friried applied
b sciences

Article

Modeling of Deadtime Events in Power Converters
with Half-Bridge Modules for a Highly Accurate
Hardware-in-the-Loop Fixed Point Implementation

in FPGA

Roberto Saralegui

check for

updates
Citation: Saralegui, R.; Sanchez, A.;
de Castro, A. Modeling of Deadtime
Events in Power Converters with
Half-Bridge Modules for a Highly
Accurate Hardware-in-the-Loop
Fixed Point Implementation in FPGA.
Appl. Sci. 2021, 11, 6490. https://
doi.org/10.3390/app11146490

Academic Editors: Zbigniew
Rymarski, Pooya Davari and

Zbigniew Kaczmarczyk

Received: 15 June 2021
Accepted: 10 July 2021
Published: 14 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Alberto Sanchez

and Angel de Castro *

HCTLab Research Group, Universidad Auténoma de Madrid, 28049 Madrid, Spain;
roberto@saralegui.org (R.S.); alberto.sanchezgonzalez@uam.es (A.S.)
* Correspondence: angel.decastro@uam.es

Abstract: Hardware-in-the-loop (HIL) simulations of power converters must achieve a truthful
representation in real time with simulation steps on the order of microseconds or tens of nanoseconds.
The numerical solution for the differential equations that model the state of the converter can be
calculated using the fourth-order Runge-Kutta method, which is notably more accurate than Euler
methods. However, when the mathematical error due to the solver is drastically reduced, other
sources of error arise. In the case of converters that use deadtimes to control the switches, such as any
power converter including half-bridge modules, the inductor current reaching zero during deadtimes
generates a model error large enough to offset the advantages of the Runge-Kutta method. A specific
model is needed for such events. In this paper, an approximation is proposed, where the time step is
divided into two semi-steps. This serves to recover the accuracy of the calculations at the expense of
needing a division operation. A fixed-point implementation in VHDL is proposed, reusing a block
along several calculation cycles to compute the needed parameters for the Runge-Kutta method.
The implementation in a low-cost field-programmable gate arrays (FPGA) (Xilinx Artix-7) achieves
an integration time of 1 ps. The calculation errors are six orders of magnitude smaller for both
capacitor voltage and inductor current for the worst case, the one where the current reaches zero
during the deadtimes in 78% of the simulated cycles. The accuracy achieved with the proposed fixed
point implementation is very close to that of 64-bit floating point and can operate in real time with a
resolution of 1 ps. Therefore, the results show that this approach is suitable for modeling converters
based on half-bridge modules by using FPGAs. This solution is intended for easy integration into
any HIL system, including commercial HIL systems, showing that its application even with relatively
high integration steps (1 us) surpasses the results of techniques with even faster integration steps
that do not take these events into account.

Keywords: hardware-in-the-loop; floating-point; fixed-point; real-time emulation; field programmable
gate array

1. Introduction

HIL (hardware-in-the-loop) techniques are being increasingly used for testing and sim-
ulation of complex systems, such as power electronics [1-4] and mechanical elements [5-8].
These techniques consist in replacing an element of the real system with a model. For
instance, in [4], a photovoltaic panel with a DC-DC boost converter is modeled. The
HIL model usually operates in real time and provides feedback to the rest of the system
as close as possible to that of the real element, including extreme cases. This serves to
identify malfunctions or bugs in the controller without causing accidents, including bodily
harm or damage to equipment. A typical use in power electronic converters is testing a
real implementation of the controller with a simulated plant. In case the controller puts

Appl. Sci. 2021, 11, 6490. https:/ /doi.org/10.3390/app11146490

https:/ /www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1393-4075
https://orcid.org/0000-0002-3189-150X
https://orcid.org/0000-0003-4357-7857
https://doi.org/10.3390/app11146490
https://doi.org/10.3390/app11146490
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11146490
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11146490?type=check_update&version=2

Appl. Sci. 2021, 11, 6490

20f19

the plant in a forbidden or dangerous state, there are no catastrophic results for the test.
As an example, ref. [9] models a three-phase converter for electric vehicles along with
its controller.

Although first HIL systems were implemented by using computers [10], reaching
simulation steps of tens of microseconds, most of the current HIL systems use field-
programmable gate arrays (FPGAs) [11-13], including commercial systems such as Opal-
RT, dSPACE, and Typhoon HIL, among others. In the literature, it is also common to find
FPGA-based HIL systems based on platforms that were not designed explicitly for HIL
purposes, such s NI LabView, but reached good results [4,14]. The main advantage of
FPGAs is that they have a parallel architecture, where many complex operations can be
performed simultaneously. Consequently, FPGA-based systems can reach simulation steps
around hundreds of ns. For instance, HIL602 system by Typhoon HIL reaches 500 ns,
and even the simple model like a boost converter using a basic ODE (Ordinary Differential
Equation) solver reached a simulation step of 14 ns in [15].

The HIL model usually must operate in real time and must provide acceptable accu-
racy. The former implies that calculation of the state variables is performed with integration
times between a few microseconds and tens of nanoseconds, in order to provide a very
small calculation delay and be able to emulate medium- to high-frequency converters. The
latter means that the algorithms must describe with high detail the behavior of the replaced
system, and the state variables must be able to encode with high accuracy the values of
the physical magnitudes they represent. These are two conflicting conditions (high-speed
calculation versus accurate algorithms and solvers) that lead to trade-offs in the design.

Most real-time HIL systems use linear numerical methods, such as first-order forward
Euler, because of their simplicity [15,16]. However, some proposals introduce higher-
order methods such as the second-order Adams—Bashforth [17-19] or Runge-Kutta meth-
ods [20,21]. If a model is to be integrated into a commercial system with a simulation step of
around 1 ps, the Euler method could be impractical for some applications, so more accurate
methods are usually utilized. High-order methods improve drastically the accuracy with
the drawback of increasing the complexity and the simulation step.

As the accuracy of the simulation is improved by reducing the simulation step or using
an accurate method, other sources of error become visible and limit the accuracy of the
system. Some examples of these sources are small electrical losses [22] and resolution issues
in the calculation of variables [23]. Another issue is found in [24], where a synchronous
buck converter model does not benefit from 4th-order methods when the current reaches
zero during the switching deadtime. This problem arises for any power converter using
half-bridge modules, not only synchronous buck converters, because the problem comes
from the fact that deadtimes are included. This paper proposes a method to solve this issue,
reaching high accuracy even in those situations. The proposed method can be applied not
only to synchronous buck converters but also to any converters using half-bridge modules,
such as half or full-bridges, including three-phase versions.

The rest of the paper is organized as follows: Section 2 presents the modeling of the
buck converter and the numerical method for solving the state equations. Section 3 discusses
the sources of errors in the modeling of the circuit. Section 4 proposes an approximation
to solve the errors caused by incorrect modeling of the inductor current in specific situ-
ations. Section 5 describes the simulation results obtained with the different algorithms
proposed. It also describes a pipelined implementation of the numerical method and shows
the time and occupation results in the proposed FPGA device. Finally, Section 6 shows
the conclusions.

Appl. Sci. 2021, 11, 6490

30f19

2. Buck Converter Modeling

The power converter used as example application is a synchronous buck converter
with the topology shown in Figure 1. Two switches 51 and 52 operate alternatively with
a switching frequency fs;, and the duty cycle determined by the desired v,/ vs relation,
where v, = vc with an ideal capacitor. The synchronous buck converter was chosen as
a simple scenario containing a half-bridge module. The simplicity of the model ensures
minimal influence from any external element in the calculation errors. However, the half-
bridge module is a basic block that is usually integrated into more complex topologies.
Therefore, the conclusions for this particular converter can be extrapolated to other half-
bridge-based topologies.

D1
i
S1 £

VinC) s2\ D2 ZS c ——|w R

Figure 1. Synchronous buck converter with two diodes in antiparallel configuration to allow for the
inductor to discharge during deadtimes.

The behavior of the buck converter is modeled by applying Kirchhoff’s laws and the
fundamental relationships between voltage and current of the capacitor of value C and the
inductor of value L:

dvc o ic

G C)
diL oL
P)

Using these relations, assuming known values for the voltage source v; and the
load R, the state variables v and i can be calculated with a set of Ordinary Differential
Equations that change depending on three variables: switch S1 state, switch S2 state, and
inductor current.

The first operating mode identified occurs when switch S1 is closed and S2 is open,
with any value of inductor current. D2 will be reverse-polarized and therefore also acts as
an open circuit. The equations that apply are:

dUC - iL oc

dt C RxC)
diL - Us oc

I @

The second operating mode occurs when S2 is closed and 51 is open. The term v
disappears, and the equations are now:

dUC - iL oc
@ T C RxC ©)
diL . _U£

Fri (6)

Appl. Sci. 2021, 11, 6490

40f19

In a real-world implementation, the controller cannot change the state of both switches
simultaneously, because the switches never change instantaneously the conduction mode,
due to the gate charge and discharge times. To prevent any short circuit, the controller
should take some time, called deadtime, to command the open state for both switches.
The transition time (turn-off or turn-on delay) can take between tens of nanoseconds and
microseconds, depending on the design of the driving circuit. Therefore, when a switch is
commanded into the closed state, the other switch will be opened for a pre-defined guard
time before closing the first switch. Diodes D1 and D2 allow for an inductor current to flow
during these guard times.

The third mode takes place when the inductor is fully discharged during a deadtime.
Then, both switches and diodes behave as open circuits and the equations that apply are:

dvc__ Uc

Gt T RxC @
di;,

=0 8)

Equations (3) and (4) also apply during the deadtime when both S1 and 52 are open
and inductor current has negative sign. The current will then flow through diode D1. The
second mode modeled by Equations (5) and (6) also applies in the deadtime when both 51
and S2 are open and inductor current has a positive sign, flowing through diode D2.

Therefore, in any of the three identified modes, the system state is given by a set of
Ordinary Differential Equations, which can be solved numerically.

Numerical methods approximate a function f () by replacing the continuous values
with a set of values calculated at specific values of ¢, using the slope of f(t) at one or more
points close to t, to calculate the next value of f(t) at t,,1. The curve is then replaced by a
set of segments. The approximation means that the values of state variables are calculated
at specific points in time separated by a finite but small value dt.

Several numerical methods are identified and well documented in the literature.
They range from simple methods, such as first-order methods like explicit Euler, to more
complex ones, such as those of the Runge—Kutta group. The ones mostly used among the
Runge-Kutta methods are second-order Runge-Kutta and fourth-order Runge-Kutta.

The order n of the methods refers to the global error of the numerical calculation
and means that the numerical error is of the order of O(dt"), where dt is the step size.
The explicit Euler method estimates the slope of f(t) only at ¢, and has an order of 1.
Higher-order methods estimate it at several points around ¢,: second-order Runge-Kutta
performs two estimations, and fourth-order Runge—Kutta performs four estimations. These
two methods deliver each more accuracy than lower-order ones, at the cost of additional
computational complexity.

In this case, the objective was to obtain the maximum accuracy, and the fourth-order
Runge-Kutta method was chosen. The calculation of v¢ and i}, using this method can be
expressed with the pseudo-code of Algorithm 1.

By inspecting the lines 30 and 31 in Algorithm 1, the increments of the state variables
can be defined as follows:

Aip = dt x (KIL+2 x K2L +2 x K3L + K4L) /6)
Ave = dt x (K1IC 42 x K2C 42 x K3C + K4C) /6 (10)

Appl. Sci. 2021, 11, 6490 50f 19

Algorithm 1 Calculation of following value of vc and i} with fourth-order Runge-
Kutta method

1: function CALCULATERKA4(iL,vC,dt,R,L,C,S1,52,v;)

2: if S1 = closed OR (S1 = open AND S2 = open AND iL < 0) then > First mode

3: K1C + iL/C—vC/(R x C)

4 K1L + (vs —vC)/L

5: K2C < (iL+K1L x dt/2)/C — (vC 4+ K1C x dt/2)/(R x C)

6 K2L « (05 — (vC 4+ K1C x dt/2))/L

7: K3C < (iL+K2L x dt/2)/C — (vC+ K2C x dt/2)/(R x C)

8: K3L + (05 — (vC 4 K2C x dt/2))/L

9 KAC « (iL + K3L x dt)/C — (oC + K3C x dt) /(R x C)

10: K4L <+ (vs — (vC+ K3C x d))/L

11: elseif S2 = closed OR (S1 = open AND S2 = open AND iL > 0) then > Second
mode

12: K1C «+—iL/C—vC/(R x C)

13: K1L + —vC/L

14: K2C « (iL+K1L x dt/2)/C — (vC+ K1C x dt/2)/(R x C)

15: K2L <+~ —(vC +KI1C x dt/2)/L

16: K3C « (iL + K2L x dt/2)/C — (0C + K2C x dt/2)/(R x C)

17 K3L + —(vC + K2C x dt/2)/L

18: KAC « (iL+K3L x dt)/C — (vC + K3C x dt)/(R x C)

19: K4L <+~ —(vC +K3C x d)/L

20: else if iL = 0 then > Third mode: iL = 0 during a deadtime

21: K1C + —vC/(R x C)

22: KIL <0

23: K2C < —(vC + K1C x dt/2)/(R x C)

24: K2L <0

25: K3C « —(vC + K2C x dt/2)/(R x C)

26 K3L <+ 0

27: K4C <+~ —(vC+K3C x dt) /(R x C)

28: K4L <0

29: end if

30: il < il +dt x (K1L+2 x K2L +2 x K3L 4 K4L)/6 > Return iLyq

31: vC + vC +dt x (KIC+2 x K2C+2 x K3C + K4C) /6 > Return vC, 4

32: end function

3. Sources of Errors
3.1. Generic Sources of Errors

The implementation of an accurate hardware-in-the-loop model must take into account
the sources of errors, how large their contribution is and to what extent they can be
reduced. The designer of a hardware-in-the-loop system must perform the trade-off
between better accuracy and limiting factors, such as resource usage and timing constraints,
which translate into cost of the system. Some sources of errors are generic to all hardware-in-
the-loop models. They include the numerical method chosen, the value of dt, the numerical
representation of state variables, and the modeling or not of n-th order losses.

The error arising from the numerical method chosen is well known, as explained in the
previous section. A system performing fourth-order Runge-Kutta calculations will need
more FPGA resources and more time per computing cycle than one using Euler method,
as there are four steps to calculate a new value of the state variable.

The time step dt is usually chosen to be the smallest possible in order to make a more
accurate approximation of the differential equation and then reduce the error [22]. This
is also critical for real-time operation, since the smaller the df, the smaller the calculation
delay will be. Limiting factors are the capabilities of the selected device and the time
required for the selected calculation method. Once dt is fixed, if the error obtained is not
acceptable, then other design aspects must be changed: encoding with more bits and using
more precise methods would be the most obvious choices.

Appl. Sci. 2021, 11, 6490

6 of 19

The state variables must be represented with a finite number of bits. This causes
a limitation in the resolution when storing the values and rounding losses after each
calculation step. The more accuracy desired, the more bits that must be dedicated to storing
the values. Furthermore, the chosen representation is also part of the design trade-off.
Floating-point representations, typically based on the IEEE-754 standard, ease the coding
process, since the designer does not need to consider signal dynamic ranges. The floating
point mathematical libraries handle this transparently for the user. The cost in this case
is a more complex logic circuit, which imposes limits on the device timing. Fixed-point
representations deliver less complex logic circuits, which translates into faster calculations,
but the designer must be careful in selecting the appropriate representation for each signal
in the circuit.

Another source of error is the mis-detection of the duty cycle: the state of the switch
or switches in the converter is sampled periodically. The sampling frequency can be equal
to the frequency of the model update, but oversampling is usually applied [25,26]. If the
sampling frequency is relatively close to the switching frequency, it might happen that the
detected duty cycle is different from the real duty cycle. Oversampling techniques can
partially reduce this issue, making the hardware more complex as the extra information
must be computed by the model.

The modeling of first- and higher-order losses also brings additional accuracy to the
hardware-in-the-loop system, at the cost of additional computations per cycle. For the sake
of simplicity, they were not considered here.

3.2. Model-Specific Sources of Error

There are other sources of errors, specific to each circuit model. They must be studied
case by case. In the case of the synchronous buck converter, or other converters with two
synchronous complementary switches, such as half-bridge modules, relevant errors are
caused when the inductor current crosses zero during a deadtime. It was shown in [24] that
the expected accuracy of the fourth-order Runge—-Kutta method was not reached because
the inductor current modeling did not adequately represent these zero-crossing events.
This issue cannot be fixed with oversampling techniques, as the source of the error is
not in the inputs sampling but in the internal calculations when the equations which are
applied change depending on the current sign. Therefore, this detected limitation makes it
necessary to characterize the error, find the circumstances under which it affects more the
calculation results, and propose a solution.

During a deadtime, no energy is supplied by the voltage source. Only the inductor
and capacitor provide energy to the load, energy that they have previously stored. Thus,
the inductor current can only decrease until it reaches zero and remains at that state until
the voltage source provides energy after one of the switches goes into closed state. The
simulation algorithm must take this into account and provide the equivalent to this physical
situation. The algorithm calculates the state variables ij and v at fixed time steps.

The source of error in the simulation comes from the fact that at some point in time the
inductor current reaches zero and must remain at zero. This moment does not necessarily
happen at the time of the step calculation but can correspond to an instant which from the
physical point of view lies within the simulation step.

A straightforward approach to handle this situation is to set the inductor current to
zero when it reaches zero during a deadtime. Figure 2 shows this situation: the inductor
current reaches zero at some point within the dt time step, so it is forced to be zero at f,, ;1.

Appl. Sci. 2021, 11, 6490

7 of 19

T
: \
0 F
A t—
dt
—>
th-1 th th+t th+2

Figure 2. iL crosses zero during a deadtime (dotted line) and is forced to zero (continuous line).

The calculation algorithm for each time step of the numerical simulation can be
expressed with the pseudo-code of Algorithm 2.

Algorithm 2 State variable calculation with basic i}, saturation behavior

1: (iLy41,9Cyy1) ¢ CALCULATERKA4(iL,,vCy,dt, R, L, C, 51,52, v5)

2. if sign(iL,+1) # sign(iL,) AND S1 = open AND S2 = open then > iL crosses zero
during a deadtime

3: iLn+1 ~0

4: end if

The value of i at ¢, 1 is zero, in accordance with the physical equivalence of the
model, so it might be argued that this solution is close enough because it delivers the correct
value of i} at the moment ¢,,, 1. However, both variables i} and v¢ are interdependent: the
calculation of v¢ at t, ;1 depends on the value of i}, and the value of i} at the following
cycle t, 42> depends on the value of v¢ at t,11, and so on successively. This means that if
the error in calculation of v at t,,,; is significant, it will propagate onto i} the next cycle
ty10, and then over the whole model.

To verify the magnitude of the error introduced by this approach, the circuit under
analysis was simulated with the values of Table 1. This buck converter is a real battery
former that is used to make the initial charge of batteries. The three values for the resistor
R correspond to the converter providing power to the load in different situations: high
current, medium current, and low current. The battery-forming application requires low
current at initial and final charging stages, as the battery impedance is high at those points,
and high current during the intermediate forming stage. Although the impedance of the
real batteries used in the experiments dropped down to 1.2 (), experiments showed that
any value of R lower than 7.5 () will not cause zero crossings in the current. This means
that average inductor currents over 1.33 A do not cause deadtimes. Therefore, the value of
7.5 Q) is used as the high-current case.

Table 1. Values chosen for the buck converter.

Variable Value
R 7.5,15 and 30 Q)

L 850 uH

C 35 uF

Switching frequency 10 kHz
Vs 25V

time S1 = closed 40 us
deadtime 1 10 us
time S2 = closed 40 us

deadtime 2 10 us

Appl. Sci. 2021, 11, 6490

8 of 19

As stated before, when the load requires a higher current (modeled with R =7.5 (}),
zero-crossing events during deadtimes do not take place. This means that the “if” condition
in Algorithm 2 is never fulfilled and the inductor current is never forced to zero.

This can be used as the reference case to assess the contribution of the zero-crossing
events to the global error. As zero-crossing events do not happen, the main contributor
to the error must be the discretization inaccuracies inherent to the fourth-order Runge-
Kutta method used.

When the load requires less current (modeled with R = 30 }), the zero-crossing events
take place during a significant number of the simulated cycles. In 50 switching cycles,
there are 39 where the current crosses zero during a deadtime, 78 percent of the total. This
means that the “if-then” block of Algorithm 2 is entered 78 percent of the simulation cycles.
Figure 3 shows the simulated values of the capacitor voltage and inductor current in this
case. An intermediate situation was also modeled using R = 15 (). In this case, only one
switching cycle has a zero-crossing event.

20 - 125
Output voltage
Inductor current - 2

—_
[é)]
T

Output voltage (V)
o =

T
Inductor current (A)

0 | | | | | | | | | 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

t (ms)
Figure 3. Numerical simulation of the capacitor voltage and inductor current with R = 30 ()—the case
when inductor current crosses zero during 78% of the deadtimes

The reference for the comparison was the simulation with a dt as low as 10 ns. As ex-
plained above, the smaller the dt, the smaller inherent error and the lower errors caused
by mis-detection of the duty cycle or zero-crossing events. The dt of 10 ns is three orders
of magnitude lower than the deadtimes, which are 10 ps long. This ensures that any
inaccuracy in the modeling of deadtimes or any other event is very small in the reference.
Then, simulations with larger dt are performed, and they are compared with the reference.
The values chosen for dt were 100 ns, 1 pus, and 10 ps. These values were chosen as many
commercial systems achieve a maximum simulation step between 500 ns and 1 us. The case
with the largest dt matches the length of the deadtime. In this particular case, it means
that the state variables are calculated only once during one complete deadtime. If the
main contributor to the error is the inaccuracy caused by the value of df, then with any
of the three resistance values, the difference between a reference with dt = 10 ns and the
calculation with dt = 1 pus should be of the same order of magnitude.

The result for the simulation with no zero crossing events is that the calculation
with dt = 1 ps compared with the reference obtained with dt = 10 ns has an error of
4.57 x 10712 A for iy and 2.42 x 107! V for vc. However, in both cases with zero-crossing
events, the simulation error grows six orders of magnitude larger at df = 1 us, even in the
case with only one event in fifty cycles. The conclusion is that this difference in error values
is caused by the miscalculation of i;, and vc at the zero-crossing events, because other
contributors to the error do not differ between these three calculations: fourth-order Runge-
Kutta was used, with 64-bit floating-point representation and no modeling of first-order
losses in all of them. Table 2 summarizes these results.

Appl. Sci. 2021, 11, 6490 90f19

Table 2. Number of times i} crosses zero during a deadtime in 50 switching cycles, percentage of
cycles where this occurred, and error in calculation of i; and v¢ using Algorithm 2 with df =1 ps
and 64-bit floating-point representation.

R Zero-Crossing Events Percentage of Cycles iy Error (A) v Error (V)
750 0 0% 457 x 10712 242 x 10711
150 1 2% 573x107% 283 x10°°
30 Q) 39 78% 569x107°% 934x10°°

This can be further verified by comparing the error of the three models in calculation
of v¢ and iy as a function of dt in a log-log graphic for the three values of R (Figure 4).
In the reference case with no current zero-crossing events, the relation between global error
and dt will be a line with slope 4, as it corresponds to a numerical method of order O(dt*).

10° ~ 10°
s <
§ "‘___’__“,.u--_ §)
= T S 3 P et
bR L - it e
G 1070 e e S 10797 T
IS - N B
o} -~ S e -~
> - - > - -
© @ L~
g :
& E . _
% 10710 t 8 10 10 |
>
T R=300Q § R=30Q
g == R=15Q S == R=15Q
o R=75Q k= R=75Q
o : 2 :
10718 10715
1077 1076 1075 1077 1078 1075

Simulation step (s) Simulation step (s)

Figure 4. Error in calculation of v¢ and iy as a function of the time step using Algorithm 2.

It can be seen that the model with R = 7.5 () approximates the ideal behavior. The error
in calculation of both the capacitor voltage v¢ and the inductor current i} resembles a line
with slope 4. Values of dt smaller than 10 ns are not used because the resolution limits
of the 64-bit floating point are reached and the smallest representable number (machine
epsilon) cannot represent properly the very small values needed for an accurate calculation.
Values larger than 10 ps were also not used because the deadtime of 10 us would not be
detected by the model. The error curves of the other values of R do not resemble a line with
a slope of 4. This points to the fact that the miscalculation of i; during deadtimes offsets
the high accuracy provided by the fourth-order Runge-Kutta method. As the variables if,
and vc are interdependent, the error caused by the miscalculation of i, propagates to vc
and the curves are very similar.

In real conditions, HIL systems do not require such a level of accuracy (around 107>
or lower), as other sources of errors are also present. However, this source of error prevents
the use of Runge-Kutta or other accurate numerical methods that become necessary in
more complex models for integration steps around 1 ps, which is a typical commercial
value. Therefore, the goal of this proposal is to enable the benefits of accurate numerical
methods, such as Runge-Kutta, even when relatively high integration steps are used during
deadtime events.

4. Time Step Subdivision with a Linear Approximation

The initial approximation of Algorithm 2 introduces an undesirable error in the
numerical simulation due to the fact that the evolution of i; and v¢ inside one cycle of
duration dt is not properly calculated during deadtimes with zero-crossing events. A
power converter in a correctly designed circuit might typically operate inside a current
region where these events are not very frequent, but the objective of hardware-in-the-loop

Appl. Sci. 2021, 11, 6490

10 of 19

simulation is to provide a realistic approximation of the circuit, and especially corner
cases must be accurately modeled to allow for validation of the elements being tested in
all possible situations. Therefore, a better modeling for the zero-crossing events must
be provided.

The proposed approximation is to divide the time step into two substeps of length dt1
and dt2, respectively, and perform one calculation for each of these time periods. The first
substep is defined by the time that the current takes to reach a zero value within the present
simulation step. The second substep is defined by the remaining time of the calculation
step, that is, dt2 = dt — dt1. Figure 5 shows this situation.

T
‘ \
0 *K—
> t —
dt dt1 dt2

0

Figure 5. If i} (blue line) crosses zero in a deadtime (dotted line), the time step dt is divided into two
substeps and i} is forced to zero at the end of the first substep (continuous line) until the end of the
deadtime. Then, v¢ (red line) is also calculated at both substeps.

The state variables can then be calculated using Algorithm 1 for each substep. The first
calculation corresponds to the first substep and uses dt1 instead of dt. The second substep
uses dt2 instead of dt.

The value of dt1 is calculated using a linear approximation. It can be seen that the
ratio between dt1 and dt is equal to the ratio between abs(iL,) and abs(iL,) + abs(iL,1).
Then, the fraction of time step ending with inductor current at zero is given by:

dtl abs(iLy)
dt abs(iLy) 4+ abs(iL,1)

(11)

Algorithm 2 can be modified into its revised version, Algorithm 3.

Note that in line 5 (Algorithm 3), the duration of the first substep dt1 is used, and in
line 6 (Algorithm 3), the duration of the second substep dt2 is used.

At the end of these steps, iL, 1 and vC,; are the calculated values of the state
variables, either if the condition in the second line was fulfilled or not. In the case that it
was fulfilled, the algorithm requires a division (line 3) and two additional executions of
the fourth-order Runge-Kutta algorithm (lines 5 and 6). This adds additional complexity
to the design, and it must be evaluated if the obtained accuracy offsets that complexity in
terms of implementation and logic resource usage.

Appl. Sci. 2021, 11, 6490 11 of 19

Algorithm 3 State variable calculationwith substep calculation

: (iLyy1,vCyy1) ¢ CALCULATERKA4(iL,,vCy,dt, R, L, C, 51,52, vs)

2. if sign(iL,+1) # sign(iL,) AND S1 = open AND S2 = open then > iL crosses zero
during a deadtime

3: dtl < dt x abs(iLy)/ (abs(iL,) + abs(iL, 1))

: dr2 + dt — dtl

5: (iLintermediater VCintermediate) < CALCULATERK4(iL,,vC,,dt1,R,L,C,S1,52,0v5) ©
first time step

6: (iLnJrlr UCnJrl) <~ CALCULATERK4(iL;ytermediates VCintermediates 4t2, R, L, C, §1, 52, v5)
> 2nd step

7: end if

=

An additional improvement can be identified upon considering the fact that after
the first substep, iL;,sermediate has a value of zero, because dt1 has been calculated as the
time it takes for i} to reach zero. The rounding errors coming from the calculation of the
ratio dt1/dt and the calculations in the first call to calculateRK4 might deliver a value of i,
at line 5 in Algorithm 3, which is very small but not zero. As the behavior of the model
explained in Section 3 shows that i;, must be zero if it reaches zero during a deadtime,
an additional statement can be introduced to the algorithm, to set iL;;ormegiate t0 €Xactly
zero at the end of the first substep, independently of the calculated value. The revised
Algorithm 4 contains this statement.

Algorithm 4 Improved substep calculation

1: (iLy41,vCy41) = CALCULATERKA4(iL,, vCy, dt, R, L, C,S1,52,vs)
2. if sign(iL,+1) # sign(iL,) AND S1 = open AND S2 = open then

dtl <« dt x abs(iL,)/(abs(iL,) + abs(iL, 1))

A2 <+ dt —dtl

(iLintermediates VCintermediate) < CALCULATERK4(iL,, vCy, dt1,R,L,C,S1,52,v;)

iLintermediate < 0

d(l:lfn-i-l/ UCn+1) < CALCULATERKA(iLintermediater VCintermediates 42, R, L, C, S1, 52, vs)

end i

5. Simulation and Implementation Results
5.1. Floating-Point Simulations

The proposed method was simulated in MATLAB (Mathworks, Natick, MA, USA) us-
ing 64-bit floating-point arithmetic and in VHDL using both 64-bit floating-point arithmetic
and fixed point. The fixed-point implementation uses IEEE sfixed package available in
VHDL-2008. Division in VHDL was implemented with IP cores from the Vivado tool (Xilinx
Inc, San Jose, CA, USA), which provides both floating-point and fixed-point dividers.

The initial VHDL implementation of the numerical calculations follows the architec-
ture of the proposed pseudo-code. The VHDL component contains a procedure and two
processes. The procedure mirrors the calculations of Algorithm 1. One process follows the
logic proposed in Algorithm 4, calling the procedure for evaluation of the intermediate
values of ij and v¢ and if necessary calculating the division and making two additional
calls to the procedure. A second process performs the assignment of the calculated values
to the synchronous signals.

Table 3 compares the error obtained in the simulation using the proposed
Algorithm 4 implemented in 64-bit floating point. The errors were measured at dt = 1 s,
and the reference was the calculation with the same algorithm and dt = 10 ns. The error
values obtained with the initial algorithm, shown in Table 2, are repeated for comparison.
Both for the inductor current i;, and the capacitor voltage vc, the error remains in the same
order of magnitude as with no zero-crossing events. Note that the values for R = 7.5 ()
are identical, as expected, since the if-then block of the algorithm was never executed and
therefore identical operations were performed in both cases.

Appl. Sci. 2021, 11, 6490

12 of 19

Table 3. i} and v¢ error values with Algorithms 2 and 4 at dt = 1 ps, 64-bit floating-point representation.

Zero-Crossing

ir Error (A)

vc Error (V)

Events Algorithm 2 Algorithm 4 Algorithm 2 Algorithm 4
750 0 457 x 10712 457 x10712 242 x 10711 242 x 1011
150 1 573x107% 716x10712 283x10° 361x10° 1
30 Q) 39 569x107°% 614x10712 934x10° 534x10 1

The error for both v and i} in cases with many zero-crossing events are comparable
to those of cases with no zero-crossing events. This shows that the proposed method for
time step subdivision modeled with Algorithm 4 returns the accuracy in the calculations,
which was lost when the zero-crossing events were introduced in the simulation.

The right half of Figure 6 shows the error in the calculation of inductor current as a
function of the dt chosen. The curves show in all cases a slope of 4 before reaching machine
epsilon, which proves that the loss of accuracy was caused by the mis-detection of the
inductor current crossing zero.

The left half of Figure 6 shows the error in the calculation of capacitor voltage.
The curves are similar to those of the inductor current, which shows that using the pro-
posed substep approximation, the propagation of the error due to the interdependence of
i;, and v¢ variables no longer takes place.

1076 ~ 1 107°
< I
> S < o
S 37 S 1078} £
5 107 ® 3 o
S 57 > g
e 57 £ 4010} -
o o7 4 K
& 10710 57 © o
o 37 = .7
g o & 1012t e
[2 = PR
= o 5 P
o K2) P
> =12 Ko = o
..5. 10 "(‘ R=300Q 5 e e R=30Q
5 10714 f
= L7 == R=15Q S == R=15Q
] R=75Q 2 R=750Q
107 : 10716 :
1077 1076 107 1077 1076 107°

Simulation step (s) Simulation step (s)

Figure 6. Error in calculation of v¢ and i} as a function of the time step using Algorithm 4.

5.2. Fixed-Point Implementation

The error calculations above were performed with the 64-bit floating-point representa-
tion of the state variables. This ensures that the optimal assignment of integer and fractional
bits is made in all steps of the calculation. The small error values on the order of 10712
are an indication of this. However, the designer of a hardware-in-the-loop system also
needs to perform trade-offs between low error and complexity in order to achieve real-time
calculation speed. For this, the VHDL code for both Algorithms 2 and 4 was translated
from 64-bit floating point into fixed point representation for all steps of the calculation.

The translation of all state variables and constants into fixed point was performed
with the method proposed in [23]. Maximum values for state variables are estimated to
determine how many integer bits are assigned. The number of fractional bits is derived
from the minimum estimated incremental value. Then, additional fractional bits are added
to store small-value increments with an accuracy of more than one bit. Bit assignment to
constants follows a similar process. Integer bits are assigned based on real values. Extra
bits are added based on the desired accuracy of the represented values.

Constant expressions containing a division, such as 1/(R x C), 1/C and 1/L were
pre-calculated in 64-bit floating point and the results were assigned a number of fractional
bits. Defining separately R, C, and L and letting the fixed-point library decide on the

Appl. Sci. 2021, 11, 6490

13 of 19

fractional size of 1/(R x C), 1/C, and 1/L did not deliver optimal results because the
assignment of bits to the result of the division in the used fixed-point library is oriented to
avoiding overflows, not to delivering maximum accuracy. Table 4 shows how many integer
and fractional bits were assigned to the state variables, signals, and constants and the total
number of bits. All values were coded with the sign bit, even though it was not strictly
necessary, for the sake of simplification of the VHDL code. Some constants have a negative
number of integer bits. This means that the expected maximum absolute value will be
lower than one and the largest bit, which can take the value of one, lies at the right of the
decimal point, so the coding of the value only has to take into account from that bit on.

Table 4. Number of bits assigned to signals and constant expressions in the fixed-point VHDL
implementation. A negative value for integer bits means that the leftmost bit is at the right of the
decimal point. For simplicity, sign bits were used in all cases.

Signal or Constant Expression Integer Bits Fractional Bits Total Bits

1/(R x C) 15 42 58

1/L 11 46 58

1/6 -1 51 51

At —15 59 45

Vin 10 21 32

ir 7 47 55

K,L 21 20 42

K,C 22 24 47

Then, single cycle simulations of both 64-bit floating-point and fixed-point models
were performed and their results were compared, in order to fine-tune the assignment
of fractional bits to the variables and constants. One single cycle proved to be enough to
quickly detect if the number of fractional bits for any variable or constant was enough or
if it was limiting the precision of the calculation. For example, it served to detect that the
fixed-point representation of the 1/6 factor used in fourth-order Runge-Kutta calculation
(Algorithm 1) was critical for the precision of the results. After this final adjustment,
the fixed point models were simulated using the equivalent test benches and under the
same conditions as the 64-bit floating-point models.

The division operation was implemented using the IP Divider Generator 5.1 from the
Vivado Design Suite, using Radix-2 method and zero latency. This fixed-point model was
simulated and compared against the reference 64-bit floating-point implementation. Table 5
shows the errors in calculation of i; and v¢. The magnitudes at dt = 1 ps are very similar
to the errors of the 64-bit floating point (fourth and sixth column of Table 3, respectively).
This indicates that a fixed-point implementation of the hardware-in-the-loop simulation is
feasible, reaching the same accuracy as using floating-point arithmetics.

Table 5. i; and v¢ error values with Algorithm 4 at dt = 1 us, fixed-point representation.

R Zero-Crossing Events it Error (A) vc Error (V)
750 0 5.07 x 10712 2.50 x 10711
150 1 813 x 10712 4.02 x 10711
30 Q) 39 6.85 x 10712 5.89 x 10~ 11

5.3. Pipelined Architecture

The straightforward implementation in VHDL of the proposed algorithm is useful for
an inijtial assessment of the complexity, checking the calculation results and comparing the
errors against the MATLAB implementation.

A direct implementation in VHDL of the described algorithm yields a single-cycle
architecture requiring a huge number of resources. This makes it not possible to synthesize

Appl. Sci. 2021, 11, 6490

14 of 19

the algorithm for the proposed target device XC7A35T from the Xilinx Artix-7 series, which
is a low-cost FPGA of around 100 USD.
A pipelined implementation will perform these actions in sequential stages:

1. Fetch status of S1 and S2, and initialize values.

2. Calculate successively K1C, K1L to K4C, and K4L and accumulate the state variable
increments Ai; and Avc at each step.

3. Raise a “zero-crossing” flag if the new iy value creates a zero-crossing during the
deadtime.

4. Input dividend and divisor to the divider.

5. With the result of the division, obtain dt1 and dt2.

6. Recalculate new state variable increments using the time steps dt1 and dt2, again
by successive calculation of K1C and K1L to K4C and K4L and accumulation of
increments Ai; and Avc at each step.

7. Assign the new value of state variables depending on the value of the
crossing” flag.

2

‘zero-

The first stage starts by deciding which values of v;,,, if, vc and At will be used in
one cycle. Calculation of K1C, K1L to K4C, K4L is performed in four cycles using a “K-
calculator” block described below, with one extra cycle for calculating the next value of
vc and ip. The next cycle calculates the inputs to the divider and raises or does not raise
the “zero-crossing” flag to be used later. The divider was configured for a latency of seven
clock cycles, as the best compromise between resource usage and speed. The second stage
starts with a cycle for calculating At values to be used for every semi-step and performs
the calculation of KnC and KnL of item 6 using nine cycles. In the last cycle, depending
on the “zero-crossing” flag, either these values or those calculated at the end of the first
stage are used for updating the state variables. In total, 25 clock cycles are used to perform
these operations.

5.4. K-Calculator Generic Block

One can take advantage of the structure of successive calculations of KnC and KnL
values, which is very similar in all cases. The only difference is a factor of 2 present in the
calculation of K2L, K2C, K3L, and K3C values. A “K-calculator” generic block performing
these operations can be defined as follows (Figure 7):

iL + K;,,L x At ~ vC+ K C x At

Kour€ = C RxC (12)
v; vC + K;,,C x At
Kol = 20— o2 220 (13)
KinC KinL
iL, vC, Vin, dt
—_—

KoutC KoutL

I

Figure 7. K-calculator generic block.

If this K-calculator is fed with the appropriate inputs in each case, then a single
calculation block can be reused for all the computation cycles of the KnC and KnL values.
These will be computed in four successive cycles.

The inputs iy, vc, v;, and At are kept unchanged during the four cycles. The voltage
v, can be vs or zero depending on the operating state. The value of i} can be the inductor

Appl. Sci. 2021, 11, 6490

15 0of 19

current or zero also depending on the state. At can be either the reference value used for
the calculation or At1 and Af2 in succession, if the calculation is made for two semi-steps
during a deadtime.

The first cycle has as inputs K;,C = 0 and K;,L = 0. This gives K1C and K1L as the
outcome of the calculation. They are the initial values of accumulators that at the end of the
fourth stage will contain the Avc and Aip values. They are also multiplied by 1/2 and are
fed again into the “K-calculator” block as Kj;,,C and Kj,, L. The calculator block delivers K2C
and K2L at the following cycle. In a similar fashion, K2C and K2L are multiplied by 1/2
and fed to the next cycle for calculation of K3C and K3L and multiplied by 2 and summed
to the existing value of Avc and Aip, respectively. The next cycle delivers K3C and K3L
values, which are also accumulated in Avc and Aip after multiplication by 2 and used
directly as input for the last cycle, which delivers K4C and K4L. These are added to the
existing value of Avc and Aip, and then multiplication by 1/6 is performed. This yields
the definitive value for Avc and Aip and is then used for calculating the following value of
vc and ir. Figure 8 shows the structure of these calculations.

0 0
iLve, KinC KinL
Vin, dt
R ——
KoutC KoutL
K1C K1L
v
Ilej
iLve, KinC KinL
Vin, dt
R
KoutC KoutL
K2C K2L 4
® D
v v
? Izi]
iL v, KinC KinL
Vin, dt
R ——
KoutC KoutL
.4 K3C K3L y
+ x2 x2 +
O+ba—] ()
i Ve, KinC KinL
Vin, dt
R —
KoutC KoutL
Y K4C K4L y
+)e——— L (+
AvC AiL

Figure 8. Pipelined fourth-order Runge-Kutta calculation using the generic K-calculator. The outputs
of each cycle multiplied by the necessary factors are used as inputs for the next cycle for calculating
the following KnC and KnL values and used for accumulating into AvC and AiL. The inputs on the
left are identical during the four cycles.

Appl. Sci. 2021, 11, 6490

16 of 19

5.5. Synthesis Results

The fixed-point pipelined implementation in VHDL code was synthesized for the
XC7A35TCSG324-2 device, part of the Xilinx Artix-7 family of FPGAs, using Xilinx Vivado
HLx edition 2018.3. This device has 5200 configurable logic blocks with four Look-Up
Tables (LUTs) and eight flip-flops each (which gives a total of 20,800 LUTs and 41,600 flip-
flops), as well as 90 Digital Signal Processor (DSP) slices, and Block RAM Blocks that
provide a total of 1800 kb.

The resource utilization of Algorithm 4 lies within the device limits: 16.8% of the LUTs,
2.8% of Flip-Flops, and 66.7% of DSPs are used. Table 6 summarizes this.

Table 6. Resource utilization for the proposed Algorithm 4 and pipelined architecture using K-
calculator blocks (XC7A35TCSG324-2).

Resource Utilization Available Utilization %
LUT 3498 20,800 16.82%

Flip-Flops 1177 41,600 2.83%
DSP 60 90 66.67%

A clock period of down to 40 ns can be achieved according to the synthesis tool.
Therefore, real-time calculation can be performed in 25 cycles, as mentioned above, which
gives a time step of 1 us. This is the minimum achievable dt with the proposed architecture
based on fourth-order Runge-Kutta method, K-calculator blocks, semistep calculation
during deadtimes, and the selected device. In the literature, some references can be
found that reach smaller simulation steps for simple converters—such as boost and buck
topologies—by using simpler methods like Euler [15,27]. However, this paper uses fourth-
order Runge-Kutta which leads to a much more accurate model, as the order of the solver
is O(dt*), and fixes the detected issue not only for simple buck converters but to other
topologies that are based on half-bridge modules. In addition, the high accuracy makes the
method suitable for integrating an FPGA-based model in a commercial HIL system. These
systems typically have integration times on the order of 1 us. A Euler-based method with
such integration time would be unsuitable due to the larger inherent error.

In order to allow the circuit designer to perform a trade-off between accuracy and
speed, the initial Algorithm 2 was also implemented and synthesized. The starting point
was the same pipelined architecture where the cycles for substep calculations were removed.

This architecture performs these actions:

1. Fetch status of S1 and S2, initialize values.

2. Successively calculate K1C and K1L to K4C and K4L and accumulate the state variable
increments Ai; and Avc at each step.

3. Setir to zero if the new i}, value creates a zero-crossing during the deadtime.

4. Assign the new value of state variables.

Resource utilization is expected to be lower, since no division is needed and the
fourth-order Runge—Kutta calculation is performed only once, whereas it was performed
three times with Algorithm 4. This also implies that fewer cycles will be necessary. Instead
of 25 cycles, only 7 cycles are necessary to perform one calculation.

Table 7 shows the resources needed for implementing Algorithm 2 in the same device.
As expected, fewer resources are needed in this case: around one fourth of LUTs (836
versus 3498) and less than half of flip-flops (521 versus 1177) are used. The usage of DSPs
is similar in both cases (55 versus 60).

A clock period of 25 ns can be achieved in this case. As seven cycles are necessary,
the minimum achievable time step for Algorithm 2 is 175 ns.

Appl. Sci. 2021, 11, 6490

17 of 19

Table 7. Resource utilization for the proposed Algorithm 2 and pipelined architecture using K-
calculator blocks (XC7A35TCSG324-2).

Resource Utilization Available Utilization %
LUT 836 20,800 4.02%

Flip-Flops 521 41,600 1.25%
DSP 55 90 61.11%

The relation between integration time and error of Figures 4 and 6 can be updated by
adding the timing limitations (Figure 9). The simulation error of both Algorithms 2 and 4
against dt is represented, only for the case of R = 30 (). The shaded area represents the
zone not reachable with the proposed device. The area limit is defined by the intersection of
Algorithm 2 error curve with a vertical line at 175 ns and the intersection of Algorithm 4 error
curve with a vertical line at 1 us.

The figure shows that lower integration times are reached with Algorithm 2 but at the
cost much larger error than with Algorithm 4. Usually, lower integration times are sought
in order to reach lower numerical errors, but in this case, a reduction in integration time
step of less than one order of magnitude (from 1 ps to 175 ns) implies an error five orders
of magnitude larger in both state variables, vc and i;. Therefore, the proposed method,
despite having more complexity and needing more clock cycles, delivers better results.

10° 10°
’>\ -------- R =30 Q, algorithm 4 g -------- R =30 Q, algorithm 4
g = = R=230Q, algorithm 2 I 5 = = R=230Q, algorithm 2
5 e 2
- 5 -
) . =" it " S
S 107°L o- " > 1075} -
© r © -
3 R o) - -
0 Q L
> o 4 !
©c L e — P e
s r e S
L T Eg-10F e
s107r 310070 e
> e e e
5 b e e L e
R e S e
2 5 | e
o IS
1071 ‘ 1071 :
1077 107® 107° 1077 107® 107°
Simulation step (s) Simulation step (s)

Figure 9. Error in calculation of v¢ and ij, as a function of the time step using Algorithms 2 and 4 for
the case of R = 30 (), with the shaded area marking the zone not feasible with the proposed device.

6. Conclusions

Fourth-order Runge-Kutta methods allow for accurate modeling of switched circuits.
This high accuracy means that events such as the inductor current i} crossing zero during
a deadtime must be detected; otherwise the error of this source of error can ruin the
noticeable accuracy of the solver method. In the proposed example, this source of error
makes the error of the model six orders of magnitude higher when a dt of 1 ps is used.

The proposed approximation by dividing the time step into two substeps serves to
recover the expected accuracy. The initial simulations were performed with MATLAB and
VHDL code using 64-bit floating point. The calculations were then translated to fixed point.
The method used for this translation maintains an accuracy similar to that of 64-bit floating
point. A pipelined architecture was designed to allow for an efficient implementation.
The proposed generic K-calculator block serves as a building block for the successive
calculation of the fourth-order Runge-Kutta KnL and KnC parameters.

Results show that a highly accurate hardware-in-the-loop implementation of a buck
converter with deadtimes is feasible with the selected Artix-7 device, having an integration
time of 1 us and calculation errors on the order of 5.89 x 10~1 V for vc and 6.85 x 10712 A
for iy . Although this extremely low error is not usually needed as other sources of error

Appl. Sci. 2021, 11, 6490 18 of 19

are present, this method allows the use of highly accurate numerical methods such as
the fourth-order Runge—Kutta even when deadtime events are present. In addition, this
implementation is also suitable for integration into commercial complex HIL systems,
since it is shown that it can be applied when using relatively high integration steps of
1 ps or even larger without loss of accuracy. Furthermore, although a buck converter
was used as application example, it can be applied to any power converter based on
half-bridge modules.

Author Contributions: Conceptualization, R.S., A.S., and A.d.C.; methodology, R.S. and A.S.; soft-
ware, R.S. and A.S,; experiment, R.S,; validation, R.S., A.S., and A.d.C.; formal analysis, R.S., A.S.,
and A.d.C; investigation, R.S., A.S., and A.d.C,; resources, R.S. and A.S.; writing—original draft
preparation, R.S.; writing—review and editing, R.S., A.S., and A.d.C; visualization, R.S.; supervision,
A.S. and A.d.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Zhang, S.; Liang, T.; Dinavahi, V. Machine Learning Building Blocks for Real-Time Emulation of Advanced Transport Power
Systems. IEEE Open]. Power Electron. 2020, 1, 488—498. [CrossRef]

Liang, T.; Liu, Q.; Dinavahi, V.R. Real-Time Hardware-in-the-Loop Emulation of High-Speed Rail Power System With SiC-Based
Energy Conversion. IEEE Access 2020, 8, 122348-122359. [CrossRef]

Mylonas, E.; Tzanis, N.; Birbas, M.; Birbas, A. An Automatic Design Framework for Real-Time Power System Simulators
Supporting Smart Grid Applications. Electronics 2020, 9, 299. [CrossRef]

Samano-Ortega, V.; Padilla-Medina, A.; Bravo-Sanchez, M.; Rodriguez-Segura, E.; Jimenez-Garibay, A.; Martinez-Nolasco, J.
Hardware in the Loop Platform for Testing Photovoltaic System Control. Appl. Sci. 2020, 10, 8690. [CrossRef]

Qi, C.; Gao, F;; Zhao, X.; Wang, Q.; Sun, Q. Distortion Compensation for a Robotic Hardware-In-The-Loop Contact Simulator.
IEEE Trans. Control Syst. Technol. 2018, 26, 1170-1179. [CrossRef]

Li, Y,; Zhu, S,; Li, Y.; Lu, Q. Temperature Prediction and Thermal Boundary Simulation Using Hardware-in-Loop Method for
Permanent Magnet Synchronous Motors. IEEE/ASME Trans. Mechatron. 2016, 21, 276-287. [CrossRef]

Ferraresi, C.; Maffiodo, D.; Franco, W.; Muscolo, G.G.; De Benedictis, C.; Paterna, M.; Pica, O.W.; Genovese, M.; Pacheco Quifiones,
D.; Roatta, S.; et al. Hardware-In-the-Loop Equipment for the Development of an Automatic Perturbator for Clinical Evaluation
of Human Balance Control. Appl. Sci. 2020, 10, 8886. [CrossRef]

Lu, D.;Ma, Y,; Yin, H,; Deng, Z.; Qi,]. Development and Validation of Electronic Stability Control System Algorithm Based on
Tire Force Observation. Appl. Sci. 2020, 10, 741. [CrossRef]

Sabzehgar, R.; Roshan, Y.M.; Fajri, P. Modeling and Control of a Multifunctional Three-Phase Converter for Bidirectional Power
Flow in Plug-In Electric Vehicles. Energies 2020, 13, 2591. [CrossRef]

Lu, B.; Wu, X; Figueroa, H.; Monti, A. A Low-Cost Real-Time Hardware-in-the-Loop Testing Approach of Power Electronics
Controls. IEEE Trans. Ind. Electron. 2007, 54, 919-931. [CrossRef]

Bai, H.; Liu, C.; Zhuo, S.; Ma, R ; Paire, D.; Gao, F. FPGA-Based Device-Level Electro-Thermal Modeling of Floating Interleaved
Boost Converter for Fuel Cell Hardware-in-the-Loop Applications. IEEE Trans. Ind. Appl. 2019, 55, 5300-5310. [CrossRef]

Liu, C.; Guo, X.; Ma, R;; Li, Z.; Gechter, F; Gao, F. A System-Level FPGA-Based Hardware-in-the-Loop Test of High-Speed Train.
IEEE Trans. Transp. Electrif. 2018, 4, 912-921. [CrossRef]

Davalos-Guzman, U.; Castafieda, C.E.; Aguilar-Lobo, L.M.; Ochoa-Ruiz, G. Design and Implementation of a Real Time Control
System for a 2DOF Robot Based on Recurrent High Order Neural Network Using a Hardware in the Loop Architecture. Appl. Sci.
2021, 11, 1154. [CrossRef]

Estrada, L.; Vazquez, N.; Vaquero, J.; de Castro, A.; Arau, J. Real-Time Hardware in the Loop Simulation Methodology for Power
Converters Using LabVIEW FPGA. Energies 2020, 13, 373. [CrossRef]

Sanchez, A.; de Castro, A.; Garrido, J. A Comparison of Simulation and Hardware-in-the-Loop Alternatives for Digital Control of
Power Converters. IEEE Trans. Ind. Inform. 2012, 8, 491-500. [CrossRef]

Cook, G.; Lin, C. Comparison of a Local Linearization algorithm with Standard Numerical Integration Methods for Real-Time
Simulation. IEEE Trans. Ind. Electron. Control. Instrum. 1980, IECI-27,129-132. [CrossRef]

Mudrov, M.; Zyuzev, A.; Konstantin, N.; Valtchev, S.; Valtchev, S. Hardware-in-the-loop system numerical methods evaluation
based on brush DC-motor model. In Proceedings of the 2017 International Conference on Optimization of Electrical and Electronic
Equipment (OPTIM) 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania,
25-27 May 2017; pp. 428-433. [CrossRef]

http://doi.org/10.1109/OJPEL.2020.3039117
http://dx.doi.org/10.1109/ACCESS.2020.3006904
http://dx.doi.org/10.3390/electronics9020299
http://dx.doi.org/10.3390/app10238690
http://dx.doi.org/10.1109/TCST.2017.2709278
http://dx.doi.org/10.1109/TMECH.2015.2443800
http://dx.doi.org/10.3390/app10248886
http://dx.doi.org/10.3390/app10238741
http://dx.doi.org/10.3390/en13102591
http://dx.doi.org/10.1109/TIE.2007.892253
http://dx.doi.org/10.1109/TIA.2019.2918048
http://dx.doi.org/10.1109/TTE.2018.2866696
http://dx.doi.org/10.3390/app11031154
http://dx.doi.org/10.3390/en13020373
http://dx.doi.org/10.1109/TII.2012.2192281
http://dx.doi.org/10.1109/TIECI.1980.351664
http://dx.doi.org/10.1109/OPTIM.2017.7975007

Appl. Sci. 2021, 11, 6490 19 of 19

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Monga, M.; Karkee, M.; Sun, S.; KiranTondehal, L.; Steward, B.; AtulKelkar.; Zambreno, J. Real-time Simulation of Dynamic
Vehicle Models using a High-performance Reconfigurable Platform. Procedia Comput. Sci. 2012, 9, 338-347. [CrossRef]
Yushkova, M.; Sanchez, A.; de Castro, A. The Necessity of Resetting Memory in Adams-Bashforth Method for Real-Time
Simulation of Switching Converters. IEEE Trans. Power Electron. 2021, 36, 6175-6178. [CrossRef]

Pang, B.; Wu, S.; Zhao, X,; Jiao, Z.; Yang, T. A hardware-in-the-loop simulation for aircraft braking system. In Proceedings of the
CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018), Guiyang, China, 19-22 June 2018; pp. 1538-1543.
[CrossRef]

Chen, H.; Sun, S.; Aliprantis, D.C.; Zambreno,]. Dynamic simulation of electric machines on FPGA boards. In Proceedings of the
2009 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 3-6 May 2009; pp. 1523-1528. [CrossRef]
Zamiri, E.; Sanchez, A ; de Castro, A.; Martinez-Garcfa, M.S. Comparison of Power Converter Models with Losses for Hardware-
in-the-Loop Using Different Numerical Formats. Electronics 2019, 8, 1255. [CrossRef]

Martinez-Garcia, M.S.; de Castro, A.; Sanchez, A.; Garrido, J. Word length selection method for HIL power converter models.
Int. J. Electr. Power Energy Syst. 2021, 129, 106721. [CrossRef]

Saralegui, R.; Sanchez, A.; Martinez-Garcia, M.S.; Novo, J.; de Castro, A. Comparison of Numerical Methods for Hardware-In-the-
Loop Simulation of Switched-Mode Power Supplies. In Proceedings of the 2018 IEEE 19th Workshop on Control and Modeling
for Power Electronics (COMPEL), Padua, Italy, 25-28 June 2018; pp. 1-6. [CrossRef]

Typhoon HIL. GDS Oversampling. Available online: https://www.typhoon-hil.com/documentation/typhoon-hil-software-
manual/concepts/gds_oversampling.html/ (accessed on 7 July 2021).

Kiffe, A.; Geng, S.; Schulte, T. Automated generation of a FPGA-based oversampling model of power electronic circuits. In
Proceedings of the 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, Serbia, 4-6
September 2012; pp. DS3f.5-1-DS3£.5-8. [CrossRef]

Zamiri, E.; Sanchez, A.; Yushkova, M.; Martinez-Garcia, M.S.; de Castro, A. Comparison of Different Design Alternatives for
Hardware-in-the-Loop of Power Converters. Electronics 2021, 10, 926. [CrossRef]

http://dx.doi.org/10.1016/j.procs.2012.04.036
http://dx.doi.org/10.1109/TPEL.2020.3036339
http://dx.doi.org/10.1049/cp.2018.0123
http://dx.doi.org/10.1109/IEMDC.2009.5075405
http://dx.doi.org/10.3390/electronics8111255
http://dx.doi.org/10.1016/j.ijepes.2020.106721
http://dx.doi.org/10.1109/COMPEL.2018.8460060
https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/concepts/gds_oversampling.html/
https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/concepts/gds_oversampling.html/
http://dx.doi.org/10.1109/EPEPEMC.2012.6397371
http://dx.doi.org/10.3390/electronics10080926

	Introduction
	Buck Converter Modeling
	Sources of Errors
	Generic Sources of Errors
	Model-Specific Sources of Error

	Time Step Subdivision with a Linear Approximation
	Simulation and Implementation Results
	Floating-Point Simulations
	Fixed-Point Implementation
	Pipelined Architecture
	K-Calculator Generic Block
	Synthesis Results

	Conclusions
	References

