observed errors in correction were similar to the results shown
in Figure 2. The execution time of the proposed model was monitored for all anomaly
samples. On average, for 170 lines, the total execution time was 0.3964 s with a standard
deviation of 0.0533 s. It is worth mentioning that these reported statistics are without using
parallel computation. Hence, a lower execution time could be achieved with parallelism.

Figure 2. Absolute error in log scale.

Table 1. SE performance result for parameter attack detection χ2 test [19].

A
ct

ua
l

va
lu

e

Prediction Outcome

Normal Anomaly

Normal 17336 0 Normalsample sample

Anomaly 3252 1012 Anomalysample sample
Normal Anomaly

The CMEN methodology presented in [30] for parameter attack processing, which
is the composed measurement error CME in its normalized form, is also explored in the
comparative test case scenarios. An anomaly sample is selected and the resulted CMEN of
the measurements were listed in a descending order based on their absolute values for a
threshold value of 3. In this sample, the underlying true attack is on line connecting bus
94 and bus 95. The result is shown in Table 2. Based on the strategy presented in [30], the
attack is characterized as a parameter attack. However, not a specific line is determined
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as the one that is compromised. Instead, a region where the attack might be at could be
inferred. Hence, the superiority of the proposed framework is that it can identify and
correct the attack in a single process. In addition, it can be used as a pre-processing step
prior executing SE routine.

Table 2. Parameter Cyber-attacks Identification [30].

Measurement From Bus To Bus CMEN

Real Power Flow 96 95 10.093
Reactive Power Flow 95 96 9.5299
Reactive Power Flow 94 95 7.9748
Reactive Power Flow 94 96 7.7034

Real Power Flow 94 95 6.3127
Real Power Flow 94 96 5.8595

Real Power Injection 95 95 4.0285

For stealthy attack, a line is selected and its parameters, i.e., g, b and bsh are attacked
gradually from 0 to 20% of their values. The performance index J as well as the CME in
its normalized form (CMEN) are recorded. The results are shown in Figures 3 and 4. In
Figure 3, the performance index J(x) (colored in blue) increased with the increase size of
the attack in the line’s parameters under attack. In this case, even though the performance
index J(x) increased, the χ2 test still did not detect the error. For identification, the CMEN

is obtained for every attack and the absolute error is calculated and presented in Figure 4.
As shown, due to the increase size of the attack in a single line, the error is spread into
multiple estimation of measurements. After each attack scenario, the bi-level model is
performed. The error due to correction of parameters is calculated and shown in Figure 5.

Figure 3. Performance Index (J) single line case.
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Figure 4. CMEN absolute error single line case.

Figure 5. Absolute error of line parameter correction single line case.

The same scenario of the previous stealth attack is simulated for multiple lines in
this case. The results are shown in Figures 6 and 7. As seen from the figures, a similar
trend has occurred. However, the errors in measurement estimation are increased. The
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bi-level model is performed and lines are corrected. The observed error in correction for
the stealthy attacks is presented in Figure 8.

Figure 6. Performance Index (J) multiple lines case.

Figure 7. CMEN absolute error multiple lines case.
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Figure 8. Absolute error of line parameter correction multiple line case.

5. Conclusions

This paper presents a bi-level model for correcting parameter FDI cyber-attacks on the
SE process. The presented model combines the two processed that are usually performed
by SE for detection and correction into a single process for parameter attack processing. The
presented model can be used as a post-state estimation cyber-attack processing or prior to
validate the database of measurement model parameters and measurements. Meanwhile,
the framework can be used as an online tool due to the capability of performing parallel
computations. In addition, most the information needed in this framework is already
available among the data set used by SE. Comparative test results on the IEEE 118-bus
system show that the presented model is able to correct parameters with high accuracy,
while further processing measurement cyber-attacks. The existing state estimator software
can be adjusted to incorporate the presented framework without major modifications,
enabling the current work to be utilized by utilities. The model can be solved by solvers
that do not require sophisticated features.
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