
applied  
sciences

Article

The Temporal and Spatial Variation of Arthropod Associations
Inhabiting Non-Crop Vegetation in a Sisal Crop, Agave sisalana
in the Caatinga Biome

Sara Samanta da Silva Brito 1,†, María Villa 2,† , Jacinto Benhadi-Marín 2 , Franceli da Silva 1

and José Alberto Pereira 2,*

����������
�������

Citation: da Silva Brito, S.S.; Villa,

M.; Benhadi-Marín, J.; da Silva, F.;

Pereira, J.A. The Temporal and Spatial

Variation of Arthropod Associations

Inhabiting Non-Crop Vegetation in a

Sisal Crop, Agave sisalana in the

Caatinga Biome. Appl. Sci. 2021, 11,

6498. https://doi.org/10.3390/

app11146498

Academic Editor: Nathan J Moore

Received: 7 June 2021

Accepted: 11 July 2021

Published: 15 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre for Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da
Bahia/UFRB, Cruz das Almas/BA, Bahia 44380-000, Brazil; sarassbrito@gmail.com (S.S.d.S.B.);
Franceli.silva@gmail.com (F.d.S.)

2 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia,
5300-253 Bragança, Portugal; mariavilla@ipb.pt (M.V.); jbenma@ipb.com (J.B.-M.)

* Correspondence: jpereira@ipb.pt
† These authors contributed equally to this work.

Abstract: Sisal, Agave sisalana Perrine, is cultivated for fiber production, with Brazil being its leading
producer. Nowadays, given the increasing interest in organic products, the market for sisal could
become an economical alternative for rural areas with low economic inputs. However, sisal is
threatened by different pests and diseases. Conservation biological control could contribute to the
limitation of these plant enemies, but this agroecosystem is poorly known. In this context, we aimed:
(i) to identify the diversity of plants and arthropods and their potential relations, (ii) to study the
spatial patterns of arthropods and plants in function of the proximity to the margin of the field, and
(iii) to determine the minimum sampling effort needed to record the occurring biodiversity in a
sisal crop. Arthropods were sampled using pit-fall traps located close to the border and in the inner
plant of the sisal crop from June to September. Simultaneously, plant species and their abundance
in quadrats next to each pitfall were recorded. Diversity indexes were calculated to describe the
biodiversity, a redundancy analysis was performed to analyze relations among arthropods and plants
and the spatial distribution was evaluated using the non-parametric Wilcoxon rank-sum test. The
redundancy analysis and the Wilcoxon test revealed a temporal and spatial distribution of arthropods
and plants during the period of study. Results indicated (i) similar temporal diversity patterns from
June to July for both plants and arthropods, with a maximum in July, whereas in September the
biodiversity increased for arthropods and decreased for plants; (ii) the importance of particular
plant species for Collembola; and (iii) that arthropods seem to colonize the sisal crop from the fields
beyond the crop during the rainy season. These results provide new information about arthropods
and plant biodiversity from an agroecosystem in a semi-arid region and raise further queries about
the management of sisal crops.

Keywords: biodiversity; semi-arid; arthropod–plant interactions; spatial pattern; sampling protocol

1. Introduction

Agave sisalana Perrine (Sisal), with origins in Mexico, is used for fiber production. This
plant is a xerophyte, tolerating prolonged droughts and high temperatures that can survive
in poor soils from drought-prone tropical regions and can establish itself in a broad range
of environments from sub-humid to arid and semi-arid areas [1]. In Brazil, the plant’s
largest producer, the production is concentrated in Bahia, followed by Paraíba, Rio Grande
do Norte and Ceará [2]. However, in the last decades, its production decreased. In the
1970 decade, the production in the country exceeded 700,000 tons, whereas during 2015, it
was reduced to 91,100 tons, relative to a worldwide production of 257,800 tons [3]. This
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reduction has been mainly attributed to competition with synthetic fibers, low market
prices, and unfavorable weather conditions in the main producer countries. However, with
the increasing interest in organic products, the interest in natural fibers is rising. Despite
the low representation of the Sisal crop in the Brazilian economy, it represents the potential
of improving the productivity of semi-arid regions, which have few economic alternatives,
and of benefiting the rural population that has low financial incomes. However, fiber
extraction or crop production techniques have not been modernized, and there are no
mechanization or chemical fertilizers [1,4].

Agave species are attacked by pests and diseases. The bole rot, Aspergillus niger van
Tieghem, which was found for the first time in Brazil in 2006 [5], is a significant disease
that attacks sisal. The Coleoptera Scyphophorus acupunctatus Gyllenhal, native to Mexico
and well-established in Central and South America, the Caribbean, Africa, and Asia,
is considered the major Agave pest worldwide [6]. Currently, S. acupunctatus is mainly
controlled with synthetic insecticides, but their effectiveness is reduced because larvae and
adults frequently feed in the interior of the Agave plants [7]. Crop diseases and pests can be
regulated through Conservation Biological Control, which enhances the environment for
their natural enemies. However, enhancing the performance of natural enemies without
increasing the crop diseases or pests requires a deep knowledge of the natural enemies’
needs in each agroecosystem [8]. In general, the Agave agroecosystem, and particularly
sisal, is poorly known. Valdés-Estrada et al. [9] studied the effect of plant extracts against
S. acupunctatus larvae, and several works evaluated different baits for trapping adults,
but very few studies addressed the diversity of arthropods or plants in Agave crops in a
conservation biological control frame. González-Castillo et al. [10] studied the arthropods
diversity in Agave durangensis Gentry crops in Mexico, but to the best of our knowledge, no
study addressed this topic in A. sisalana. Moreover, in general, biodiversity is less studied
in seasons of resource scarcity [11].

In this context of a general lack of knowledge regarding the sisal agroecosystem, we
aimed: (i) to identify the diversity and potential relations between arthropods and the
occurring plants in a sisal crop; (ii) to study the spatial patterns of arthropods and plants in
function of the proximity to the margins of the field; and (iii) to determine the minimum
sampling effort to record the occurring biodiversity in a sisal crop.

2. Materials and Methods
2.1. Study Area

The study area was a three year old sisal crop (1 ha) located in Antônio Gonçalves
municipality—Bahia (10◦34′22” S, 40◦16′26” O), Brazil. No pesticides were applied during
the period of study. Bovine manure was used to fertilize, rows were hoeing, sprouts were
removed every four months, and biomass was incorporated into the rows. The crop was
located in the Caatinga biome, which is composed of semideciduous forest and deciduous
forest in the driest areas. This forest composition varies from spiny trees, deciduous or
semideciduous—often with a ground layer of small deciduous shrubs and annual herbs,
with a predominance of Fabaceae—to deciduous woodland of lower stature, with a high
proportion of shrubs and subshrubs, and characterized by the presence of many cacti,
bromeliads, and Euphorbiaceae. In the rainy season, green foliage covers the trees, and
annual herbs cover the ground.

2.2. Arthropods and Plants Sampling

From June to September 2015 (cold and dry season), a total of 24 pit-fall traps (7.5 cm
in diameter and 6 cm high) were located in the ground and in three inter-rows (eight traps
per inter-row) and separated by at least 3 m. Traps were sampled on a monthly basis from
June to September. They were placed within the crop according to the distance to the
border; thus, 12 traps were located closer to the border of the plantation (outer traps) and
the other 12 were closer to the inner part of the plantation (Figure 1).
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Figure 1. (a) Diagram of the experimental design; (b) planting area of sisal culture in Antônio Gonçalves, Bahia, Brazil. 
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Figure 1. (a) Diagram of the experimental design; (b) planting area of sisal culture in Antônio Gonçalves, Bahia, Brazil.

The traps were provided with water (200 mL) and four drops of liquid detergent.
After 24 h, the arthropods were collected and kept in 70% alcohol in the laboratory until
identification to order and/or morphospecies. In the same period, the plant species and
their abundance within 24 quadrats (50 × 50 cm)—each one corresponding to one pit-fall
trap—were recorded.

2.3. Data Analysis
2.3.1. Arthropods and Plants Diversity

The Shannon diversity index (ShDI), the Simpson diversity index (SiDI), and the equi-
tativity (E) were calculated using Past software, version 2.16 (2012), for both arthropods and
plants [12]. Additionally, for each plant, the importance value index (IVI) was calculated.

To explore the potential relations of arthropods with plant species, a redundancy
analysis (RDA) was performed using the function rda from the “vegan” package [13] in
R [14]. Arthropod morphospecies from each pit-fall were used as response data and IVIs
of the identified plant species next to each pit-fall were used as explanatory variables.
Hellinger transformation, recommended for the ordination of species abundance data [15],
was applied to the arthropods data matrix. The forward selection was used to reduce
explanatory variables using the ordistep function from the “vegan” package. The significance
of the RDA was tested using the anova function from the “stats” package from base R [14].

2.3.2. Analysis of Differences between Outer and Inner Samples

Statistical differences between outer and inner samples were assessed for total arthro-
pod abundance (N) and richness (S) using the non-parametric Wilcoxon rank-sum test that
estimates the probability that a randomly chosen subject from the first group (inner) has a
higher weight than a randomly selected subject from the second group (outer). For that,
the wilcox.test function from the “stats” package was used [14].

2.3.3. Sampling Protocol

The proportion of the recorded taxa and the inventory quality [16] was followed
to determine the minimum sampling effort. Accumulation curves for morphospecies of
arthropods and species of weeds were calculated using the software Estimates 8.2 [17]
separately for each month (from June to September). This method shows the rate at which
new taxa are added to the inventory within a defined area. An increasing number of
samples leads to an increased number of taxa until a plateau is reached. The resulting
diagram indicates the cumulative number of taxa recovered according to the increase in
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the number of samples [16]. Then, the curves were modeled using Statistica 7.0 [18] and
adjusted by the Clench model [19] according to the equation:

Sn = a × n/(1 + bn), (1)

where Sn is species richness, a represents the increase rate at the beginning of the collection,
b is a parameter related to the curve shape, and n is the sampling effort.

The proportions of the recorded taxa, F(%), were calculated for arthropods and weeds
using the equation:

F(%) = Sobs/(a/b) × 100, (2)

where Sobs represents the observed richness, and a/b is the asymptote of the curve.
The quality of the inventory was calculated as:

Ci = a/(1 + bn)2, (3)

where Ci is the slope of the curve at each sampling point. When Ci < 0.1, the inventory
can be considered complete and reliable. The number of samples needed for Ci = 0.1 was
calculated using Equation (3).

3. Results and Discussion
3.1. Arthropods and Plants Diversity

In this work, the diversity of arthropods from the soil and non-crop plants of a sisal
agroecosystem was identified during the winter season, which is characterized by cold and
and dry conditions, in Bahia, Brazil. Regarding the arthropods, a total of 3259 specimens
were captured in the pit-fall traps. They belonged to Araneae, Acari, Diptera, Hymenoptera,
Collembola, Coleoptera, Orthoptera, Hemiptera, Blattodea, and Lepidoptera (Figure 2) and
were separated into 153 morphospecies.
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Figure 2. Abundance (number) of the identified taxa in a sisal crop from June to September 2015.
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These taxa include several functional groups, such as predators, parasitoids, pollina-
tors, or decomposers, that could play important roles in the sisal agroecosystem. Their
abundance varied during the period of study. In June, the most abundant taxa were Diptera
and Hymenoptera, with 38.4% and 35.5%, respectively, and the SiDI, ShDI, and E were
0.85, 2.43, and 0.66, respectively. The highest abundance of specimens occurred in July
(1452) and August (975). During these months the SiDI, ShDI, and E decreased (July—SiDI
= 0.53/ShDI = 1.46/E = 0.38; August—SiDI = 0.26/ShD = 0.77/E = 0.22), with Collembola
being the dominant taxa and representing 78.6% and 91%, respectively. In September, the
most abundant taxon was Hymenoptera, representing 58% of the total, and the SiDI, ShDI,
and E increased (0.59, 1.65, and 0.50, respectively). To the best of our knowledge, there are
no other studies that addressed arthropods diversity in a sisal crop. However, in Agave
tequilana Weber var. Azul crops from Mexico, Gonçalez Castillo et al. [10] found ShDIs
between 1.5 and 3.5, with higher richness and special relevance of Hemiptera, Coleoptera,
Diptera, and Hymenoptera orders. Other studies evaluated the arthropods colonizing
plants of Agave palmeri Engelmann [20].

Regarding the plants, in this study, a total of 21 species belonging to 8 families and
5 species in seedling stage were identified (Table 1). The richest families were Asteraceae,
Malvaceae, and Fabaceae, and the diversity varied during the period of study. In June, only
the Commelinaceae Commelina erecta L. was identified. In July, 13 species were identified.
The highest IVI was presented by Amaranthaceae Alternanthera tenella Colla (IVI = 40.04),
followed by species belonging to Asteraceae, Malvaceae, and Fabaceae. In August, 15 species
were identified. The most represented species belonged to Asteraceae and were followed
by A. tenella (IVI = 22.54). Finally, in September, 10 species were identified, and the
highest IVI was displayed by Fabaceae Chamaecrista rotundifolia Moench (IVI = 20.15),
followed by Asteraceae Lepidaploa cotoneaster (Willd. ex Spreng.) (IVI = 18.09) and Malvaceae
Pavonia cancellata (L.) Cav. (IVI = 11.67) (Table 1). The plant diversity indexes decreased
from July to September (July—SiDI = 0.50, ShDI = 0.78, E = 0.31; August—SiDI = 0.44,
ShDI = 0.74, E = 0.29; September—SiDI = 0.29, ShDI = 0.47, E = 0.20). Thus, both plants
and arthropods showed similar temporal patterns from June to July, whereas in September
the biodiversity increased for arthropods and decreased for plants. Generally, the results
agree with the seasonal patterns of tropical ecosystems such as the Caatinga, where soil
arthropod abundance and richness occur following the dry and rainy seasons, being directly
influenced by the weather conditions and food resources, such as non-crop plants [21].

The identified plants comprise multiple potential uses and may provide additional
ecosystem services to the sisal crop. Among the agronomic potential uses, pest/diseases
control, biostimulant properties, or the improvement of soil characteristics are included. In
a study carried out in urban ecosystems, the increasing patch size and decreasing patch
isolation of C. erecta resulted in higher overall parasitism rates over the leaf miner, Liriomyza
commelina (Frost) (Diptera: Agromyzidae) [22]. An extract from Artemisia absinthium L.
showed biostimulant properties in soybean cultivation [23] and long-term C. rotundifolia
mulching significantly influenced the soil chemical properties and bacterial communities of
persimmon orchards [24]. Extracts from this plant have also shown promising biopesticide
activity; however, it may affect the survival and metabolic activity of key soil organism [25].
Centratherum punctatum Cass. showed pesticide activity against the mosquito Culex quinque-
fasciatus Say (Diptera: Culicidae) [26] and extracts from Solanum agrarium Sendtn. showed
molluscicidal activity against the snail Biomphalaria glabrata (Say), the intermediated host of
Schistosoma mansoni Sambon (Diplostomida: Schistosomatidae) [27]. Moreover, several of
the identified plants, such as C. erecta, Lourteigia ballotaefolia (Kunth) R.M.King and H.Rob.,
A. absinthium, Centratherum punctatun Cass., Sida spp., and Solanum lycocarpum A.St.-Hil.,
contain compounds with medical properties or have been traditionally used as medicinal
plants [28–34].

Concerning the relations among arthropods and plant species, to date, the knowledge
about weed–arthropod interactions in agricultural landscapes is insufficient [35].
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Table 1. Plant importance value index (IVI) collected from June to September 2015 in a sisal crop.

Family/Species
IVI

June July August September

Amaranthaceae
Alternanthera tenella Colla 0 40.04 22.54 9.19

Asteraceae
Artemisia absinthium L. 0 0 0.68 0

Centratherum punctatum Cass. 0 6.73 11.91 0
Lepidaploa cotoneaster (Willd. ex Spreng.) 0 13.14 8.5 18.09

Lourteigia ballotaefolia (Kunth) R.M.King and H.Rob. 0 36.23 26.19 9.85
Tridax procumbens L. 0 6.23 0 0

Commelinaceae
Commelina erecta L. 100 7.16 7.45 0

Fabaceae
Calopogonium sp. 0 9.67 6.97 6.56

Chamaecrista rotundifolia Moench 0 0 0 20.15
Mimosa sp. 0 3.32 5.75 2.71

Malvaceae
Sida cordifolia L. 0 9.98 5.72 5.62

Pavonia cancellata (L.) Cav. 0 2.38 0 11.67
Sidastrum paniculatum (L.) Fryxell 0 0 3.89 0

Sida sp. 0 0 1.07 0

Poaceae
Specie 1 0 1.43 0 0

Rubiaceae
Borreria verticilata (L.) G.Mey. 0 0 1.95 0

Solanaceae
Solanum lycocarpum A.St.-Hil. 0 3.74 1.07 0

Solanum agrarium Sendtn. 0 2.56 0 0

Unidentified
Specie 2 0 0 0 0.96
Specie 3 0 0 0 1.05
Specie 4 0 0 1.07 0
Specie 5 0 0 3.04 0

In this work, the RDA revealed some relations among arthropods and plants. After
the forward selection, the plant species were reduced to A. tenella (P1), C. punctatum (P6),
L. ballotifolia (P2), S. lycocarpum (P7), unidentified species 2 (P20), P. cancellata (P9), and C.
rotundifolia (P12). The RDA was significant (F = 4.969, df = 7, p-value = 0.001) and resulted
in seven canonical axes with a cumulative contribution to the variance (explained by the
explanatory variable IVIs of plant species) of 28.33%. The adjusted R2 reduced the variance
explained to 22.63%. The percentages of accumulated constrained eigenvalues show that
the first axis explained 22.63 × 66.17 = 14.97% and the second 22.629 × 27.81 = 6.29% of the
variance. The first residual eigenvalue explained 20.21% of the variance, more than all RDA
eigenvalues. This means that the first residual structure of the data has more variance than
the structures that can be explained by the explanatory variables [36]. This could be due to
a potential influence of other variables not included in the analysis. Further studies should
address the ecological mechanisms that trigger these correlations and other possible factors
influencing them.

The triplot (Figure 3) shows that plants played an essential role in the dispersion of
the sites along the first axis. The plants A. tenella (P1), C. punctatum (P6), L. ballotifolia (P2),
and unidentified species (P20) characterized sites sampled in July and August, and the
arthropod 61, and to a lesser degree the arthropod 50 (both Collembola) were correlated
with those plants. S. lycocarpum (P7), P. cancellata (P9), and C. rotundifolia (P12) characterized
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sites sampled in September and were associated with the arthropod 112 (larvae). The other
arthropods showed shorter projections, indicating that they occurred during most of the
sample months or were related to several plants. The vegetation can influence arthropods
through different processes. For example, foliar herbivory may indirectly affect the soil
biota and affect below-ground processes through the effects on plants. These effects may
manifest either as changes in plant C allocation and root exudation or as in root biomass
and morphology, altering plant litter quality [37]. The decomposers of the plant litter, such
as Collembola, could be affected by changes produced in the litter by P1, P6, P2, and P20
and the higher precipitation during those months. Moreover, the presence of Collembola
can modify the chemical composition of the soil affecting differently different species of
plants [38]. Therefore, the high amount of Collembola during July and August could
affect the soil’s chemical composition and, consequently, the results found in September.
Salamon et al. [39] investigated the relation among Collembola species and abundance to
manipulation of the plant species richness and the plant functional groups number. Their
results suggested that the presence of certain plant species and functional groups may
be more important for the collembolan community structure than the diversity of plant
species and functional groups per se, which is in line with our results. Contrastingly, the
other arthropods might be more related to the diversity of plants. Further studies are
needed to clarify this hypothesis.
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Figure 3. RDA triplot showing the relationships between the Hellinger-transformed abundance of arthropods (response
variable) (•), the IVI of plant species (explanatory variables) (�), and sample points in June, July, August, and September
(#, �, +, ∆, respectively). The percentage of variance explained by the two first canonical axes (RDA 1 and RDA 2) is
indicated between brackets in the axes titles. P1-Alternanthera tenella, P6-Centratherum punctatum, P2-Louteigia ballotifolia,
P7-Solanum lycocarpum, unidentified species 2 (P20), P9-Pavonia cancellata, P12-Chamaecrista rotundifolia. A2, A3, A8-
Hymenoptera morphospecies; A10-Diptera morphospecies; A20-Unidentified; A50, A61-Collembola morphospecies;
A112-Unidentified larvae.
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In general, the Brazilian semi-arid biodiversity is poorly known [40], and particularly
the biota of the Caatinga is poorly protected. For example, in 2004, several groups of ani-
mals in Bahia state were inventoried through Rapid Ecological Assessment, and 14 species
of Asilidae (Diptera) were collected, constituting most of the new records for the state [41].
Designs of conservation strategies for this biome could reduce further habitat losses and
desertification, maintain essential ecological services necessary for improving the rural
population’s living standards, and promote the sustainable use of the region’s natural
resources [42].

3.2. Spatial Distribution from the Field Margins

Most of the arthropod species experience their habitats at spatial scales beyond the
plot level, and there is a spillover of natural enemies across the crop–non-crop interface [20].
In this study, the abundance and richness of arthropods according to the distance from the
field margins were evaluated during the sampling period to analyze potential distribution
patterns related to the proximity to the crop borders. The results indicated a temporal
and spatial distribution of the arthropods. In June, the total arthropod abundance (N) and
the richness (S) were significantly higher in the outer than in the inner samples (N June:
w = 110, p-value = 0.030; S June: 114.5, p-value = 0.014). In July, no differences were found
in N between inner and outer samples, but S was significantly higher in outer samples
(N July: w = 57, p-value = 0.402; S July: w = 114.5, p-value = 0.034). Both N and S were
not significantly different between inner and outer samples in August and September (N
August: w = 51.5, p-value = 0.248; S August: w = 88, p-value = 0.357; N September: w = 65.5,
0.729; S September w = 74.5, p-value = 0.906) (Figure 4).
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This could indicate the colonization by arthropods along the sample period and
agrees with several studies that found colonization of predators that overwinter in the field
margins and disperse into the crop in the spring in latitudes where the spring is the rainy
and favorable season for arthropods [8].
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3.3. Sampling Protocol

The taxa accumulation curves are shown in Figure 5 for the studied months. The
percentage of recorded richness varied from 67.25 to 75.51% in the case of the arthropods
and from 76.29 to 90.17% in the case of the weeds. The quality of the inventories was
always higher than 0.1 for arthropods, indicating that a more intensive sampling would be
required for a representative inventory. The number of samples for Ci = 0.1 varied from
54 to 80. In the case of the weeds, the Ci was in all months lower than 0.1, indicating a good
quality of the inventory, and the number of samples for Ci = 0.1 varied from 22 to 24. These
parameters were not calculated for weeds in June, when only one species was found.
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Thus, in this study, the minimum number of samples needed to elaborate a compre-
hensive inventory of arthropods and plants in a sisal crop was determined. However,
the biology and distribution of the species in the field can bring several constraints to
optimizing a sampling protocol [16], and different sampling techniques, such as entomo-
logical net or chromotropic traps, could improve the quality of the inventory. For example,
Prasifka et al. [43] (2007) compared pit-fall traps and litter bags and showed that litter
bags most frequently succeeded in collecting certain groups of arthropods associated with
moisture and sheltered areas and pit-fall traps most often captured taxa considered active
at the ground level. Additionally, the minimum number of samples may be sufficiently
satisfactory depending on the study’s goals [16].

4. Conclusions

In conclusion, in this study the temporal and spatial patterns of biodiversity of arthro-
pods and plants, as well as their relations, were identified in a sisal crop. Additionally,
the most abundant arthropod groups were Diptera/Hymenoptera in June, Collembola in
July and August, and Hymenoptera in September. Several functional groups –predators,
parasitoids, pollinators and decomposer– were identified. Regarding the plants, C. erecta
was the unique species in June and A. tenella, L. ballotaefolia and C. rotundifolia were the
most representative in July, August and September respectively. The identified plants
comprise multiple potential uses, such as pest/diseases control, biostimulant properties,
the improvement of soil characteristics or medical purposes. Both plants and arthropods
diversity showed similar temporal patterns from June to July, with a maximum in July,
whereas in September the biodiversity increased for arthropods and decreased for plants.
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Some relations among arthropods and plants were revealed. Particularly, Collembola
were related with A. tenella, C. punctatum, and L. ballotifolia in July and August and S.
lycoparpum, P. cancelata, and C. rotundifolia with larva in September. The other arthropods
did not show particular associations, indicating the importance of certain plant species
for Collembola while the rest of arthropods might be influenced by different variables,
but further studies should investigate this aspect. Regarding the spatial distribution of
arthropods, our results indicated that they colonized the crop throughout the sample
period. Finally, a more intensive sampling would be required for a representative inventory
of arthropods, while our results indicate a good quality of the inventory for plants.

To the best of our knowledge, this is the first time that the diversity of arthropods and
plants, their associations, and their temporal and spatial distribution have been investigated
in a sisal crop within the Caatinga bioma, revealing interesting arthropods and plant
relations, as well as dynamic and potential uses.

Author Contributions: Conceptualization, F.d.S.; methodology, F.d.S.; investigation, S.S.d.S.B.; data
curation, M.V. and J.B.-M.; writing—original draft preparation, S.S.d.S.B. and M.V.; writing—review
and editing, S.S.d.S.B., M.V., J.B.-M., F.d.S., J.A.P.; supervision, F.d.S. and J.A.P.; project administration,
F.d.S. and J.A.P.; funding acquisition, F.d.S. and J.A.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Foundation for Science and Technology (FCT, Portugal) by
national funds FCT/MCTES to CIMO (UIDB/00690/2020) and CsF/CNPq (Programa Ciência Sem
Fronteiras/CNPq).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Saxena, M.; Muralli, S.; Nanda, M.J.; Ramakrishnan, N. Sisal: Potential for employment generation and rural development.

In Rural India: Achieving Millennium Development Goals and Grassroots Development; Moni, M., Misra, S., Eds.; Concept Publishing
Company: New Delhi, India, 2009; pp. 110–117.

2. Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal (PAM). Sisal. Sidra. Sistema IBGE de Recuperação
Automática. 2015. Available online: http://www.sidra.ibge.gov.br/bda/pesquisas/pam/default.asp?o=29&i=P (accessed on
3 January 2018).

3. FAO. Jute, Kenaf, Sisal, Abaca, Coir and Allied Fibres. Market and Policy Analysis of Raw Materials, Horticulture and Tropical
(RAMHOT). Products Team Trade and Markets Division. In Statistics Bulletin 2017; Food and Agriculture Organization of the
United Nations: Rome, Italy, 2017.

4. Silva, F.P.M. O Mercado Internacional das Fibras Naturais: Uma Análise Comparativa do Abacá, Coco, Juta e Sisal. FPMS; Textos para
Discussão: Salvador, Brasil, 2014; pp. 1–28.

5. Coutinho, W.M.; Suassuna, N.D.; Luz, C.M.; Suinaga, F.A.; Silva, O.R.R.F. Bole rot of sisal caused by Aspergillus niger in Brazil.
Fitopatololgia Bras. 2006, 31, 605. [CrossRef]

6. Cabi. Invasive Species Compedium. 2017. Available online: https://www.cabi.org/isc/datasheet/3855#7653AB7A-0D29-4346-8
33E-BF36D323BEA7 (accessed on 3 January 2018).

7. Terán-Vargas, A.P.; Azuara-Domínguez, A.; Vegaaquino, P.; Zambrano-Gutiérrez, J.; Blancomontero, C. Biological effectiveness of
insecticides to control the agave weevil, Scyphophorus acupunctatus Gyllenhal (Coleoptera: Curculionidae), in Mexico. Southwest.
Entomol. 2012, 37, 47–53. [CrossRef]

8. Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu.
Rev. Entomol. 2000, 45, 175–201. [CrossRef] [PubMed]

9. Valdés-Estrada, M.; Aldana-Llanos, L.; Salinas-Sánchez, D.O.; Figueroa-Brito, F.; Hernández-Reyes, M.C.; Valladares-Cisneros, M.G.
Toxicity of Plant Extracts to Scyphophorus acupunctatus (Coleoptera: Curculionidae). Fla. Entomol. 2016, 99, 226–230. [CrossRef]

10. González-Castillo, M.P.; Quintos Escalante, M.; Castaño-Meneses, G. Arthropods in natural communities in Mescal Agave (Agave
durangensis Gentry) in an Arid Zone. Am. J. Appl. Sci. 2011, 8, 933–944. [CrossRef]

11. Villa, M.; Santos, S.A.P.; Marrão, R.; Pinheiro, L.A.; López-Saez, J.A. Syrphids feed on multiple patches in heterogeneous
agricultural landscapes during the autumn season, a period of food scarcity. Agric. Ecosyst. Environ. 2016, 233, 262–269.
[CrossRef]

http://www.sidra.ibge.gov.br/bda/pesquisas/pam/default.asp?o=29&i=P
http://doi.org/10.1590/S0100-41582006000600014
https://www.cabi.org/isc/datasheet/3855#7653AB7A-0D29-4346-833E-BF36D323BEA7
https://www.cabi.org/isc/datasheet/3855#7653AB7A-0D29-4346-833E-BF36D323BEA7
http://doi.org/10.3958/059.037.0106
http://doi.org/10.1146/annurev.ento.45.1.175
http://www.ncbi.nlm.nih.gov/pubmed/10761575
http://doi.org/10.1653/024.099.0211
http://doi.org/10.3844/ajassp.2011.933.944
http://doi.org/10.1016/j.agee.2016.09.014


Appl. Sci. 2021, 11, 6498 11 of 12

12. Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis.
Palaeontol. Electron. 2001, 4, 9.

13. Oksanen, J.; Guillaume, B.F.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, B. Vegan: Community Ecology Package. R Package
Version 2.3-4. 2016. Available online: http://CRAN.R-project.org/package=vegan (accessed on 3 January 2018).

14. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2016; Available online: http://www.R-project.org/ (accessed on 3 January 2018).

15. Rao, C.R. A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió
1995, 19, 23–63.

16. Benhadi-Marín, J.; Pereira, J.A.; Barrientos, J.A.; Bento, A.; Santos, S.A.P. Diversity of predaceous arthropods in the almond tree
canopy in Northeastern Portugal: A methodological approach. Entomol. Sci. 2011, 14, 347–358. [CrossRef]

17. Colwell, R.K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 8.2. User’s Guide
and Application. 2009. Available online: http://purl.oclc.org/estimates (accessed on 3 January 2018).

18. StatSof. Statistica (Data Analysis Software System); Version 7; StatSoft Inc.: Tulsa, OK, USA, 2008.
19. Soberón, J.; Llorente, J. The use of species accumulation functions for the prediction of species richness. Conserv. Biol. 1993, 7,

480–488. [CrossRef]
20. Gwendolyn, L.W.; Smith, R.L. Patterns of faunal succession in Agave palmeri. Southwest Nat. 1987, 32, 489–497. [CrossRef]
21. Marques, G.D.V.; del-Claro, K. Sazonalidade, abundância e biomassa de insetos de solo em uma reserva de Cerrado. Rev. Bras.

Zoociências 2010, 12, 141–150.
22. Fenoglio, M.S.; Videla, M.; Salvo, A.; Valladares, G. Beneficial insects in urban environments: Parasitism rates increase in large

and less isolated plant patches via enhanced parasitoid species richness. Biol. Conserv. 2013, 164, 82–89. [CrossRef]
23. Szaparaga, A.; Kocira, S.; Kapusta, I.; Zagula, G. Prototyping extracts from Artemisia absinthium L. for their biostimulating

properties yield-enhancing, and farmer income-increasing properties. Ind. Crops. Prod. 2021, 160. [CrossRef]
24. Zhong, Z.; Huang, X.; Feng, D.; Xing, D.; Xing, S.; Weng, B. Long-term effects of legume mulching on soil chemical properties and

bacterial community composition and structure. Agr. Ecosyst. Environ. 2018, 268, 24–33. [CrossRef]
25. Pino-Otín, M.R.; Val, J.; Ballestero, D.; Navarro, E.; Sánchez, E.; Mainar, A.M. Impact of Artemisia absinthium hydrolate extracts

with nematicidal activity on non-target soil organism of different trophic levels. Ecotox. Environ. Safe. 2019, 180, 565–574.
[CrossRef]

26. Ahalya, S.R.; Pushpalatha, E. IGR Activity of three indigenous plants belonging to Asteraceae Family and its potential role on
control of filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). J. Commun. Dis. 2020, 52, 57–62. [CrossRef]

27. Sarmento Silva, T.M.; Câmara, C.A.; Agra, M.F.; Geraldo de Carvalho, M.G.; Frana, M.T.; Blanco Brandoline, S.V.P.;
da Silva Paschoal, L.; Braz-Filho, R. Molluscicidal activity of Solanum species of the Northeast of Brazil on Biomphalaria glabrata.
Fitoterapia 2006, 77, 449–452. [CrossRef] [PubMed]

28. Deladino, L.; Alvarez, I.; De Ancos, B.; Sánchez-Moreno, C.; Molida-Garciía, A.D.; Schneider, T. Betalains and phenolic compounds
of leaves and stems of Alternanthera brasiliana and Alternanthera tenella. Food Res. Int. 2017, 97, 240–249. [CrossRef]

29. Shankaran, K.S.; Ganai, G.A.; Arun, K.P.; Brindha, P.; Mahadevan, V. In silico and in vitro evaluation of the anti-inflammatory
potential of Centratherum punctatum Cass-A. J. Biomol. Struct. Dyn. 2017, 35, 765–780. [CrossRef] [PubMed]

30. Otsuka, F.A.M.; Santos, R.B.; Chaves, L.F.; Santos, R.S.; Chaves Filho, A.B.; Miyamoto, S.; Matos, H.R. Identification of caffeic acid
and rutin by UHPLC MS/MS and antioxidant activity of Commelina erecta Lineu. In cell culture. An Acad. Bras. Cienc. 2020, 92,
1–10. [CrossRef]

31. Rodrigues, F.C.; Morais de Oliveira, A.F. The genus Sida L. (Malvaceae): An update of its ethnomedicinal use, pharmacology and
phytochemistry. SAfr. J. Bot. 2020, 132, 432–462. [CrossRef]

32. Teixeira, N.; Melo, J.C.S.; Batista, L.F.; Paula-Souza, J.; Fonza, P.; Brandão, M.G.L. Edible fruits from Brazilian biodiversity:
A review on their sensorial characteristics versus bioactivity as tool to select research. Food Res. Int. 2019, 119, 325–348. [CrossRef]

33. Celebi, O.; Tolga Cinisli, K.; Celebi, D. Antimicrobial activity of the combination (Nano-Bio) of Artemisia absinthium with copper
nanoparticles. Mater Today Proc. 2021, 45, 3809–3813. [CrossRef]

34. Sharbidre, A.; Dhage, P.; Duggal, H.; Meshram, R. In silico investigation of Tridax procumbens phytoconstituents against
sars-cov-2 infection. Biointerface Res. Appl. Chem. 2021, 11, 12120–12148.

35. Bàrberi, P.; Burgio, G.; Dinelli, G.; Moonen, C.; Otto, S.; Vazzana, C.; Zanin, G. Functional biodiversity in the agricultural
landscape: Relationships between weeds and arthropod fauna. Weed Res. 2010, 50, 388–401. [CrossRef]

36. Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R; Springer: New York, NY, USA, 2011; p. 306.
37. Bardgetta, R.D.; Yeatesc, G.W. Linking above-ground and below-ground interactions: How plant responses to foliar herbivory

influence soil organisms. Soil Biol. Biochem. 1998, 30, 1867–1878. [CrossRef]
38. Bardgett, R.; Chan, K.F. Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in

montane grassland ecosystems. Soil Biol. Biochem. 1999, 31, 1007–1014. [CrossRef]
39. Salamon, J.A.; Schaefer, M.; Alphei, J.; Schimd, B.; Scheu, S. Effects of plant diversity on Collembola in an experimental grassland

ecosystem. Oikos 2004, 106, 51–60. [CrossRef]
40. Pimentel, M.S.; Silva Carvalho, R.; Pionório Vilaronga, D.; Vieira Martins, L.M.; Lopes da Silva, A.V. Dynamic of epigeous

macrofauna under organic soil management in the Brazilian semi-arid region. Semin. Ciênc. Agrár. Londrina 2012, 33, 183–192.
[CrossRef]

http://CRAN.R-project.org/package=vegan
http://www.R-project.org/
http://doi.org/10.1111/j.1479-8298.2011.00444.x
http://purl.oclc.org/estimates
http://doi.org/10.1046/j.1523-1739.1993.07030480.x
http://doi.org/10.2307/3671483
http://doi.org/10.1016/j.biocon.2013.05.002
http://doi.org/10.1016/j.indcrop.2020.113125
http://doi.org/10.1016/j.agee.2018.09.001
http://doi.org/10.1016/j.ecoenv.2019.05.055
http://doi.org/10.24321/0019.5138.202014
http://doi.org/10.1016/j.fitote.2006.05.007
http://www.ncbi.nlm.nih.gov/pubmed/16842935
http://doi.org/10.1016/j.foodres.2017.04.017
http://doi.org/10.1080/07391102.2016.1160840
http://www.ncbi.nlm.nih.gov/pubmed/26984043
http://doi.org/10.1590/0001-3765202020190491
http://doi.org/10.1016/j.sajb.2020.04.030
http://doi.org/10.1016/j.foodres.2019.01.058
http://doi.org/10.1016/j.matpr.2021.01.824
http://doi.org/10.1111/j.1365-3180.2010.00798.x
http://doi.org/10.1016/S0038-0717(98)00069-8
http://doi.org/10.1016/S0038-0717(99)00014-0
http://doi.org/10.1111/j.0030-1299.2004.12905.x
http://doi.org/10.5433/1679-0359.2012v33n1p183


Appl. Sci. 2021, 11, 6498 12 of 12

41. Bravo, F. Perspectives for the study of Diptera (Insecta) in the Brazilian semi-arid. In Towards Greater Knowledge of the Brazilian
Semi-Arid Biodiversity; Paganucci de Queiroz, L., Rapini, A., Giuletti, A.M., Eds.; Ministério da Ciência e Tecnologia (MCT):
Brasilia, Brasil, 2006; pp. 87–88.

42. Leal, I.R.; Cardoso da Silva, J.M.; Tabarelli, M.; Lancher, T.E.J.R. Changing the Course of Biodiversity Conservation in the Caatinga
of Northeastern Brazil. Conserv. Biol. 2005, 19, 701–706. [CrossRef]

43. Prasifka, J.R.; Lopez, M.D.; Hellmich, R.L.; Lewis, L.C.; Dively, G.P. Comparison of pit-fall traps and litter bags for sampling
ground-dwelling arthropods. J. Appl. Entomol. 2007, 131, 115–120. [CrossRef]

http://doi.org/10.1111/j.1523-1739.2005.00703.x
http://doi.org/10.1111/j.1439-0418.2006.01141.x

	Introduction 
	Materials and Methods 
	Study Area 
	Arthropods and Plants Sampling 
	Data Analysis 
	Arthropods and Plants Diversity 
	Analysis of Differences between Outer and Inner Samples 
	Sampling Protocol 


	Results and Discussion 
	Arthropods and Plants Diversity 
	Spatial Distribution from the Field Margins 
	Sampling Protocol 

	Conclusions 
	References

