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Abstract: Vegetable and fruit recognition can be considered as a fine-grained visual categorization
(FGVC) task, which is challenging due to the large intraclass variances and small interclass variances.
A mainstream direction to address the challenge is to exploit fine-grained local/global features to
enhance the feature extraction and representation in the learning pipeline. However, unlike the
human visual system, most of the existing FGVC methods only extract features from individual
images during training. In contrast, human beings can learn discriminative features by comparing
two different images. Inspired by this intuition, a recent FGVC method, named Attentive Pairwise
Interaction Network (API-Net), takes as input an image pair for pairwise feature interaction and
demonstrates superior performance in several open FGVC data sets. However, the accuracy of
API-Net on VegFru, a domain-specific FGVC data set, is lower than expected, potentially due to
the lack of spatialwise attention. Following this direction, we propose an FGVC framework named
Attention-aware Interactive Features Network (AIF-Net) that refines the API-Net by integrating an
attentive feature extractor into the backbone network. Specifically, we employ a region proposal
network (RPN) to generate a collection of informative regions and apply a biattention module to
learn global and local attentive feature maps, which are fused and fed into an interactive feature
learning subnetwork. The novel neural structure is verified through extensive experiments and
shows consistent performance improvement in comparison with the SOTA on the VegFru data set,
demonstrating its superiority in fine-grained vegetable and fruit recognition. We also discover that a
concatenation fusion operation applied in the feature extractor, along with three top-scoring regions
suggested by an RPN, can effectively boost the performance.

Keywords: fine-grained visual categorization; image classification; attentive feature representation;
feature interaction; vegetable and fruit recognition

1. Introduction

Despite the consistent improvement in the application of convolutional neural net-
works (CNNSs) to various computer vision tasks, fine-grained visual categorization (FGVC)
is still a challenging task due to the large intraclass variance, small interclass variance,
and the difficulties in obtaining part annotations [1,2]. To address these challenges, prior
studies have explored a wide spectrum of FGVC methods, which can be generally divided
into two categories [3]. The first type of methods start by locating the critical regions
through a localization subnetwork [4-7], and then fusing global features from the whole
image and local features from the critical regions for the final recognition. The other type of
methods attempt to learn discriminative features directly via an end-to-end feature encod-
ing network [8-12]. A common goal of these methods is to enhance a model’s capability to
exploit distinguishable fine-grained features from global or local regions for performance
boosting. Their main difference is that the former focuses on certain informative regions of
an image, while the latter aims to find critical patterns from the whole image.

As an FGVC task, the recognition of vegetables and fruits has high practical sig-
nificance in the implementation of fine-grained cooking and food management. One of
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the most influential domain-specific data sets for FGVC is VegFru [13], which contains
200 vegetable categories and 92 fruit categories, with more than 160,000 images in total
and at least 200 images for each subcategory. Data sets such as VegFru can be utilized to
build automated food management systems that can recognize raw food materials and
recommend suitable recipes for individuals with different dietary needs.

Most CNN-based FGVC models [4-12] only take a single image as input each time
during training. However, in FGVC tasks, objects in different subcategories share many
visual similarities, which increases the learning difficulty for models that learn from
individual images. In contrast, humans often recognize fine-grained objects by comparing
image pairs to extract subtle visual differences that can be used as distinguishable features.
Inspired by this intuition, recent efforts have explored ways to learn interactive features
from image pairs. A typical study, Attentive Pairwise Interaction Network (API-Net) [14]
is one of the novel networks motivated by this capacity of human beings. API-Net feeds a
pair of images into a backbone CNN to obtain two individual feature vectors, which are
used to create a mutual clue feature vector. In addition, API-Net takes the mutual and
individual feature vectors to generate gate vectors that can highlight semantic differences
between the two input images. In a nutshell, an individual feature activated by its own gate
vector is encouraged to be more discriminative than the one activated by the other gate
vector. API-Net has demonstrated state-of-the-art (SOTA) performance in several open
FGVC data sets, such as Stanford Cars (95.3%) [15], NABirds (88.1%) [16], and Aircraft
(93.9%) [17]. However, as we apply API-Net to the VegFru data set, the performance is
worse than ResNet50 by 0.761% in accuracy, potentially owing to the fact that API-Net
only adopts channel attentions that highlight what is meaningful in an input image, while
spatial attention plays a more crucial role to identify where is meaningful in the image [18].
The lack of spatial attention could make API-Net vulnerable to complex background noise.
Attention mechanisms have been widely adopted in computer vision tasks. Wang et al. [19]
propose a residual attention network that stacks many attention modules to generate
attention-aware features. Hu et al. design a squeeze-and-excitation attention block [20]
to fuse both spatialwise and channelwise information across feature maps at each layer.
A similar study named Convolutional Block Attention Module (CBAM) [18] also explores
both channel and attentive spatial features that allow a model to learn what and where
to focus.

Inspired by prior efforts, we propose a framework named Attention-aware Interac-
tive Features Network (AIF-Net) that enhances fine-grained feature learning through an
integration of a biattention (spatialwise and channelwise attention) module [18] and a
modified Attentive Pairwise Interaction module [14] into a backbone network. Specifically,
the proposed AIF-Net consists of three components, including: (1) An attentive feature
extractor that allows the network to identify and learn from critical areas in an image where
distinguishable patterns may reside in. In addition, to exploit both global and local feature
maps, we integrate a region proposal network (RPN) into the pipeline to generate a collec-
tion of informative regions; the top regions are selected to create attentive local features that
are fused with the attentive global feature. The fusion output is utilized by the downstream
components of the network to enhance mutual and individual feature learning. (2) An
interactive feature learning module that learns to distinguish subtle pattern differences
in an image pair through pairwise feature interaction, and (3) a softmax classifier with
individual and pair regularization terms that can effectively utilize the attentive features to
optimize the underlying neural network.

We conduct extensive experiments to evaluate the performance of the proposed AIF-
Net on the VegFru data set. Two key design choices, including the fusion operation
(concatenation vs. summation) and the number of top-scoring informative regions used for
local feature extraction, are validated. We also report an overall performance comparison
between AIF-Net and its peers, including ResNet [21], VGG [22], Compact Bilinear Pooling
(CBP) [9], HybridNet [13], Destruction and Construction Learning (DCL) [23], Weakly
Supervised Data Augmentation Network (19) (WS-DAN) [24], and API-Net [14], and the
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latter four represent the SOTA. Results demonstrate a consistent performance improvement
of our AIF-Net over other comparative models, validating the effectiveness of the proposed
neural architecture in FGVC.

The rest of this paper is structured as follows. In Section 2, we review the related
studies on FGVC. In Section 3, we provide the technical details of the proposed AIF-Net.
In Section 4, we report the experimental results with analysis and insights. In Section 5, we
provide a discussion and point out potential extensions.

2. Related Work

This section provides a summary of existing FGVC methods (1) with localization—
classification subnetworks, (2) with end-to-end feature encoding, and (3) that use data
augmentation.

2.1. Methods Based on Localization—Classification Subnetworks

Localization of critical regions can mitigate the challenge of intraclass variation. Early
methods focusing on localization of critical regions rely on the manual part annotation [25],
which is costly. Recent FGVC methods can achieve localization with image labels only.
Jaderberg et al. [4] propose a spatial transformer network that is invariant to certain affine
transformations. In [5], a long-short-term-memory (LSTM)-based neural architecture is
applied to localize the subtle and discriminative regions in an iterative manner. Multiple re-
gions with attention are localized in [26] by pooling the spatially related channels, and each
group of channels corresponds to an attentive region. In [7], a Feature Pyramid Network
(FPN) is used to localize multiple critical regions with different sizes or aspect ratios.

2.2. Methods Based on End-to-End Feature Encoding

Methods with end-to-end feature encoding can directly learn discriminative features
from input images. One important work, Bilinear-CNN [11], represents the input image as
a pooled outer product of features from a deep CNN, leading to remarkable performance
improvement. However, due to the high dimension of features, the computational burden
of Bilinear-CNN grows exponentially. To speed up computation, authors of studies such
as [9,27] have explored ways of aggregating low-dimension embeddings through tensor
sketching. Pairwise confusion, proposed in [28], reduces overfitting by intentionally
introducing confusion in the activations and demonstrates efficacy in dealing with interclass
similarity.

2.3. Methods Using Data Augmentation

Data augmentation methods can be used to enhance the data set diversity, which en-
courages models to learn more subtle and discriminative features. In [23], the spatial layout
of an input image is destroyed to push the network to learn fine-grained features from
the randomly shuffled inputs. API-Net [14] captures the pairwise interaction by learning
mutual features from an image pair. In the Weakly Supervised Data Augmentation Net-
work (WS-DAN) [24], high-quality features are kept and the useless features are dropped.
Another direction to augment training set is through a Web-supervised network [29-31]
that directly learns from the real-world Web images, which greatly increases the size of
training set. A challenge with this approach is to eliminate irrelevant noisy images that are
harmful to the training.

In summary, the three types of methods focus on different aspects of feature learning
with their own merits and weaknesses. For the first type, focusing on the local features in
critical regions may help discover informative patterns but could lose a global understand-
ing of the whole image; on the other hand, the second line of efforts aims to mine sufficient
patterns from the global image in an end-to-end framework, which may miss critical local
information; the third type of method attempt to improve the quality of training data that
could allow a learning algorithm to learn distinguishable features from more diverse input
data. It is noted that the three methods are not mutually exclusive and can complement
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each other to further boost the performance of FGVC tasks. Our work is driven by this
idea. Compared to the prior efforts, the proposed AIF-Net aims to enhance the quality of
extracted features via spatial and channelwise attention, an aggregation of local and global
features, and interactive feature learning. The joint effects of these building blocks lead to a
significant performance boost in the fine-grained vegetable and fruit recognition task.

3. The Attention-Aware Interactive Features Network

In this section, we present the technical details of the proposed AIF-Net. Figure 1
depicts the system framework of AIF-Net, which consists of three components: an attentive
feature extractor, an interactive feature learning module, and a softmax classifier with
individual and pair regularization terms. The AIF-Net takes as input a pair of images from
the same or different categories in the data set. Each image in the pair is processed by
the attention-enhanced network with region proposal networks (RPNs). Global features
extracted from the whole image and local features extracted from critical regions are
fused through either concatenation or summation. The attentive fused features are then
used to compute interactive features that are fed into the classification layer. Finally,
the softmax classifier adopts regularization terms for both individual images and image
pairs to construct the loss function for end-to-end training.

Softmax Classifier

Attentive Feature - Interactive Feature ] W DG L]

. and pair
Extractor Learning - regular?zation

terms

e

Image Pair
Figure 1. The system framework of AIF-Net.

3.1. Attentive Feature Extraction

Figure 2 shows the process of attentive feature extraction, which is broken down and
described in the following two subsections.

3.1.1. Attention Modules in AIF-Net

The attention module employed in AIF-Net is similar to the one in CBAM [18]. Given
an intermediate feature map F € R©*H*W of a certain convolutional layer, attention mod-
ule sequentially infers a 1D channel attention map Fc € R©*1*! and a 2D spatial attention
map Fs € RVHXW_ The overall process of the attention module can be summarized in
Equations (1) and (2).

F =F:(F)®F 1)

F'=Fs(F)oF ()

where ® denotes an elementwise multiplication. The intermediate feature map F €
ROH*W s firstly processed by channel attention module. F is pooled along the spa-
tial dimension by maximum and average operations. The max-pooled features F"** and
average-pooled features F¢ ¢ are processed by a shared network, which is composed of
a multilayer perception (MLP) module with one hidden layer, to produce the channel
attention vector Fc € RE*1X1. The refined feature map F’ is obtained via an elementwise
multiplication of F- and F, as shown in Equation (1). The channel-attention-enhanced
feature map F' is then processed by a spatial attention module. Specifically, F' is pooled
along the channel dimension by both maximum and average operations. The max-pooled
feature map F** and average-pooled feature map F; ¢ are concatenated along the chan-
nel dimension to produce Fs € R2**W_ The Fg is processed by a convolutional layer
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with kernel size seven followed by a sigmoid function. In AIF-Net, the spatial-attention-
enhanced feature map F” is then plugged into the network to obtain an attentive feature

map Fuention:

Fostention = F+ F’ (3)

N - ——

CNN with
Attention Modules

Attention
Modules

- - -

~ -

Attention
Modules

Attention X
Modules L Fusion

Operation
CNN with H

Region Proposal Networks

Figure 2. Attentive feature extractor.

3.1.2. Region Proposal Network

Attention modules in AIF-Net can reduce the adverse effects of background noises.
Localization of critical regions can further avoid the effects of background noise. An RPN is
plugged into the location that follows the last convolutional layer in the backbone network.
The output of last convolutional layer is denoted as Fp € R*#*W_ We use convolutional
layers to compute feature hierarchy layer by layer, followed by RELU and max pooling
operations. Anchors in each convolutional layer of RPN correspond to regions with
different size. For example, anchors in larger feature map correspond to smaller regions
and anchors in smaller feature map correspond to larger regions. The convolutional
activations are used as the informativeness of anchors. As shown in [7], each anchor
is associated with sliding windows with different spatial positions, scales, and aspect
ratios. A collection of regions {Ry, Ry, ..., Ry} are produced and each with a score denoting
informativeness of the region, which is defined as I(R;), i = 1,2, ..., N. These regions are
sorted as I(R}) > I(R}) > ... > I(R};), where N refers to the number of regions. In order to
reduce the region redundancy, nonmaximum suppression (NMS) is applied on the regions
based on their informativeness.

The top-M informative regions are taken from the sorted list and fed into the back-
bone network with an independent fully connected layer for complementary features
extraction to get confidence as {C(R]), C(R}), ..., C(R),)}. Parameters in both RPN and
backbone network are optimized to ensure that the lists {I(R}),I(R}), ..., I(R}y)} and
{C(R}),C(R)),...,C(R})} have the same order. When informative regions are localized,
the features extracted from the whole image and critical regions are fused through either
summation or concatenation. Our empirical results show that concatenation is a better
choice for this task, and more details are provided in Section 4.
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3.2. Interactive Feature Learning

A pair of images is fed into the attentive feature extractor individually to produce two
feature vectors x1,x; € RP'. A concatenated vector [x1,X2], as shown in Figure 3, is fed
into a MLP with one hidden layer, which learns a mutual feature vector x); € RP E

XM = fip([x1,%2]) 4)

where f,;, is the MLP mapping function. This mutual vector is then used to compare with
the individual feature vectors x; and x,. Specifically, a gate vector g; € RP "is generated by

g =c(xmOx), ie{l,2} )

where o refers to a sigmoid function. Gate vectors g; and g, are used to activate the
channels of features extracted from each individual image. Then the interactive features
are obtained via residual attention as follows.

Xidf =x1+x1 08 (6)
XM = X1 +x1 © g2 )
1
X =% 08 ®)
thher =x2+x2081 9)
The outputs of the interactive feature learning module are xielf , x‘l’th”, xiglf ,and xgth”,

which are passed to the classification layer for the final prediction.

3.3. Softmax Classifier with Individual and Pair Regularization Terms

R ! l
In addition to xie f i x‘{”’e’, x;e f

,and xg”’”, the part features extracted from the infor-
mative regions by the attentive features extractor, ffm, i=1,2,..., M, are also fed into the

softmax classifier. The loss function of AIF-Net is designed as follows:
L= LE + L + MLE + ALy, (10)

where Lf, and L!, denote the cross-entropy losses of pair and parts, and Lfk and Lik denote
the ranking regularization terms of pair and parts with coefficients A1 and A,. In particular,
L, is given as

th=- Y% Y. yilog(p) (11)

ie{1,2} je{self other}

where pl: = softmax(fo +b),ie{1,2},j € {self,other}. Cross-entropy loss of individ-
ual parts can be denoted as

L,=— Y yilog(p) (12)
ie{12,...M}

where p; = softmax(Wffart +b),i €{1,2,.., M}. The rank regularization of pair L k" can
be denoted as l
Lje= ) max(0,p{"(C) — p; (C)) +e) (13)
ie{1,2}

1 e oL
It encourages xfe / be more discriminative than x;?the’. The rank regularization term of
individual L,k' can be denoted as

w(D= Y f-5 (14)

(i,j)2C1<Cj
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where f is hinge loss function f(x) = max(1 — x,0), C is the confidence function that maps
the feature vector to its probability being ground-truth class and I is the informativeness of
regions.

| v X:df
X
other
—ETS 1
- - — ’
éXM: m other
2
X, 22
x5

Figure 3. Interactive feature learning.

4. Experiments
4.1. Data Set

VegFru, which is a domain-specific data set, is utilized in the experiments. This data
set contains vegetables and fruits of 25 upper-level categories and 292 subcategories. It
consists of more than 160,000 images in total and at least 200 images for each subcategory.
VegFru can be naturally divided into two subsets, i.e., Veg200 for vegetables and Fru92
for fruits.

4.2. Implementation Details

All of the experiments were implemented using PyTorch and conducted on a cluster
of four GTX TITAN Xs. The input images in the training set were resized to 512 x 512 and
randomly cropped to 448 x 448. The input images in the test set were resized to 512 x 512
and center-cropped to 448 x 448. We randomly sampled sixteen categories in each batch.
For each category, we randomly sampled three images. For each image, we found its most
similar image from its own class and from other classes. The backbone network of AIF-Net
is chosen as ResNet50. The attention modules introduced in Section 3.1 were plugged in
the last ResBlock of ResNet50. The RPN in AIF-Net had three convolutional layers. We
tested different numbers of informative regions, including two, three, and four. A standard
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SGD with a momentum of 0.9 for optimization and a weight decay of 0.0005 were used in
the experiments. The initial learning rate was 0.001, and we adopted the cosine annealing
strategy to adjust it. The model was trained in 200 epochs.

4.3. Performance Metric

We report the performance of top-1 and top-5 mean accuracy (Acc) for all experiments.
The top-1 and top-5 mean Acc are commonly used in the literature for image classification
tasks. Specifically, the top-1 Acc measures how many times the correct label has the highest
score or confidence predicted by the classifier, while the top-5 Acc measures how many
times the correct label is among the top five scoring classes. Obviously, the top-1 Acc is a
more rigorous metric than the top-5 Acc.

4.4. Benchmarks

We choose a set of generic image classification models, including ResNet50, VGG, CBP,
HybridNet, and a set of FGVC methods that represent the state of the art (SOTA), including
DCL, API-Net and WS-DAN, as the benchmarks for our experiments. The configurations
of these models are provided as follows.

. For ResNet50, the initial learning rate was set to 0.001, with an exponential decay of
0.1 after every 30 epochs.

e  For VGG, CBP and HybridNet, the results are referenced from [13].

e For DCL, the division number for Region Confusion Mechanism (RCM) was set to 7.

¢ For API-Net, the experimental settings were the same as ours.

e For WS-DAN, the last convolutional layer was chosen as the feature map. The SGD
with momentum of 0.9, a weight decay of 0.00001 were used. The initial learning rate
was set to 0.001 with a exponential decay of 0.9 after every 2 epochs.

For DCL, API-Net, WS-DAN, and our AIF-Net, we chose ResNet50 as the backbone
for a fair comparison.

4.5. Ablation Study

To investigate the properties of AIF-Net, we evaluate the key design choices on VegFru,
Veg, and Fru, respectively.

4.5.1. Fusion Operation for Global and Local Feature Maps

We evaluate two choices of the fusion operation, including concatenation and sum-
mation, that can be applied on the global and local feature maps (see Figure 2). As shown
in Table 1, the AIF-Net model with a concatenation fusion outperforms the model with a
summation fusion in both top-1 and top-5 mean accuracy. A possible reason is that con-
catenation produces higher dimensional feature vectors with richer informative patterns
that could increase the model’s capacity, leading to a better generalization ability.

Table 1. An evaluation of different fusion operations.

Data Set Fusion Operation Top-1 Acc Top-5 Acc
Vee200 Concatenation 89.154% 98.045%
& Summation 87.137% 96.724%
Fru92 Concatenation 91.058% 98.809%
Summation 88.653% 97.913%
Concatenation 90.832% 98.619%
VegFru292 Summation 89.317% 97.805%

4.5.2. Number of Local Informative Regions

We also evaluate the number of informative local regions selected from the outputs
of the RPN. Three different values, including two, three, and four, are tested. Results
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in Table 2 demonstrate that picking the top-three local regions to produce fine-grained
feature representation achieved the best performance compared to the other two options.
It is difficult to justify that why three is best. This empirical result can only suggest its
superiority on the particular data set under the specific parameter setting.

Table 2. An evaluation of different numbers of informative regions.

Data Set Number of Regions Top-1 Acc Top-5 Acc

2 87.132% 97.513%

Veg200 3 89.154% 98.045%
4 88.019% 97.861%

2 90.629% 97.917%

Fru92 3 91.058% 98.809%

4 90.681% 98.051%

2 86.795% 97.513%

VegFru292 3 90.832% 98.619%
4 88.019% 97.861%

4.6. Overall Performance Comparison

We report a performance comparison in Table 3 and provide our analysis as follows:

AIF-Net presents the best performance in both top-1 and top-5 Acc on the VegFru292
set, outperforming the second-best, ResNet50, by 2.83% in top-1 and 0.627% in top-5.
On Veg200, AIF-Net outperforms ResNet50 in top-1 Acc (89.154% vs. 88.195%) but
slightly underperforms ResNet50 in top-5 Acc (98.045% vs. 98.187%). On Fru92,
our AIF-Net outperforms the second-best API-Net by 1.14% in top-1 Acc, and also
outperforms the second-best ResNet50 by 0.1% in top-5 Acc. It is observed that
ResNet50, as a generic deep learning model, can achieve superior performance in
this task, demonstrating its potential in FGVC. Additionally, the proposed AIF-Net
presents its superior predictive power through interactive feature learning combined
with a fusion of global and local attentive feature maps.

Surprisingly, the SOTA methods (DCL, API-Net, and WS-DAN) that use ResNet50 as
a backbone underperform ResNet50 in both top-1 and top-5 Acc on the VegFru292
set. Although API-Net demonstrated superior performance in other data sets [14], its
performance in VegFru is sightly worse than its backbone network ResNet50, except on
Fru92, where API-Net posts a top-1 Acc of 89.914%, with a 0.59% improvement over
ResNet50. The results show that with interactive feature learning alone, the model
does not present consistent performance improvement on the VegFru data set.

The proposed AIF-Net, on the other hand, demonstrates a consistent improvement
over both ResNet50 and API-Net, which means that a combination of an attentive
feature aggregation and interactive feature learning can effectively push a model to
learn subtle and fine-grained patterns from both local and global attentive feature
maps, leading to consistent performance boost.
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Table 3. A performance comparison of all models. The highest score of each metric is marked
in bold-face.

Data Set Method Top-1 Acc Top-5 Acc
ResNet50 88.195% 98.187%
VGG16 78.50% -
CBP 81.59% -
Veg200 DCL 85.98% 97.53%
API-Net 86.953% 97.210%
WS-DAN 84.17% 96.71%
AIF-Net 89.154% 98.045%
ResNet50 89.323% 98.710%
VGG16 79.80% -
Fru92 DCL 85.07% 96.17%
API-Net 89.914% 98.021%
WS-DAN 87.32% 98.21%
AIF-Net 91.058% 98.809%
ResNet50 88.002% 97.992%
VGG16 77.12% -
CBP 82.21% -
HybridNet 83.51% -
Veglru292 DCL 87.13% 97.26%
API-Net 87.241% 97.711%
WS-DAN 85.72% 97.17%
ATF-Net 90.832% 98.619%

5. Discussion

FGVC is becoming an increasingly significant computer vision task that has the
potential to be applied in numerous scenarios. Human beings have the capability to quickly
learn and accurately recognize fine-grained objects in different subcategories, because we
can identify subtle distinguishable patterns in the course of learning. This intuition drives
a wide spectrum of studies in the deep learning community. Deep CNNs enable automated
feature extraction, while attention mechanisms allow CNNs to learn what and where to
focus on, improving the quality of extracted features. Specific to FGVC, prior efforts have
explored how to effectively represent fine-grained features through ways such as attentive
feature learning, local feature map aggregation, multiscale feature extraction, and pairwise
feature interaction. Our work also focuses on this core mission. The proposed AIF-Net aims
to generate high-quality fine-grained features by fusing attentive local and global features
and interactive feature learning. The novel neural structure is verified through extensive
experiments and demonstrates consistent performance improvement in comparison with
the SOTA. We also discover that a concatenation fusion operation applied in the feature
extractor, along with three top-scoring regions suggested by an RPN, can effectively boost
the performance.

Domain-specific FGVC models can be used to build recognition systems that fit various
industrial needs. The proposed AIF-Net model can serve as a fine-grained vegetable
and fruit classifier to automate applications in domestic cooking and food management.
One interesting use case would be building a vegetable/fruit recognition software for
educational or training purposes. To become a food /cooking/nutrition professional, one
needs to be trained to recognize fine-grained vegetable/fruit subcategories. Such software
can be used to generate exercises of different difficulty levels, asking trainees to distinguish
vegetable/fruit types. A more intelligent classifier can even evolve with better recognition
skills from food experts through active or reinforcement learning, and on the other hand,
convey this novel knowledge to trainees or students, creating an efficient learning loop.

This work has the following limitations that also point out our future research direc-
tions. First, the biattention module applied in the attentive feature extractor only employs
a single MLP to learn the attentions, while a multichannel and multispatial attention mod-
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ule [32] can be adopted for further improvement. Second, the attentive feature extractor
only considers one image/feature scale, while a multiscale-based feature pyramid can be
utilized to encourage the network to extract features in multiple granularities. Third, our
study does not take advantage of data augmentation, which could be another performance
booster. Since FGVC tasks usually involve many subcategories, and there are not sufficient
images for each subcategory for training, adding a data augmentation module to enrich
and diversify the training set could be an effective strategy to improve the accuracy of
the network. Lastly, due to the introduction of several functional modules, such as the
RPN and the attention module, AIF-Net is slower than the major baseline API-Net in both
training and inference. Thus, an essential next step is to further optimize the network,
making it more lightweight and efficient.
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