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Abstract: Data classification is a challenging problem. Data classification is very sensitive to the
noise and high dimensionality of the data. Being able to reduce the model complexity can help to
improve the accuracy of the classification model performance. Therefore, in this research, we propose
a novel feature selection technique based on Binary Harris Hawks Optimizer with Time-Varying
Scheme (BHHO-TVS). The proposed BHHO-TVS adopts a time-varying transfer function that is
applied to leverage the influence of the location vector to balance the exploration and exploitation
power of the HHO. Eighteen well-known datasets provided by the UCI repository were utilized
to show the significance of the proposed approach. The reported results show that BHHO-TVS
outperforms BHHO with traditional binarization schemes as well as other binary feature selection
methods such as binary gravitational search algorithm (BGSA), binary particle swarm optimization
(BPSO), binary bat algorithm (BBA), binary whale optimization algorithm (BWOA), and binary salp
swarm algorithm (BSSA). Compared with other similar feature selection approaches introduced in
previous studies, the proposed method achieves the best accuracy rates on 67% of datasets.

Keywords: Harris Hawks Optimizer; HHO; transfer functions; time-varying; feature selection;
metaheuristics

1. Introduction

Data mining is determined as an important step in the knowledge discovery process.
It has become an active research domain due to the presence of huge collections of digital
data that need to be explored and transformed into useful patterns. The main role of data
mining is to develop methods that assist in finding potentially useful hidden patterns in
huge data collections [1]. In data mining techniques such as classification, preprocessing
of data has a great influence on the goodness of discovered patterns and the efficiency of
machine learning classifiers [1,2]. Feature selection (FS) is one of the main preprocessing
techniques to discover and retain informative features and eliminate noisy and irrelevant
ones. Selecting the optimal or near-optimal subset of given features will enhance the
performance of the classification models and reduce the computational cost [2–4].

Based on the evaluation criteria of the selected features subset, FS approaches are
classified into two classes: filter and wrapper approaches [3]. Filter techniques depend
on scoring matrices such as chi-square and information gain to estimate the quality of
the picked subset of features. More accurately, in filter approaches, a filter approach (e.g.,
chi-square) is used to rank the features, and then the only ones that have weights greater
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than or equal to a predefined threshold are retained. In contrast, wrapper approaches
mainly consider a machine learning classifier such as K-Nearest Neighbors (KNN) or
Support Vector Machines (SVM) to evaluate the feature subset.

Another aspect for categorizing FS methods is based on the selection mechanism
that is used to explore the feature space, searching for the most informative features.
The search algorithm task is to generate subsets of features, and then the machine learning
algorithm is applied to assess the generated subsets of features to find the optimal one [4–6].
Compared to filter approaches, wrappers have superior performance, especially in terms
of accuracy since it considers the dependencies between features in the dataset, while filter
FS may ignore such relations [7]. Although, filter FS is better than wrapper FS in terms of
computational cost [4].

Commonly, for a wide range of data mining applications, reaching the optimal subset
of features is a challenging task. The size of the search space grows exponentially with
respect to the number of features (i.e., 2K − 1 possible subsets can be generated for a
dataset with k features). Accordingly, FS is an intractable NP-hard optimization problem in
which exhaustive search and even conventional exact optimization methods are impractical.
For that reason, the FS domain has been extensively investigated by many researchers [5,8].
For example, in [9], an improved version of the binary Particle Swarm Optimization (PSO)
algorithm was introduced for the FS problem. An unsupervised FS approach based on
Ant Colony Optimization (ACO) was proposed by [10]. Moreover, an FS technique that
hybrids Genetic Algorithm (GA) and PSO was introduced in [11]. Finally, a binary variant
of the hybrid Grey Wolf Optimization (GWO) and PSO is presented in [12] to tackle the
FS problem.

Meta-heuristic algorithms have been very successful in tackling many optimization
problems such as data mining, machine learning, engineering design, production tasks,
and FS [13]. Meta-heuristic algorithms are general-purpose stochastic methods that can find
a near-optimal solution within a reasonable time. Lately, various Swarm Intelligence (SI)
based meta-heuristics have been developed and proved a good performance for handling
FS tasks in different fields [14,15]. Some examples include Whale Optimization Algorithm
(WOA) [16], Slim Mould Algorithm (SMA) [17], Marine Predators Algorithm (MPA) [18],
and Grey Wolf Optimizer (GWO) [19].

Recently, Heidari and his co-authors proposed a new nature-inspired meta-heuristic
optimizer named Harris Hawks Optimization (HHO) [20]. HHO simulates the behavior of
hawks when they surprisingly attack their prey from different directions. HHO has several
merits; it is simple, flexible, and free of internal parameters. Furthermore, it has a variety
of exploitation and exploration strategies that ensure good results favorable convergence
speed [21]. The original real-valued version of the HHO algorithm has been applied in
conjunction with various techniques to solve many optimization problems belonging to
different domains [22–26]. HHO has also been applied for solving FS problems [27–29].

Broadly, several binarization schemes have been introduced to adapt real-valued
meta-heuristics to deal with discrete search space. These approaches follow two major
branches. The first branch is named continuous-binary operator, in which the meta-
heuristic is adapted to work in binary search space by redefining the basic real values
operators of its equations into binary operators [30]. However, in the second branch, which
is named two-step binarization, real values operators of meta-heuristics are kept without
adjustment. To conduct the binarization, the first stage involves employing a transfer
function (TF) to convert the real-valued solution Rn into an intermediate probability vector
[0, 1]n. Each element in the probability vector determines the probability of transforming
its equivalent in Rn into 0 or 1. In the second stage, a binarization rule is applied to
transform the output of TF into a binary solution [30]. In general, the second binarization
scheme is commonly used for adapting meta-heuristics to work in binary search space.
In this regard, Transfer Functions (TFs) are defined depending on their shapes into two
types: S-shaped and V-shaped [31–33]. Traditional or time-independent TFs are not able
to deliver a satisfactory balance between exploration and exploitation in the search space.
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To overcome this shortcoming, several time-varying TFs have been proposed and applied
with many meta-heuristic algorithms for providing a good balance between exploration
and exploitation over iterations [34–36].

In this work, to be utilized for FS tasks, the authors integrate time-varying versions of
V-shaped TFs into the HHO algorithm to convert the continuous HHO into a binary version
called BHHO. The benefit of using time-varying functions with the BHHO algorithm is to
enhance its search ability by getting a better balance between exploration and exploitation
phases. Time-varying functions also help in avoiding BHHO from getting stuck in local
minima. The proposed approach is verified through eighteen benchmark datasets and
revealed excellent performance compared to other state-of-the-art methods.

The rest of this article is organized as follows: Section 2 introduces the related works,
whereas Section 3 presents the HHO algorithm. Section 4 presents the proposed BHHO
variants. Section 5 outlines FS using the BHHO algorithm. Results and discussions are
presented in Section 6, while the conclusion in Section 7 sums up the main findings of
this work.

2. Related Works

The literature reveals that meta-heuristic algorithms have been very successful in
tackling FS problems. GA and PSO algorithms have been utilized to develop effective FS
methods for many problems. Several GA-based approaches have been proposed. Exam-
ples of these approaches are [37–41]. Moreover, many binary variants of PSO have been
frequently applied in many FS methods. Some examples can be found in Chuang et al. [42],
Chantar et al. [4], Mafarja et al. [43], and Moradi et al. [44]. For instance, in Chuang et al. [42],
an improved version of Binary PSO named Chaotic BPSO was used for FS in which two
chaotic maps called logistic and tent were embedded in BPSO for estimating the value of
inertia weight in the velocity equation of PSO algorithm. Another example is the recent
work of Mafarja et al. [43], where five strategies were used to update the value of the inertia
weight parameter during the search process. The proposed approaches have shown better
performance when compared to other similar FS approaches. ACO algorithm, which was
introduced by Dorigo et al. [45] was also applied in FS. As examples, one can refer to
the work of Deriche M. [46], Chen et al. [47], and Kashef et al. [48]. Artificial Bee Colony
(ABC) optimizer [49]. An example of using the ABC algorithm for FS is presented in [50].
In addition, as shown in [51], the binary version of the well-known meta-heuristic Bat
Algorithm (BA) was used as an FS method. Experiential results demonstrated the superior-
ity of BA based FS method in contrast with GA and PSO-based methods. In addition to
the algorithms mentioned above that have been applied for FS, many recently introduced
meta-heuristic algorithms such as Slap Swarm Algorithm (SSA) [6], Moth-Flame Optimiza-
tion (MFO) [52], Dragonfly Algorithm (DA) [53], and Ant Lion Optimization (ALO) [54]
have been successfully utilized in FS for many classification problems.

Harris Hawks algorithm has been utilized to solve many optimization problems.
For instance, as stated in [23], in the civil engineering domain, HHO was used to im-
prove the performance of the artificial neural network classifier in predicting the soil
slope stability. In addition, a hybrid model based on HHO and Differential Evaluation
(DE) algorithms has been applied to tackle the task of color image segmentation. Using
different measures for evaluation purposes, results prove that HHO-DE based approach
is superior compared to several state-of-the-arts image segmentation techniques [24]. A
novel automatic approach combining deep learning and optimization algorithms for nine
control chart patterns (CCPs) recognition was proposed by [25]. An HHO algorithm was
applied for the best tuning of ConvNet parameters. In addition, an improved version
of the HHO algorithm that incorporates three strategies, including chaos, topological
multi-population, and differential evolution (DE), was proposed by [26]. DE-driven multi-
population HHO (CMDHHO) algorithm has shown its effectiveness in solving real-world
optimization problems.
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The investigated literature reveals that some binary versions of HHO have been pro-
posed since the appearance of the HHO algorithm in 2019 for FS problems [27–29,55].
As presented in [27], a set of binary variants of the HHO algorithm was proposed as wrap-
per FS methods. Eight V-shaped and S-shaped TFs and four quadratic functions were used
to transform the search space from continuous to binary. The performance of proposed
variants of BHHO are compared with binary forms of different optimization algorithms,
include DE algorithm, binary Flower Pollination Algorithm (FPA), binary Multi-Verse Op-
timizer (MVO), binary SSA, and GA. The experimental results show that the QBHHO
approach can mostly perform the best in terms of classification accuracy, least fitness value,
and the lowest number of selected features. As stated in [28], two binary variants of the
HHO algorithm were proposed as wrapper FS approaches in which two transfer func-
tions (S-shaped and V-shaped) were used to transform continuous search space into binary.
Using several high dimension and low-sample challenging datasets along with different
optimization algorithms (e.g., GA, BPSO, and BBA) for validating purposes, the S-shaped
transfer function-based BHHO shows promising results in dealing with challenging datasets.
Recently, Ref. [55] proposed a wrapper-based FS for text classification in the Arabic context
utilizing four binary variants of the HHO algorithm. The proposed variants of BHHO
confirmed excellent performance compared to seven wrapper-based methods.

The traditional time-independent TFs are the most commonly used ones for adapting
meta-heuristic algorithms to work in binary search space. For example, Kennedy and Eber-
hart [31] used an S-shaped TF to convert PSO optimizer to deal with binary optimization
problems. A V-shaped transfer function was adopted by [33] to introduce a binary version
of the Gravitational Search Algorithm (GSA). In 2013, for converting the continuous version
of the PSO algorithm into Binary, Mirjalili and Lewis [32] introduced six new V-shaped
and S-shaped TFs for mapping continuous search space into a binary one. Experimental
results approved that the new proposed V-shaped group of TFs can remarkably improve
the performance of the classic version of PSO, especially in terms of convergence speed
and avoiding local minima problems. In addition, the same set of TFs introduced by [32]
was also applied by Mafarja et al. [56] to propose six versions of binary ALO. Results show
that equipping ALO with V-shaped TFs can significantly improve its performance in terms
of accuracy and preventing local minima.

Time-varying TFs were proposed by Islam et al. [34] for boosting the performance of
BPSO in which a modified form of BPSO called TVT-BPSO that adopts a time-varying trans-
fer function was introduced to overcome the drawbacks of traditional TFs by providing a
better balance between exploration and exploitation for the BPSO through its optimization
process. In addition, Mafarja et al. [35] was also applied several time-varying S-shaped
and V-shaped TFs for improving the exploitation and exploration power of the Binary DA
(BDA). The experimental results confirmed the superiority of time-varying S-shaped BDA
approaches when compared to other tested approaches. Recently, Kahya et al. [36] investi-
gated the use of a time-varying transfer function with a binary WOA for FS. The results
confirmed that BWOA-TV2 has consistency in FS. It also provides high accuracy of the
classification with better convergence over conventional algorithms such as Binary Firefly
Algorithm (BFA) and BPSO.

3. Harris Hawks Optimization (HHO)

HHO is a new meta-heuristic optimization algorithm introduced by Heidari et al. in
2019 [20]. HHO mimics the hunting mechanism of Harris Hawks in nature. The study
of Harris hawks’ behavior revealed that these birds use various sophisticated strategies
in surprisingly attacking and hunting the fleeing prey (mostly a rabbit). As shown in the
original publication of HHO, the mathematical modeling of this algorithm confirms its
effectiveness in tackling diverse optimization problems. As any other population-based
meta-heuristic optimizer, HHO generates a population of search agents and updates these
search agents using exploration and exploitation phases. The exploration of this algorithm
has two stages, while the exploitation consists of four stages [20]. Figure 1 depicts the stages
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of the HHO optimizer. The following subsections describe the phases and mathematical
models of HHO.

Figure 1. Overall stages of HHO [57].

3.1. Exploration Phase

In this phase, the search agents (Hawks) are updated through two strategies where
both strategies have an equal chance to be selected. In HHO, agents perch with respect to
the positions of other close individuals and the prey or perch on random positions (tall
trees). These strategies can be mathematically formulated as in Equation (1)

X(t + 1) =
{

Xrand(t)− r1|Xrand(t)− 2r2X(t)| p ≥ 0.5
(Xprey(t)− Xn(t))− r3(LB + r4(UB− LB)) p < 0.5

(1)

where X(t + 1) denotes hawks’ position vector in the next generation t, Xprey(t) refers
to hawks’ current position, r1, r2, r3, rp, and p are randomly generated numbers within
range (0, 1) in each generation, LB and UB mean the lower and upper boundaries of
variables respectively, Xrand(t) denotes a randomly picked individual (hawk) from the
current generation, Xn refers to the mean position of the current generation of individuals,
which can be calculated using Equation (2):

Xn(t) =
1
N

N

∑
i=1

Xi(t) (2)

where N indicates the size of the population of hawks, and Xi(t) denotes the location of
each individual at generation t.

3.2. Moving from Exploration to Exploitation

In general, to achieve a suitable balance between the core searching behaviors, an al-
gorithm requires an appropriate way to transfer from exploration to exploitation. In HHO,
the decreasing energy of a fleeing prey is used to control this part of the search process,
where this energy decreases through the escaping behavior. The energy of the escaping
prey is formulated as in Equation (3)

E = 2E0(1−
t
T
) (3)
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where E denotes the escaping energy of the prey (rabbit), E0 presents the initial value
of the rabbit’s energy, and T indicates the maximum number of generations. For each
iteration t, E0 changes at random in range (−1, 1). The prey is physically strengthening
when the value of E0 increases from 0 to 1, while it is flagging if E0 decreases from 0 to
−1. The escaping energy is reduced over the generation. When |E| ≥ 1, it means that the
algorithm performs exploration by searching different regions to locate a rabbit, whilst the
algorithm does exploitation when |E| < 1.

3.3. Exploitation Phase

This phase comes after HHO completes the exploration of promising regions of the
search space. At this stage, HHO puts more emphasis on intensifying better solutions to
reach the optimal one. To achieve that, Harris’ Hawks perform what is called the surprise
pounce in order to attack the prey. The prey always attempts to flee from a dangerous place.
Consequently, various chasing strategies happen in reality. Depending on the escaping
mechanisms of the prey and chasing behavior of hawks, four possible attaching behaviors
are formulated in the HHO optimizer. Let r be the probability that a prey succeeds in
escaping where (r < 0.5) indicates that the prey succeeded in escaping and (r ≥ 0.5) means
it could not. One of two actions named soft and hard besiege is performed by hawks to
catch the prey. In this way, the prey will be surrounded from various directions softly or
hardly based on prey’s remaining energy. This process is modeled using the parameter |E|
where soft besiege takes place when |E| ≥ 0.5 and hard besiege happens if |E| < 0.5.

3.3.1. Soft Besiege

If the values of the parameters (r ≥ 0.5) and (|E| ≥ 0.5), this means that the prey still
has sufficient energy to run; thus, the hawks surround the prey softly in order to make
it tired and then perform a surprise pounce. This is mathematically modeled using the
following two rules:

X(t + 1) = ∆X(t)− E
∣∣JXprey(t)− X(t)

∣∣ (4)

∆X(t) = Xprey(t)− X(t) (5)

where ∆X(t) denotes the difference between the prey’s position vector and the current hawk,
E denotes the escaping energy, r5 is a randomly generated number in the range [0, 1], and
J = 2(1− r5) denotes the random jump strength of the prey during the escaping operation.

3.3.2. Hard Besiege

If (r ≥ 0.5) and (|E| < 0.5), then the prey is extremely tired and its escaping energy
is low. Consequently, the hawks surround the targeted prey hardly and do the surprise
pounce. In this case, the following formula is used for updating the current positions:

X(t + 1) = Xprey(t)− E|∆X(t)| (6)

3.3.3. Soft Besiege with Progressive Rapid Dives

In the soft besiege stage, if (r < 0.5) and still (|E| ≥ 0.5), this means that the prey still
has sufficient energy to succeed in escaping. A more sophisticated soft besiege step is done
prior to the surprise pounce. To model the escaping styles of the prey in this case, the HHO
algorithm uses the levy flight strategy to simulate the actual movements of prey as well as
the abrupt, rapid, and irregular movements of search agents (hawks) toward the escaping
prey (rabbit). Based on the actual behavior of Harris hawks, it is assumed that they can
decide their next motion according to the rule in Equation (7):

Y = Xprey(t)− E
∣∣JXprey(t)− X(t)

∣∣ (7)
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After that, they make a comparison between the movement and the previous dive to
see which one is better. If the previous dive is still better, then the hawks will make rapid
dive depending on the levy flight (LF) pattern using Equation (8):

Z = Y + S× LF(D) (8)

where D indicates the dimension of given search space, S denotes a random vector with
size 1× D, and LF represents levy flight function. LF value is obtained using Equation (9):

LF(x) = 0.01× u× σ

|v|
1
β

, σ =

 Γ(1 + β)× sin(πβ
2 )

Γ( 1+β
2 )× β× 2(

β−1
2 )

 1
β

(9)

where u, v are random numbers inside (0,1), β equals to 1.5, and Γ(x) is the standard
gamma function.

Finally, in the soft besiege stage, the updating strategy of the positions of hawks can
be done by Equation (10):

X(t + 1) =
{

Y i f F(Y) < F(X(t))
Z i f F(Z) < F(X(t))

(10)

where F(x) denotes the fitness function for the given solution X, Y and Z can be calculated
using Equations (7) and (8).

3.3.4. Hard Besiege with Progressive Rapid Dives

If (r < 0.5) and also (|E| < 0.5), then the prey has no sufficient energy to flee. In this
case, prior to the surprise pounce to capture the prey, a hard besiege is done by the hawks
where they attempt to decrease the distances between their average location and the
intended prey. Therefore, the rule presented in Equation (11) is used in a hard besiege case.

X(t + 1) =
{

Y′ i f F(Y′) < F(X(t))
Z′ i f F(Z′) < F(X(t))

(11)

where Y′ and Z′ can be calculated using Equations (12) and (13).

Y′ = Xprey(t)− E
∣∣JXprey(t)− Xm(t)

∣∣ (12)

where Xm(t) is calculated using Equation (2), E denotes the escaping energy, and J refers
to the jump strength.

Z′ = Y′ + S× LF(D) (13)

where D indicates the dimension of a given search space, S denotes a random vector
with size 1× D, and LF represents levy flight function. For more details about the HHO
algorithm, please refer to the original paper [20].

4. Proposed Binary HHO

In general, optimization algorithms are initially developed for solving problems in the
continuous search space. The basic forms of these algorithms can not be directly applied
to deal with binary and discrete optimization problems. In the binary optimization field,
the search space can be viewed as a hypercube in which a search agent can adjust its
position in the search space by changing the bits of its position vector from 1 to 0 or vise
versa [34,35]. In the literature, depending on the shape of function, two basic forms of
TFs known as S-shaped and V-shaped are proposed for adapting continuous search into
binary. The first S-shaped TF was proposed by Kennedy and Eberhart [31] to transform
the continuous original version of the PSO algorithm into a discrete one while the initial
V-shaped transfer function was proposed by Rashedi et al. [33] for developing a binary
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variant of GSA (BGSA). Although the sigmoid TF is simple, effective, cheap in terms of
computational cost, and widely utilized for binary variants of optimization algorithms,
it has some shortcomings. It is unable to provide sufficient balance between the two
essential stages of the optimization process (exploration and exploitation). In addition, it
also has difficulty in avoiding the stuck of the algorithm in local minima and controlling the
convergence speed [32]. In the case of V-shaped TF, it is defined based on some principles
to map continuous values of velocity vectors into probabilities. The main concept is that
the search agents that have significant absolute values of velocity are potentially far from
the optimal solution; hence the TF should provide a high probability for changing the
positions of search agents. When the velocity vector has small absolute values, then the TF
should present small probability values of changing the positions of the search agents [33].

To overcome the limitations of basic TFs in mapping velocity values to probability
ones, Mirjalili and Lewis [32] extensively studied the influence of the available TFs on the
performance of BPSO. Accordingly, six new transfer functions divided into two groups
according to their forms, S-shaped and V-shaped, were introduced for mapping the contin-
uous search to discrete search space. It was found that V-shaped family of TFs, in particular
V4 TF, significantly improves the performance of binary algorithms compared to the sig-
moid TF. Furthermore, the same families of TFs were employed by Mafarja et al. in [56] to
develop six discrete forms of ALO for FS. It was observed that the V-shaped TFs, especially
ALO-V3, significantly enhance the performance of binary ALO optimizer for FS tasks.

Following the appearance of various forms of TFs for adapting the optimization
algorithms to work in discrete search space, in 2017, Islam et al. [34] studied and analyzed
the behavior and performance of existing TFs with the PSO algorithm in dealing with
low and high dimensional discrete optimization problems. It was demonstrated that
current TFs still suffer from difficulty in controlling the balance between exploration and
exploitation of the optimization process. As presented in [34], to overcome the limitations
of current basic TFs, the authors defined some concepts in which the search process for
an optimal solution should concentrate on the exploration in the early generations of
the optimization process by letting the TF produce a high probability of changing the
elements of the position vector of a search agent based on the value of the velocity vector
(step). In later phases, the optimization process should move the focus of the search from
exploration to exploitation by enabling the TF to provide a low probability of changing
the position’s elements of a search agent. According to these concepts, a control parameter
(τ) was adopted in the TF, where this parameter starts with a large value and decreases
gradually over the iteration to obtain a smooth shift from exploration to exploitation. In this
way, the shape of the TF changes over time based on the value of the controlling parameter.
The purpose of employing the time-varying scheme is to obtain a better balance between
exploration and exploitation through the optimization process of a BPSO. Time-varying
TFs demonstrated their superiority when compared to existing static TFs based on BPSO
approaches over low-dimensional and high-dimensional discrete optimization problems.

Inspired by the work of [32,34], Mafarja et al. [35] proposed eight time-varying TFs
related into two families (S-shaped and V-shaped) for developing binary versions of DA
(BDA) to be used for FS. The authors demonstrated the efficiency of these time-varying
TFs by comparing their performance with other static TFs as well as various wrapper-
based FS approaches. In addition, three types of time-varying transfer functions were
introduced in [36] for improving the performance of the binary WOA in the FS domain.
WOA with time-varying TFs has shown higher effectiveness and efficiency than other
popular approaches in the FS domain. In this work, considering the previous studies of the
impact of TFs on the performance of binary optimization algorithms, we select the time-
varying TFs, specifically V-shaped, proposed by [35], as shown in Table 1, to convert HHO
to binary and apply the binary variants of HHO to the FS problem. In the time-varying
form of the TFs, τ represents a time-varying variable that begins with an initial value and
progressively reduces over iterations, as shown in Equation (14)
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τ = τmax − (τmax − τmin)×
t
T

(14)

where τmin and τmax represent the bounds of the τ parameter, t denotes the current iteration,
and T represents the maximum number of iterations. In this study, τmin and τmax were
selected to be 0.01 and 4, respectively [35]. The original time independent V-shaped TFs
are shown in Figure 2, while the time varying variants of TFs are shown in Figure 3.

Table 1. Original and time-varying V-shaped transfer functions.

Original Family Time-Varying Family

Name Transfer Function Name Transfer Function

V1 T(x) = |erf(
√

Π
2 x)| TV1 T(x, τ) = |erf(

√
Π

2
x
τ )|

V2 T(x) = | tanh(x)| TV2 T(x, τ) = | tanh( x
τ )|

V3 T(x) = |(x)/
√

1 + x2| TV3 T(x, τ) = |( x
τ )/

√
1 + ( x

τ )
2|

V4 T(x) = | 2
Π arc tan(Π

2 x)| TV4 T(x, τ) = | 2
Π arctan(Π

2
x
τ )|

Figure 2. V-shaped transfer functions.

After employing the original or time-varying TFs as a first step in the binarization
scheme, the real-valued solution Rn is converted into an intermediate probability vector
[0, 1]n such that each of its element determines the probability of transforming its equivalent
in Rn into 0 or 1. In the second step, a binarization rule is applied to transform the output
of TFs into a binary solution [30]. In this work, the complement binarization introduced by
Rashedi et al. [33] is applied as given in Equation (15).

Xj(t + 1) =
{
v bj r < T(Xj(t))

bj Otherwise
(15)

where v denotes the complement, bj is the current binary value for the jth element,
and Xj(t + 1) is the new binary value. It is noted that the updated binary value is set
considering the current binary solution, that is, based on the probability value T(Xj(t),
the jth element is either kept or flipped.

Algorithm 1 explains the pseudo-code of the Binary HHO algorithm.
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(a) Time varying V1 (b) Time varying V2

(c) Time varying V3 (d) Time varying V4
Figure 3. Behaviors of V-shaped TFs with time varying approach over 10 iterations (τ decreased
linearly from τmax = 4 to τmin = 0.01).

Algorithm 1 Pseudo-code of the BHHO algorithm.

Inputs: Number of hawks (N) and maximum iterations (T)
Outputs: Xprey
Generate the initial binary population Xi(i = 1, 2, . . . , N)
while (t < T) do

Evaluate the fitness values of hawks
Find out the best search agent Xprey
for (each hawk (Xi)) do

Update E0 and jump strength J . E0=2rand()-1, J=2(1-rand())
Update E by Equation (3)
if (|E| ≥ 1) then . Exploration phase

Update the position vector by Equation (1)
Calculate the probability vector using time-varying V-shaped TFs
Calculate the binary solution using Equation (15)

if (|E| < 1) then . Exploitation phase
if (r ≥0.5) then

if (|E| ≥ 0.5 ) then . Soft besiege
Update the position vector by Equation (4)

else if (|E| < 0.5 ) then . Hard besiege
Update the position vector by Equation (6)

Calculate the probability vector using time-varying V-shaped TFs
Calculate the binary solution using Equation (15)

if (r <0.5) then
if (|E| ≥ 0.5 ) then . Soft besiege with progressive rapid dives

Calculate Y and Z using Equations (7) and (8)
Convert Y and Z into binary using time-varying TF and binarization rule in

Equation (15)
Update the position vector by Equation (10)

else if (|E| < 0.5 ) then . Hard besiege with progressive rapid dives
Calculate Y’ and Z’ using Equations (12) and (13)
Convert Y’ and Z’ into binary using time-varying TF and binarization rule in

Equation (15)
Update the position vector by Equation (11)

Return Xprey
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5. BHHO-Based FS

FS is recognized as a binary optimization task, where potential solutions (subsets of
features) are encoded using binary values. Therefore, FS can be solved by employing a
binary optimizer (e.g., BHHO). In this work, a wrapper FS approach that utilizes the binary
version of HHO as a search algorithm and KNN classifier for evaluating the goodness of
selected features generated by BHHO is introduced. In the FS problem, a binary vector
is used to encode a solution where the vector’s length equals the number of features in
the dataset. When the value of an element of the features vector is zero, that means the
corresponding feature is omitted while one indicates that the feature is selected. In this
paper, four FS methods using different binary versions of HHO are developed, where
each method uses a different time-varying V-shaped TF to transform continuous values to
binary. FS is considered a multi-objective optimization task where the highest classification
accuracy and the least number of features are two criteria that need to be fulfilled. As shown
in Equation (16), both classification accuracy and the number of selected features are
included in the applied fitness function [35,36].

Fitness = (∝ × err) + (β× (
R
N
)) (16)

where err stands for the error rate of the KNN algorithm over a selected subset of features
by the BHHO optimizer, ∝, and β are two parameters for balancing between classification
accuracy and the size of features subset, ∝ is a number within [0,1], β is equal to (1 − ∝), N
is the number of all features in the dataset, and R indicates the cardinality of the subset of
features selected by a search agent.

6. Results and Discussion

In this section, we have conducted various experiments and tests to assess the per-
formance of V-shaped time-varying-based HHO algorithms in solving the FS problem.
The proposed BHHO algorithms were also compared to different optimizers. To achieve
a fair comparison, the initial settings of all optimizers, such as population size, number
of iterations, and number of independent runs, were unified by setting them to similar
initials values.

Eighteen popular benchmark datasets obtained from the UCI data repository are
applied for evaluating the performance of the proposed FS approaches. Table 2 shows
the details of the datasets comprising a number of features, classes, and instances in each
dataset. Following the hold-out method, each dataset is arbitrarily split into two portions
(training/testing), where 80% of the data were preserved for training while the rest was
employed for testing. Furthermore, each FS approach was run for 30 trials with a randomly
set seed on a machine with an Intel Core i5, 2.2 GHz CPU, and 4 GB of RAM.

Table 2. List of employed datasets.

Dataset No. of Features No. of Instances No. of Classes

Breastcancer 9 699 2
BreastEW 30 569 2
Exactly 13 1000 2
Exactly2 13 1000 2
HeartEW 13 270 2
Lymphography 18 148 4
M-of-n 13 1000 2
PenglungEW 325 73 7
SonarEW 60 208 2
SpectEW 22 267 2
CongressEW 16 435 2
IonosphereEW 34 351 2
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Table 2. Cont.

Dataset No. of Features No. of Instances No. of Classes

KrvskpEW 36 3196 2
Tic-tac-toe 9 958 2
Vote 16 300 2
WaveformEW 40 5000 3
WineEW 166 476 3
Zoo 16 101 7

In this work, internal parameters of algorithms were set according to recommended
settings in original papers as well as related works on FS problems, while common param-
eters were set based on the results of several trials. Table 3 reveals the detailed parameters
settings of each algorithm.

Table 3. Common and internal parameters used in the experiments.

Common Parameters

Number of runs 30
population size 10

Number of iterations 100
Dimension #features

Fitness function α = 0.99 , β = 0.01
K for KNN classifier 5

Internal Parameters

GSA G0 = 10
c1 = c2 = 2

PSO ω: from 0.9 to 0.2
BA Qmin = 0 , Qmax = 2

A loudness = 0.5 , r Pulse rate = 0.5
WOA a: from 2 to 0

a2: from −1 to −2
HHO E: from 2 to 0

To study the impact of four types of time-varying V-shaped TFs on the efficiency
of the BHHO optimizer, we provide comparisons between the results of HHO with four
basic V-shaped TFs and those recorded by HHO with four time-varying V-shaped TFs.
Furthermore, the best FS approach among tested basic and time-varying V-shaped based
approaches was then compared to several state-of-the-art FS approaches comprising BGSA,
BPSO, BBA, BSSA, and BWOA. The following criteria were used for the comparisons:

• The average of accuracy rates obtained from 30 trials.
• The average of best selected features rates recorded from 30 trials.
• The mean of best fitness values obtained from 30 trials.
• F-test method is used for ranking different FS methods to determine the best results.

Please note that in all reported tables, the best-obtained results are highlighted using
a boldface format.

6.1. Comparison between Various Versions of BHHO with Basic and Time Varying V-Shaped TFs

In general, experimental results show that HHO with V-shaped time-varying transfer
functions (TV-TFs) is better compared to those with classic V-shaped TFs. Inspecting
the results in Table 4, in the case of BHHOV1 and BHHOTV1, BHHOV1 has recorded
higher accuracy rates on seven datasets while BHHOTV1 has found higher accuracy rates
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for eight cases. However, both approaches have the same accuracy rates in three cases.
In addition, we see that BHHOTV2 has better accuracy measures than BHHOV2 on eleven
datasets, whereas BHHOV2 outperforms BHHOTV2 in five cases. It can be observed that
BHHOTV2 and BHHOV2 have maximum accuracy rates in two cases (M-of-N and Zoo).
In the case of BHHOV3 and BHHOTV3, it can be noticed that BHHOTV3 outperforms
BHHOV3 on nine datasets while BHHOV3 obtained higher accuracy rates on five datasets.
It can be seen that both approaches obtained similar accuracy rates on the exactly dataset
and the maximum accuracy measures on three datasets, including M-of-N, WineEW,
and Zoo. As per results, BHHOTV4 outperforms BHHOV4 on eleven datasets in terms of
accuracy rates, whereas BHHOV4 is superior in only three cases. However, both methods
obtained similar maximum obtained maximum accuracy rates on four datasets. In terms of
classification accuracy, as per F-test results, it can be seen that BHHOTV4 is ranked as the
best, followed by the BHHOTV3 method. Based on the observed results, we can say that
HHO with TV4 transfer function is able to obtain the best classification accuracy compared
to its peers, including basic and time-varying TFs-based FS approaches.

Table 4. Comparison of BHHO with the basic and time-varying V-shaped variants in terms of accuracy rates.

Dataset BHHOV1 BHHOTV1 BHHOV2 BHHOTV2 BHHOV3 BHHOTV3 BHHOV4 BHHOTV4

Breastcancer 0.9693 0.9783 0.9998 0.9924 0.9779 0.9848 0.9929 0.9781
BreastEW 0.9702 0.9819 0.9909 0.9883 0.9813 0.9918 0.9737 0.9792
CongressEW 0.9939 0.9801 0.9889 0.9992 0.9655 0.9816 0.9774 1.0000
Exactly 1.0000 0.9828 0.9135 0.9965 0.9997 0.9997 0.9993 0.9998
Exactly2 0.7918 0.8137 0.8148 0.7263 0.7565 0.7975 0.7712 0.7885
HeartEW 0.9370 0.8877 0.8988 0.9037 0.8704 0.8957 0.9074 0.9105
IonosphereEW 0.9620 0.9695 0.9418 0.9507 0.9596 0.9615 0.9531 0.9728
KrvskpEW 0.9735 0.9791 0.9724 0.9728 0.9735 0.9701 0.9735 0.9789
Lymphography 0.9822 0.9133 0.8878 0.9489 0.9511 0.9267 0.9656 0.9811
M-of-n 0.9998 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
penglungEW 1.0000 1.0000 1.0000 0.9444 0.9933 1.0000 1.0000 1.0000
SonarEW 0.9421 0.9556 0.9492 0.9833 0.9595 0.9341 0.9508 0.9754
SpectEW 0.9056 0.8883 0.8549 0.8778 0.8605 0.9296 0.9111 0.9093
Tic-tac-toe 0.8267 0.8542 0.8410 0.8594 0.8316 0.8418 0.8163 0.8333
Vote 0.9639 0.9994 0.9833 0.9872 0.9883 0.9861 0.9867 0.9872
WaveformEW 0.8023 0.7971 0.8036 0.8083 0.8056 0.7916 0.8003 0.7973
WineEW 1.0000 1.0000 1.0000 0.9926 1.0000 1.0000 1.0000 1.0000
Zoo 1.0000 0.9444 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

W|T|L 7|3|8 8|3|7 5|2|11 11|2|5 5|4|9 9|4|5 3|4|11 11|4|3
Rank (F-Test) 4.56 4.61 4.83 4.44 5 4.53 4.61 3.42

In terms of selected features, as presented in Table 5, it can be seen that the basic ver-
sions of V1 and V2 based approaches outperform the time-varying-based ones. In the case
of BHHOV3 and BHHOTV3, it is clear that BHHOTV3 is dominant on 61.11% of cases while
BHHOTV4 outperformed BHHOTV4 on 50% of the cases. According to recorded FS rates,
F-test results show that BHHOV4 is ranked as the best method in terms of the least number
of selected features. However, excessive feature reduction may not be the preferred option
since it may exclude some relevant features, which degrade the classification performance.
Although the basic versions of TFs-based approaches outperform the time-varying-based
ones in terms of feature reduction, the latter can find the most relevant subset of features
that provides better classification accuracy, as provided in Table 4.

To confirm the effectiveness of the competing algorithms, the fitness value that com-
bines the two measures (i.e., accuracy and reduction rate) is adopted. In terms of fitness
rates, as provided in Table 6, it is clear that all time-varying V-shaped TFs based methods
outperform their peers (basic V-shaped-based techniques) in terms of fitness rates. Consid-
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ering F-test results, BHHOTV4 is ranked as the best place compared to all other competitors.
In this work, we consider that classification accuracy has higher importance compared to
the number of selected features. Based on results, we found that HHO with time-varying
V-shaped TV4 can realize the best performance.

Table 5. Comparison of BHHO with the basic and time-varying V-shaped variants in terms of the number of selected features.

Dataset BHHOV1 BHHOTV1 BHHOV2 BHHOTV2 BHHOV3 BHHOTV3 BHHOV4 BHHOTV4

Breastcancer 5.10 3.93 3.97 4.90 5.07 3.13 3.03 5.13
BreastEW 6.70 7.30 7.33 7.50 8.17 8.53 4.83 8.83
CongressEW 2.87 4.27 3.60 3.93 3.17 2.93 4.47 3.03
Exactly 6.00 6.23 5.30 6.07 6.03 6.07 6.03 6.07
Exactly2 4.67 5.37 3.83 6.27 6.37 5.33 5.93 4.43
HeartEW 4.87 3.20 5.80 5.20 5.60 5.67 5.27 6.13
IonosphereEW 4.17 5.30 5.07 4.87 4.87 4.23 4.07 3.63
KrvskpEW 13.80 14.87 18.90 13.37 16.10 17.07 13.43 13.73
Lymphography 4.13 5.90 5.43 5.77 4.33 4.13 5.63 4.97
M-of-n 6.07 6.03 6.00 6.03 6.00 6.07 6.07 6.00
penglungEW 11.30 8.17 11.83 20.67 9.60 8.23 12.67 11.07
SonarEW 13.67 14.37 14.20 11.13 16.43 11.50 13.10 14.57
SpectEW 6.97 4.77 6.30 5.20 4.77 7.70 5.40 5.17
Tic-tac-toe 5.00 8.20 7.83 6.17 6.47 7.93 5.90 5.13
Vote 4.57 3.20 4.30 4.63 5.50 5.37 4.20 1.70
WaveformEW 19.00 17.43 16.17 19.70 17.47 16.73 15.37 16.00
WineEW 4.03 4.33 4.10 6.77 3.53 3.27 3.00 4.27
Zoo 3.10 4.87 3.07 3.10 3.00 2.03 4.07 4.70

W|T|L 11|0|7 7|0|11 12|0|6 6|0|12 7|0|11 11|0|7 9|0|9 9|0|9
Rank (F-Test) 3.89 5.06 4.56 5.19 4.75 4.42 3.86 4.28

Table 6. Comparison of BHHO with the basic and time-varying V-shaped variants in terms of fitness rates.

Dataset BHHOV1 BHHOTV1 BHHOV2 BHHOTV2 BHHOV3 BHHOTV3 BHHOV4 BHHOTV4

Breastcancer 0.0361 0.0258 0.0046 0.0130 0.0276 0.0186 0.0104 0.0274
BreastEW 0.0318 0.0204 0.0114 0.0141 0.0212 0.0110 0.0277 0.0235
CongressEW 0.0079 0.0224 0.0133 0.0032 0.0361 0.0200 0.0252 0.0019
Exactly 0.0046 0.0218 0.0897 0.0081 0.0050 0.0050 0.0053 0.0048
Exactly2 0.2097 0.1886 0.1863 0.2758 0.2460 0.2046 0.2311 0.2128
HeartEW 0.0661 0.1137 0.1047 0.0993 0.1326 0.1076 0.0957 0.0933
IonosphereEW 0.0389 0.0318 0.0591 0.0502 0.0414 0.0394 0.0477 0.0280
KrvskpEW 0.0300 0.0249 0.0326 0.0306 0.0307 0.0344 0.0300 0.0247
Lymphography 0.0199 0.0891 0.1141 0.0538 0.0508 0.0749 0.0372 0.0215
M-of-n 0.0048 0.0048 0.0046 0.0046 0.0046 0.0047 0.0047 0.0046
penglungEW 0.0003 0.0003 0.0004 0.0556 0.0069 0.0003 0.0004 0.0003
SonarEW 0.0596 0.0464 0.0527 0.0184 0.0428 0.0671 0.0509 0.0268
SpectEW 0.0967 0.1128 0.1465 0.1234 0.1403 0.0732 0.0905 0.0922
Tic-tac-toe 0.1771 0.1535 0.1661 0.1461 0.1739 0.1654 0.1884 0.1707
Vote 0.0386 0.0026 0.0192 0.0155 0.0150 0.0171 0.0158 0.0137
WaveformEW 0.2005 0.2053 0.1985 0.1947 0.1968 0.2105 0.2016 0.2047
WineEW 0.0031 0.0033 0.0032 0.0125 0.0027 0.0025 0.0023 0.0033
Zoo 0.0019 0.0580 0.0019 0.0019 0.0019 0.0013 0.0025 0.0029

W|T|L 8|0|10 10|0|8 7|0|11 11|0|7 7|0|11 11|0|7 5|0|13 13|0|5
Rank (F-Test) 4.44 4.75 4.92 4.33 5.03 4.31 4.75 3.47
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6.2. Comparison with Other Optimization Algorithms

This section provides a comparison between the best approach BHHOTV4 and other
well-known metaheuristic methods (BGSA, BPSO, BBA, BSSA, and BWOA). The compari-
son is made based on different criteria, including average classification accuracy, number
of selected features, and fitness values.

As per results in Table 7, it can be observed that BHHOTV4 outperforms other algo-
rithms for 11 out of 18 datasets in terms of accuracy rates. It reached the maximum accuracy
averages on five datasets. We see that BHHOTV4, BPSO, and BSSA reached maximum
accuracy for the Zoo dataset. In addition, compared to BHHOTV4, it can be seen that BPSO
obtained better results on Exactly2, Vote, and WaveformEW datasets. As per F-test results,
we observe the BHHOTV4 is ranked one, followed by BPSO, BSSA, BWOA, BGSA, and BBA
methods. To see whether the differences between obtained results from BHHOTV4 and
other algorithms are statistically significant or not, a two-tailed Wilcoxon statistical test
with 5% significance was used. Table 8 presents the p-values of the Wilcoxon test in terms of
classification accuracy. It is clear that there are meaningful differences in terms of accuracy
averages between BHHOTV4 and its competitors in most of the cases.

In terms of the least number of selected features, as stated in Table 9, it is observed
that BHHOTV4 obtained the best averages on 13 out of 18 datasets while BPSO outperforms
all other algorithms on three datasets. As per F-test results, we can see that the BHHOTV4
is ranked as the best one, followed by BPSO, and BBA methods, respectively. Inspecting
the results of the p-value in Table 10, it is evident that the insignificant differences in terms
of the lowest number of selected features between BHHOTV4 and other peers are limited.

Fitness rates are shown in Table 11, and it can be noticed that BHHOTV4 reached the
lowest fitness values compared with other algorithms on 11 out of 18 datasets. We can also
see that BPSO is the best in four cases. Again, according to F-test results as in Table 11, it is
clear that the BHHOTV4 is ranked as the best, followed by the BPSO method. In addition,
Table 12 shows the p-values of the Wilcoxon test in terms of best fitness rates. It can be
observed that the differences between BHHOTV4 and others are not statistically significant
in only four cases.

The convergence behaviors of BHHOTV4 and other algorithms were also investigated
to assess their ability to make an adequate balance between exploration and exploitation by
avoiding local optima and early convergence. The convergence behaviors of BHHOTV4 on
12 datasets compared to other optimizers are demonstrated in Figures 4 and 5. In all tested
cases, the superiority of BHHOTV4 can be seen in converging faster than other competitors
towards the optimal solution.

Table 7. Comparison of BHHOTV4 versus other optimizers in terms of average classification accuracy.

Dataset BHHOTV4 BGSA BPSO BBA BSSA BWOA

Breastcancer 0.9781 0.9855 0.9783 0.9698 0.9700 0.9783
BreastEW 0.9792 0.9643 0.9734 0.9380 0.9661 0.9763
CongressEW 1.0000 0.9663 0.9877 0.9280 0.9816 0.9774
Exactly 0.9998 0.7227 0.9892 0.6815 0.9827 0.9952
Exactly2 0.7885 0.7908 0.8027 0.7313 0.7733 0.7465
HeartEW 0.9105 0.8488 0.9000 0.7864 0.9272 0.9037
IonosphereEW 0.9728 0.8507 0.9362 0.8681 0.9718 0.8681
KrvskpEW 0.9789 0.9182 0.9759 0.8267 0.9759 0.9749
Lymphography 0.9811 0.8220 0.8944 0.6867 0.9156 0.8933
M-of-n 1.0000 0.8815 0.9975 0.7665 0.9930 0.9993
penglungEW 1.0000 0.8832 0.9978 0.8867 0.9422 0.8044
SonarEW 0.9754 0.9397 0.9413 0.8468 0.9167 0.8714
SpectEW 0.9093 0.8265 0.8648 0.8222 0.9043 0.8482
Tic-tac-toe 0.8333 0.7941 0.8174 0.7024 0.9004 0.8594
Vote 0.9872 0.9294 1.0000 0.8800 0.9500 0.9683
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Table 7. Cont.

Dataset BHHOTV4 BGSA BPSO BBA BSSA BWOA

WaveformEW 0.7973 0.7753 0.8167 0.7196 0.8000 0.8102
WineEW 1.0000 0.9843 0.9963 0.9111 0.9926 0.9815
Zoo 1.0000 0.9683 1.0000 0.8334 1.0000 0.9889

Rank (F-Test) 1.72 4.5 2.44 5.81 2.97 3.56

Table 8. The 2-tailed p-values of the Wilcoxon signed ranks test for accuracy results reported in Table 7 (p-values ≤ 0.05
are significant).

Dataset BGSA BPSO BBA BSSA BWOA BHHOTV4

Breastcancer 3.82E-09 5.70E-01 4.26E-01 3.33E-12 5.70E-01 1
BreastEW 1.15E-08 8.90E-04 2.45E-11 9.81E-10 1.78E-02 1
CongressEW 7.40E-13 2.50E-12 1.04E-12 4.17E-13 2.05E-13 1
Exactly 1.68E-12 3.98E-02 1.69E-12 1.02E-03 1.98E-02 1
Exactly2 8.30E-02 6.83E-11 1.79E-11 6.39E-11 1.53E-11 1
HeartEW 7.29E-11 2.67E-03 2.22E-10 3.43E-03 7.95E-03 1
IonosphereEW 1.30E-11 5.60E-09 1.69E-11 2.22E-01 1.21E-11 1
KrvskpEW 5.80E-11 1.24E-01 2.88E-11 1.05E-03 3.31E-04 1
Lymphography 1.12E-11 2.27E-11 1.57E-11 2.87E-11 5.19E-12 1
M-of-n 1.19E-12 8.15E-02 1.20E-12 1.37E-03 8.15E-02 1
penglungEW 2.54E-13 3.34E-01 6.09E-13 1.97E-11 4.16E-14 1
SonarEW 1.83E-08 3.52E-07 1.24E-11 6.77E-12 6.77E-12 1
SpectEW 1.07E-12 1.56E-12 2.87E-12 3.15E-02 4.70E-13 1
Tic-tac-toe 1.17E-12 8.26E-13 1.17E-12 4.16E-14 1.69E-14 1
Vote 2.73E-12 1.47E-09 7.07E-12 4.23E-13 2.60E-10 1
WaveformEW 2.06E-08 7.16E-10 5.72E-11 2.60E-01 4.18E-08 1
WineEW 1.06E-05 4.18E-02 3.70E-12 2.70E-03 5.88E-08 1
Zoo 5.88E-08 NaN 4.48E-12 NaN 5.47E-03 1

Table 9. Comparison of BHHOTV4 versus other optimizers in terms of average selected features.

Dataset BHHOTV4 BGSA BPSO BBA BSSA BWOA

Breastcancer 5.13 5.10 3.10 3.70 4.77 4.40
BreastEW 8.83 14.80 11.43 12.30 18.23 16.17
CongressEW 3.03 6.97 4.90 6.20 6.20 6.27
Exactly 6.07 7.87 6.17 6.30 6.87 6.57
Exactly2 4.43 4.47 2.43 4.93 8.83 7.67
HeartEW 6.13 6.50 5.17 4.77 7.53 6.37
IonosphereEW 3.63 13.57 9.47 12.50 17.40 12.83
KrvskpEW 13.73 19.93 19.00 15.57 25.30 25.50
Lymphography 4.97 8.53 5.97 6.73 9.03 9.77
M-of-n 6.00 7.90 6.20 6.20 7.10 6.80
penglungEW 11.07 149.87 126.50 123.07 174.27 120.83
SonarEW 14.57 28.27 24.37 25.63 36.30 31.27
SpectEW 5.17 10.90 8.37 9.37 11.63 13.33
Tic-tac-toe 5.13 6.13 6.20 4.33 7.13 9.00
Vote 1.70 7.57 2.63 6.57 7.07 6.00
WaveformEW 16.00 21.80 23.50 16.63 25.87 28.83
WineEW 4.27 6.47 5.97 5.90 5.93 6.17
Zoo 4.70 6.33 3.73 6.17 4.17 5.97

Rank (F-Test) 1.61 4.72 2.36 2.78 4.92 4.61
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Table 10. The 2-tailed p-values of the Wilcoxon signed ranks test for the number of features reported in Table 9
(p-values ≤ 0.05 are significant).

Dataset BGSA BPSO BBA BSSA BWOA BHHOTV4

Breastcancer 6.18E-01 3.47E-11 4.06E-06 9.99E-03 2.63E-05 1
BreastEW 3.24E-08 4.08E-04 1.72E-05 3.16E-10 4.36E-09 1
CongressEW 6.51E-12 2.25E-10 2.96E-11 1.55E-12 1.47E-12 1
Exactly 9.70E-08 2.37E-01 2.10E-01 6.30E-07 9.34E-05 1
Exactly2 3.80E-01 8.67E-04 5.48E-01 1.98E-11 1.20E-08 1
HeartEW 4.58E-01 5.03E-02 1.72E-02 5.39E-03 3.01E-01 1
IonosphereEW 1.91E-11 2.43E-11 1.81E-11 1.71E-11 1.81E-11 1
KrvskpEW 4.74E-08 5.98E-07 2.64E-02 4.09E-11 5.47E-11 1
Lymphography 9.21E-10 9.16E-03 5.78E-04 1.93E-10 6.91E-11 1
M-of-n 2.03E-09 2.15E-02 8.10E-01 3.32E-10 2.64E-08 1
penglungEW 2.84E-11 2.86E-11 2.87E-11 2.86E-11 2.88E-11 1
SonarEW 9.02E-11 5.47E-10 8.76E-10 2.86E-11 4.53E-11 1
SpectEW 6.26E-11 7.97E-09 2.71E-09 7.11E-11 3.83E-11 1
Tic-tac-toe 9.22E-06 6.21E-03 1.53E-02 2.31E-12 1.17E-13 1
Vote 1.44E-11 4.31E-05 1.57E-10 4.00E-11 9.17E-11 1
WaveformEW 2.22E-06 8.70E-08 3.31E-01 1.62E-09 1.91E-10 1
WineEW 1.56E-08 7.13E-09 6.52E-06 1.98E-09 3.63E-11 1
Zoo 1.98E-07 3.82E-05 1.71E-03 3.27E-03 3.98E-06 1

Table 11. Comparison of BHHOTV4 versus other optimizers in terms of average fitness values.

Dataset BHHOTV4 BGSA BPSO BBA BSSA BWOA

Breastcancer 0.0274 0.0200 0.0249 0.0199 0.0350 0.0263
BreastEW 0.0235 0.0402 0.0302 0.0418 0.0397 0.0288
CongressEW 0.0019 0.0377 0.0152 0.0304 0.0221 0.0263
Exactly 0.0048 0.2806 0.0155 0.2846 0.0224 0.0098
Exactly2 0.2128 0.2105 0.1972 0.2299 0.2312 0.2569
HeartEW 0.0933 0.1547 0.1030 0.1235 0.0779 0.1002
IonosphereEW 0.0280 0.1518 0.0660 0.1102 0.0330 0.1344
KrvskpEW 0.0247 0.0865 0.0291 0.0828 0.0309 0.0319
Lymphography 0.0215 0.1809 0.1078 0.2088 0.0886 0.1110
M-of-n 0.0046 0.1234 0.0072 0.1353 0.0124 0.0059
penglungEW 0.0003 0.1203 0.0061 0.0739 0.0626 0.1973
SonarEW 0.0268 0.0644 0.0622 0.0996 0.0886 0.1325
SpectEW 0.0922 0.1767 0.1376 0.1296 0.1000 0.1564
Tic-tac-toe 0.1707 0.2107 0.1877 0.2296 0.1066 0.1492
Vote 0.0137 0.0746 0.0016 0.0715 0.0539 0.0351
WaveformEW 0.2047 0.2279 0.1873 0.2292 0.2045 0.1951
WineEW 0.0033 0.0206 0.0083 0.0167 0.0119 0.0231
Zoo 0.0029 0.0354 0.0023 0.0621 0.0026 0.0147

Rank (F-Test) 1.83 4.89 2.44 4.83 3.11 3.89

Table 12. The 2-tailed p-values of the Wilcoxon signed ranks test for fitness results reported in Table 11 (p-values ≤ 0.05
are significant).

Dataset BGSA BPSO BBA BSSA BWOA BHHOTV4

Breastcancer 6.84E-10 5.19E-11 6.86E-10 1.98E-12 2.60E-06 1
BreastEW 6.74E-10 9.17E-06 4.32E-10 5.38E-11 3.31E-06 1
CongressEW 1.67E-12 1.44E-12 1.68E-12 1.57E-12 1.52E-12 1



Appl. Sci. 2021, 11, 6516 18 of 23

Table 12. Cont.

Dataset BGSA BPSO BBA BSSA BWOA BHHOTV4

Exactly 2.35E-12 1.01E-01 2.35E-12 8.15E-07 1.03E-04 1
Exactly2 2.47E-03 8.79E-11 2.48E-11 2.56E-11 2.54E-11 1
HeartEW 3.76E-11 7.68E-02 1.64E-06 1.06E-02 1.85E-02 1
IonosphereEW 2.42E-11 4.80E-10 2.43E-11 7.52E-02 2.43E-11 1
KrvskpEW 4.97E-11 2.46E-02 3.33E-11 8.85E-06 5.84E-06 1
Lymphography 2.10E-11 2.64E-11 2.14E-11 2.09E-11 2.05E-11 1
M-of-n 1.21E-12 2.16E-02 4.57E-12 3.88E-10 2.65E-08 1
penglungEW 2.84E-11 2.86E-11 2.88E-11 2.86E-11 2.88E-11 1
SonarEW 1.76E-10 6.44E-09 3.80E-10 2.96E-11 2.98E-11 1
SpectEW 2.09E-11 2.09E-11 3.17E-10 4.79E-08 2.12E-11 1
Tic-tac-toe 1.67E-12 1.19E-12 1.66E-12 6.50E-14 2.71E-14 1
Vote 7.36E-12 4.57E-11 7.19E-12 6.91E-12 6.92E-12 1
WaveformEW 6.52E-09 2.44E-09 1.56E-08 9.76E-01 1.09E-05 1
WineEW 2.76E-11 6.44E-10 2.30E-10 7.63E-11 7.47E-12 1
Zoo 1.37E-11 3.82E-05 1.35E-11 3.27E-03 1.36E-07 1
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Figure 4. Convergence curves of BHHOTV4 versus other competitors on Breastcancer, BreastEW, CongressEW, Exactly,
Exactly2, HeartEW, IonosphereEW, KrvskpEW, and Lymphography datasets.
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Figure 5. Convergence curves of BHHOTV4 versus other competitors on M-of-n, penglungEW, SonarEW, SpectEW, Tic-tac-
toe, Vote, WaveformEW, WineEW, and Zoo datasets.

6.3. Comparison with Results of Previous Works

This section provides comparisons of accuracy rates between optimal approach
BHHOTV4 in this research and its similar FS approaches introduced in previous studies.
Results of BHHOTV4 are compared with results of SSA in [58], WOA in [59], Grasshopper
Optimization Algorithm (GOA) in [60], GSA boosted with evolutionary crossover and
mutation operators in [61], GOA with Evolutionary Population Dynamics (EPD) stochastic
search strategies in [62], BDA [35], hybrid approach based on Grey Wolf Optimization
(GWO) and PSO in [12] and Binary Butterfly Optimization Algorithm (BOA) [63]. As in
Table 13, it can be seen that the proposed approach BHHOTV4 has achieved the best ac-
curacy rates on twelve datasets compared to results presented in previous studies on the
same datasets. We can also observe that BHHOTV4 reached the highest accuracy rates on
six datasets. In addition, the F-test results indicate that BHHOTV4 is ranked as the best in
comparison with results of other algorithms used in preceding works.

In general, the results reflect the impact of the adopted binarization scheme on the
performance of HHO in scanning the binary search space for finding the optimal solution
(e.g., the ideal or near to the ideal subset of features). It is evident that the utilized time-
varying TFs, in particular, TVV4 can remarkably enhance the exploration and exploitation
of the HHO algorithm. A potential key factor behind the superiority of BHHOTV4 is that
changing the shape of TVV4 transfer function over generations has enabled the HHO
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algorithm to obtain an appropriate balance between exploration and exploitation phases
and boosted the HHO algorithm to reach areas containing highly valuable features in the
search space. Furthermore, similar to many materialistic algorithms, HHO suffers from the
problem of sliding into local optima. The accuracy rates of BHHOTV4 compared to other
algorithms prove its superior capability in preserving the population diversity during the
search procedure. Hence, preventing the occurrence of an early convergence problem.

Table 13. Comparison of the proposed BHHOTV4 and other approaches from previous works in terms of accuracy rates.

Dataset BHHOTV4 BSSA_S3_CP [58] WOA-CM [59] BGOA_EPD_Tour [60] HGSA [61] BGOA-M [62] BDA-TVv4 [35] BGWOPSO [12] S-bBOA [63]

Breastcancer 0.978 0.977 0.968 0.980 0.974 0.974 0.977 0.980 0.9686

BreastEW 0.979 0.948 0.971 0.947 0.971 0.970 0.974 0.970 0.9709

CongressEW 1.000 0.963 0.792 0.964 0.966 0.976 0.995 0.980 0.9593

Exactly 1.000 0.980 0.956 0.999 1.000 1.000 0.929 1.000 0.9724

Exactly2 0.789 0.758 1.000 0.780 0.770 0.735 0.726 0.760 0.7596

HeartEW 0.910 0.861 0.742 0.833 0.856 0.836 0.886 0.850 0.8237

IonosphereEW 0.973 0.918 0.919 0.899 0.934 0.946 0.925 0.950 0.907

KrvskpEW 0.979 0.964 0.866 0.968 0.978 0.974 0.971 0.980 0.966

Lymphography 0.981 0.890 0.807 0.868 0.892 0.912 0.895 0.920 0.8676

M-of-n 1.000 0.992 0.926 1.000 1.000 1.000 0.973 1.000 0.972

penglungEW 1.000 0.878 0.972 0.927 0.956 0.934 0.807 0.960 0.8775

SonarEW 0.975 0.937 0.852 0.912 0.958 0.915 0.995 0.960 0.9362

SpectEW 0.909 0.836 0.991 0.826 0.919 0.826 0.877 0.880 0.8463

Tic-tac-toe 0.833 0.821 0.785 0.808 0.788 0.791 0.822 0.810 0.7983

Vote 0.987 0.951 0.939 0.966 0.973 0.963 0.962 0.970 0.9653

WaveformEW 0.797 0.734 0.753 0.737 0.815 0.751 0.749 0.800 0.7429

WineEW 1.000 0.993 0.959 0.989 0.989 0.989 0.999 1.000 0.9843

Zoo 1.000 1.000 0.980 0.993 0.932 0.958 0.983 1.000 0.9775

Rank (F-test) 1.78 6.00 6.78 5.92 4.28 5.50 4.86 3.03 6.86

7. Conclusions and Future Directions

In this paper, various FS approaches were developed using a recently introduced
swarm-based optimizer named HHO. The proposed methods integrate the HHO algorithm
with V-shaped time-varying binarization schemes to enable HHO to work in a binary
search space. Various well-known datasets from the UCI data repository were utilized
for evaluating the introduced approaches, and the results of the best approach BHHOTV4
were compared with those obtained from several meta-heuristic-based FS approaches such
as BGSA, BPSO, BBA, BSSA, and BWOA. It is clear from the obtained results that the
efficiency of HHO in the FS domain is highly influenced by the binarization scheme used.
The proposed BHHOTV4 can often overtake other FS approaches presented in previous
studies. In future work, we will study the effect of using S-shaped time-varying binarization
schemes on the performance of HHO in the FS problem.
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