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Abstract: As a popular population based heuristic evolutionary algorithm, differential evolution
(DE) has been widely applied in various science and engineering problems. Similar to other global
nonlinear algorithms, such as genetic algorithm, simulated annealing, particle swarm optimization,
etc., the DE algorithm is mostly applied to resolve the parametric inverse problem, but has few
applications in physical property inversion. According to our knowledge, this is the first time DE
has been applied in obtaining the physical property distribution of gravity data due to causative
sources embedded in the subsurface. In this work, the search direction of DE is guided by better
vectors, enhancing the exploration efficiency of the mutation strategy. Besides, to reduce the over-
stochastic of the DE algorithm, the perturbation directions in mutation operations are smoothed by
using a weighted moving average smoothing technique, and the Lp-norm regularization term is
implemented to sharpen the boundary of density distribution. Meanwhile, in the search process
of DE, the effect of Lp-norm regularization term is controlled in an adaptive manner, which can
always have an impact on the data misfit function. In the synthetic anomaly case, both noise-free
and noisy data sets are considered. For the field case, gravity anomalies originating from the Shihe
iron ore deposit in China were inverted and interpreted. The reconstructed density distribution is in
good agreement with the one obtained by drill-hole information. Based on the tests in the present
study, one can conclude that the Lp-norm inversion using DE is a useful tool for physical property
distribution using gravity anomalies.

Keywords: gravity inversion; Lp-norm; adaptive differential evolution; weighted moving aver-
age smooth

1. Introduction

As an important geophysical approach, gravity surveying is an effective tool for
explorations dealing with mineral deposits, oil and gas, and environmental problems [1–5].
Over the past decades, despite substantial progress having been made in the interpretation
of gravity data, the identification and characterization of field sources remain a challenging
task due to several limitations: the inherent non-uniqueness of the gravity inverse problem
and the limited and inaccurate discrete data sets [6,7]. To deal with the non-uniqueness
issue, some kinds of regularizations and/or constraint(s) integrating with other available
geologic or geophysical information, such as subsurface structure, borehole data, and prior
models, etc. are taken into account in the inversion process.
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Generally, according to the kind of model parameters selected, there are two basic
approaches to gravity inversion—parametric inversion (e.g., [7–10]) and physical property
inversion (e.g., [2,3,11–13]). The methods of parametric inversion determine the geomet-
rical properties of unknown density sources with a fixed density contrast, and offer a
homogeneous body of the postulated density. Compared with parametric inversion, the
physical property inversion methods allow the densities of the elements of a regular sub-
surface partition to vary. In this case, the solution can give great flexibility to recover the
depths and complex shape of sources. Therefore, the inversion for physical properties is
currently important and prevalent. As we know, inversion methods search for the possible
solutions employing optimization techniques with linearly iterative approaches such as
steepest descent method, conjugate gradients, etc. These optimization techniques have
traditionally proven very difficult to solve the highly non-linear mathematical formulation
since the iteration process can be prone to fall into the local minima. Moreover, considering
the inherent ambiguity of inverse problem for the potential field, it is necessary to choose
an appropriate starting model and add regularization constraints (see [2,14]). To avoid
the weak points of the linearly iterative optimization procedures, global optimization
techniques, such as genetic algorithm (GA), simulated annealing (SA), particle swarm
optimization (PSO), differential evolution (DE), etc., are considered appropriate to solve
the inverse problems [6,7,15–17]. Among them, genetic algorithms have been successfully
used for physical property inversion of gravity data (e.g., [6,18]).

Differential evolution, which has been illustrated as a simple but efficient evolution
algorithm, was first proposed by Storn and Price to solve Chebyshev polynomial prob-
lems [19]. In recent years, it has been verified that DE provides better accuracy, more
robustness, and fast convergence speed than other evolution algorithms, such as GA and
PSO [20–22]. Hence, it has attracted great attention in many scientific and engineering
fields, such as neural network training [23–26], data mining [27,28], and image process-
ing [29–32], etc. With regards to geophysical inverse problems, the applications of DE
are mainly non-gravity methods. Balkaya [33] implemented an inversion program for
self-potential (SP) and vertical electrical sounding (VES) by DE; the synthetic data and
field data demonstrate the effectiveness of DE in geoelectrical inversion. Li et al. [34] pro-
posed a modified Boltzmann Annealing Differential Evolution (BADE) algorithm, which
uses an annealing strategy to avoid the local minima and solve the inversion problem
in the directional resistivity logging-while-drilling (DRLWD) measurements; the results
also show robustness and immunity to the non-uniqueness inversion problem of their
method. Ekinci et al. [17,35] applied DE to both inverting model parameters from residual
gravity anomalies and amplitude of the 2D analytic signal of magnetic anomalies. Their
works show the applicability and effectiveness of this algorithm on both synthetic and
field anomalies, but they mainly focus on the basic parameters of the field source. Balkaya
et al. [36] achieved a DE inversion for total field magnetic anomalies caused by vertical-
sided prismatic bodies, and they mainly focus on geometric structure inversion. Recently,
Du et al. [37] reconstructed magnetic susceptibility by using an improved adaptive DE.
According to the inverted results, their inversion methods can help maintain the sharp
boundary of magnetic sources.

Apart from the above-mentioned studies, DE has few applications in physical property
inversion, although this method has become popular for geophysical inversion. The
main reason is that in DE iteration, the smooth constraint is difficult to apply directly
to physical property parameters. Here, we present a DE algorithm incorporated with
the lp regularization technique to resolve the inversion problem by determining the 2-D
distribution of the subsurface density distribution in the mineral exploration. Our gravity
inversion method is tested with synthetic examples, and then applied to an iron ore deposit.
Finally, we briefly discuss the application of lp norm gravity inversion using DE.
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2. Differential Evolution
2.1. Standard Differential Evolution Algorithm

DE is a population-based heuristic search method suitable for solving numerical
optimization problems. Its search process includes four parts: initialization, mutation,
crossover, and selection. Without loss of generality, let the optimization problem in D-
dimensional space be f (x), x ∈ RD. For the G-th iteration, any i-th vector in the population
can be expressed as mG

i =
(

mG
i,1, mG

i,2 , · · · , mG
i,D

)
, in which i = 1, 2, 3 · · · , NP, NP is the

population size. The evolution of these vectors is accomplished by repeatedly performing
mutation, crossover, and selection operations.

(1) Initialization

In order to establish a starting point for the optimization process, the DE randomly
generates the decision parameter in every vector of initial population according to the
given range. Therefore, the j-th variable of the i-th vector can be defined as:

m0
ij = Lj + rand(0, 1)·

(
Uj − Lj

)
, j ∈ [1, D] (1)

In which, rand(0, 1) represents a uniformly distributed random number in the range of
(0, 1), the lower and upper bounds of the j-th variable is expressed as Lj and Uj respectively.
Generally, the upper and lower bounds of variables can be expressed as vectors, such as
L = (L1, L2, . . . , LD), U = (U1, U2, . . . , UD).

(2) Mutation

After initialization, the mutation vector vG
i is generated for each target vector mG

i in
the current population with a suitable mutation strategy. In essence, the mutation strategy
of differential evolution can be regarded as a linear combination of multiple vectors. The
widely used strategies are as follows (see [38]):

“DE/rand/1”:
vG

i = mG
r1 + F(mG

r2 −mG
r3) (2)

“DE/rand/2”:

vG
i = mG

r1 + F(mG
r2 −mG

r3) + F(mG
r4 −mG

r5) (3)

“DE/best/1”:
vG

i = mG
best + F(mG

r1 −mG
r2) (4)

“DE/best/2”:

vG
i = mG

best + F(mG
r1 −mG

r2) + F(mG
r3 −mG

r4) (5)

“DE/current-to-best/1”:

vG
i = mG

i + F(mG
best −mG

i ) + F(mG
r1 −mG

r2) (6)

“DE/current-to-pbest/1”:

vG
i = mG

r1 + F(mG
pbest −mG

r1) + F(mG
r2 −mG

r3) (7)

In which, r1, r2, r3, r4, and r5 are random integers that are different from each other
in the range of [1, NP], and all of them are not equal to i. The coefficient F(F > 0) is
called the scaling factor, which is used to control the size of the difference direction. mG

best
represents the best vector in the population and also has the optimal function value in the
G generation. For more details on the differential evolutionary mutation strategy, please
refer to the work of Das et al. [39].
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(3) Crossover

The purpose of the crossover is to replace some variables in the target vector mG
i with

variables in the mutation vector vG+1
i , thereby the trial vector mG+1

i is obtained. Both
binomial crossover and exponential crossover are commonly used crossover mechanisms.
Here, the binomial crossover is explained, in which at least one variable in the trial vector
is inherited from the mutation vector, and can be expressed as:

uG
ij =

{
vG

ij , if rand(0, 1) ≤ CR or j = jrand
mG

ij , otherwise
(8)

Here, CR ∈ (0, 1) is the crossover probability, which is used to control the number of
variables inherited from the mutation vector in the trial vector. jrand is an integer randomly
selected in the range of [1, D].

(4) Selection

In DE, a greedy mechanism is employed to select a better one between the trial vector
uG

i and the target vector mG
i according to their function values. The selection operation is

as follows (for a minimization problem):

mG+1
i =

{
uG

i , if f
(
uG

i
)
≤ f

(
xG

i
)

mG
i , otherwise

(9)

where f (·) is the fitness value of the target and the trial vector.

2.2. Improved Differential Evolution Algorithm

(1) Improvement of Mutation Strategy

When conducting gravity inversion, to obtain a smooth density model, it is neces-
sary to use a proper smoothing technique to process the disturbance direction. For the
disturbance direction di,j of variable mi,j, the adjacent variables and weights information
are represented as shown in Figure 1. Assuming the weight of each adjacent point is Ws,i,j,
then the smoothed ds, i,j can be calculated by:

ds, i,j =
∑1

l=−1 ∑1
m=−1 Ws,i+l,j+mdi+l,j+m

∑1
l=−1 ∑1

m=−1 Ws,i+l,j+m
(10)
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Figure 1. Square-shaped window of perturbation direction di,j. (a) di,j’s neighborhood; (b) The
weight information for di,j and its adjacent position.

In order to use the above formula repeatedly, the coefficients associated with all dij can
be converted into a sparse matrix S, in which the k-th row stores the weight information of
direction k and its adjacent elements. Finally, the smooth matrix is expressed as:
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S = S fs (11)

where the parameter fs is the times of applying the smooth filter. Usually, we use fs = 2,
implying that the density of each k-element is calculated taking into account the values of
the adjacent 18 elements. Obviously, A greater value of fs increases the scope used for the
smoothing around the k-element.

Here, the adaptive differential evolution algorithm (JADE) proposed by Zhang and
Sanderson [40] is used, in which the mutation strategy is “current-to-pbest/1”, showed in:

vG
i = mG

i + Fi

(
mG

pbest −mG
i

)
+ Fi

(
mG

r1 −mG
r2

)
(12)

where mG
pbest is randomly selected from the top pb ∗ 100% vectors in the G-th generation

(pb ∈ [0, 1]). Fi is the scale factor related to the vector xi. r1, r2 used to construct the
disturbance direction di for each mutant vector are mutually different random integers in
the range of [1, NP]. Applying the smooth matrix to the perturbation direction formed by
vectors r1 and r2, the new mutation strategy is:

vG
i = mG

i + Fi

(
mG

pbest −mG
i

)
+ FiS

(
mG

r1 −mG
r2

)
(13)

In which, the difference vector part formed by the pbest vector mG
pbest and the target

vector mG
i is not smoothed, because smoothing will destroy the convex combination of

mG
pbest and mG

i .

(2) Adaptive Guided Evolution

In JADE, the parameter pb in the “current-to-pbest” mutation strategy is fixed through-
out the evolution process and needs to be manually set according to the problem. Then,
in order to improve the exploration ability of mutation mechanism, Tamabe and Fuku-
naga [41] assigned an independent pb,i to each target vector mi by applying a uniform
distribution. Here, the value of pb,i is adaptively and independently generated for each
vector xi based on the gaussian perturbation scheme. And pb,i is defined as:

pb,i = randni
(
µpb , 0.1

)
(14)

The average value µpb is initialized to 0.5. If pb,i is not in the interval [2/NP, 0.5], it
will be truncated. At the end of each search, µpb is updated as follows:

µpb =
(
1− cp

)
µpb + cp·meanA

(
Sp
)

(15)

Here, Sp is the set of successful pb values in each iteration, cp ∈ (0, 1) is the learning
rate of µpb , meanA represents the arithmetic mean. According to the above formula, it can
be seen that the greedy here is controlled by µpb , unlike in JADE, which is controlled by pb.
Therefore, µp can be set to a larger value at the beginning of the evolution process, such as
µp = 0.5, to maintain the diversity of the population.

The update method of µpb in the above equation is an arithmetic average, which makes
µp converge to a smaller value. In other words, as the search progresses, the parameter µp
will decrease, thereby improving local exploitation capabilities.

2.3. Control Parameters Adaptation of DE Algorithm

Experimental results conducted by Wu et al. [38] have shown that parameter adapta-
tion schemes in JADE [40] is the most effective. As a result, its procedures are extended
here to adapt the parameters of gravity inversion.

In JADE, for each vector, the parameters Fi and CRi are independently generated
according to the successful F and CR values in last generation. The formula of generating
CRi can be expressed as follows:
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CRi = randni(µCR, 0.1) (16)

where randni(µCR, 0.1) returns a random value with a gaussian distribution. 0.1 is standard
deviation; µCR is initialized to 0.5 and calculated using the following formula:

µCR = (1− cCR)µCR + cCR meanA(SCR) (17)

where cCR ∈ (0, 1) is a constant, SCR is the set of all successful CR values in last generation;
meanA(·) is the usual arithmetic mean.

Similarly, the adaptation of Fi is as follows:
Fi = randci(µF, 0.1)
µF = (1− c)µF + c meanL(SF)

meanL =
∑F∈SF

F2

∑F∈SF
F

(18)

where randci(µF, 0.1) means Cauchy distribution with location parameter µF and scale
parameter 0; meanL(·) is the Lehmer mean; and SF is the set of successful scale factors.

3. Lp-Norm Gravity Inversion Based on Adaptive Differential Evolution
3.1. Forward Modeling

Assuming that the observed gravity data is a vector written as d, whose length is
N. The underground model is represented by m, whose length is M. Then the forward
modeling problem can be expressed as:

d = G(m) (19)

where G is the forward operator. In the traditional gravity inversion method, G is the linear
forward matrix, but here G is no longer a linear matrix, while the finite volume method is
adopted in the forward modeling [42].

3.2. Inversion Method

The objective function of Lp-norm gravity inversion can be expressed as:

minΦ(m) = Φd(m) + λΦm(m),
s.t. ma ≤ m ≤ mb

(20)

In which λ denotes the regularization factor, ma, mb are the search range of the
parameters, while there are M parameters need to be inverted, then the upper and
lower bounds of the model parameters are constrained as ma = (ma,1, ma,2, · · · , ma,D)

T ,
mb = (mb,1, mb,2, · · · , mb,D)

T . Φd(m) is the misfit function of gravity data, which is
defined as:

Φd(m) =
‖Wd

(
dobs − G(m)

)
‖

2

2

‖Wddobs‖2
2

(21)

where Wd is the weight to the observed data, and determined by the followed equation [43,44]:

Wd,i =
1∣∣dobs

i

∣∣+ 0.5
(
dobs

max − dobs
min
) , i ∈ [1, N] (22)

In which, dobs
max and dobs

min denote the maximum and minimum data among the observed
data, respectively. In Equation (21), the normalization process is carried out, and the
purpose is to weaken the influence of the observation data error on the misfit function [45].
Φm(m) is regularization term of Lp (1 ≤ p < ∞), and expressed as:

Φm(m) = ∑ Wm,|mi −m0,i|p (23)
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Wm,i is the weight coefficient of parameter mi, and it is the empirical information of
the model, such as depth weighting value (see [2]). The notation m0,i denotes the reference
model or 0 model. While the model distribution is known, m0 can be used to strengthen the
constraints on the inversion. Combining (21) and (23), the objective function of Lp-norm
gravity inversion can be written as:

min Φ(m) =
‖Wd(dobs−G(m))‖ 2

2

‖Wddobs‖2
2

+ λ ∑ Wm,i|mi −m0,i|p,

s.t.ma ≤ m ≤ mb

(24)

3.3. Adaptive Adjustment of Regularization Factor

The regularization factor λ determines the main fitting object in the inversion process.
While λ→ 0 , the observation data is mainly fitted; on the contrary, the model regular-
ization term is mainly fitted. Chen et al. [45] and Zhdanov [46] have presented some
adaptive techniques to adjust the regularization factor, but these methods are only suitable
for conventional gradient-based iterative search algorithm, and are not suitable for global
nonlinear DE algorithms. In order to fit DE algorithms, Du et al. [37] combined the ideas of
Zhdanov [46] and Lu [47], then proposed the following update method:

λG+1 =

{
ξλG i f ΦG

d, mean > ΦG−1
d, mean

λG otherwise
,

ΦG
d, mean = 1

NP ∑ ΦG
d, i,

(25)

where ΦG
d, mean denotes the average misfit function value, ξ ∈ (0, 1) is attenuation coefficient,

and equal to 0.65. At the 0-th iteration, the regularization factor is defined as:

λ0 = 10
∑ Φ0

d,i

∑ Φ0
m,i

, i ∈ [1, NP] (26)

The above method is successfully used for the inversion of the magnetic method, but
this updated method ignores the phenomenon that the ratio of Φd and Φm is constantly
changing during the search process. Therefore, in order to enable λ to balance the effects of
Φd and Φm throughout the inversion process, the following updated method is proposed:

λG+1 =


ξλG i f ΦG

d, mean ≥ ΦG−1
d, mean

(1− cλ)λ
G + cλmax

(
λG, λt), elsei f ΦG

d, mean ≤ δλ

λG otherwise
,

λt =
∑ ΦG

d,i

∑ ΦG
m,i

,

(27)

In which, cλ ∈ (0, 1) denotes the learning rate, and is set at 0.8 based on the exper-
imental results. λt is the ratio of ΦG

d, mean and ΦG
m, mean in the current population, δλ is a

given threshold and is defined as follows:

δλ =
1

2NP ∑ Φ0
d,i (28)

Compared with Equation (25), it can be found that the new update method of regular-
ization factor is more complicated. At the same time, the new adjustment method is more
reasonable due to the influence of λt.

3.4. Implement of Inversion Algorithm

The detailed implementation process of the inversion algorithm is shown in Algorithm 1.
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Algorithm 1. Lp-norm inversion of gravity based on an improved adaptive differential evolution.

1: G = 1
2: Set NP = 100, µCR = 0.5, µF = 0.5, µpb = 0.5, c = 0.1, cp = 0.05, initialize population

m = (m0,1, · · · , m0,NP), initialize the regularity coefficient λ0, evaluation the population m.
3: While termination conditions are not met do
4: G = G + 1
5: For i = 1 to NP do
6: CRG

i = randni(µCR, 0.1);
7: FG

i = randci(µF, 0.1);
8: pb

G
i = randni

(
µpb , 0.1

)
9: End For
10: For i = 1 to NP do
11: Generate mutation vector according to mutation strategy (12)
12: Generate trial vector uG

i from (8)
13: End For
14: Evaluation test vector uG

15: Form a new population mG+1 according to Equation (9)
16: Update µCR and µF according to Equations (16)–(18), update µpb according to (14),

update λ by (27).
17. End While

In Algorithm 1, the termination condition is that the data fitting error reaches 5% or
the maximum number of iterations is reached. And the maximum number of iterations is
set to 100 M, M denotes the number of parameters to be inverted.

4. Simulation Tests

To illustrate the effectiveness and flexibility of the proposed inversion approach, four
types of 2D single or combined prism models are set to test the DE algorithm used in this
section, including (a) rectangular prism, (b) dipping prism, (c) parallel prism, and (d) U
prism. All test models are list in Figure 2. The conclusion of the test results show that
the method provides us with better resolution and can be used for interpreting the real
geological case.

4.1. Parameter Setting

As mentioned before, three main control parameters (NP, F and CR) are used to
adjust the search process of DE. Actually, when implementing the improved JADE for
gravity inversion, corresponding parameters are set as: NP = 100; µCR = 0.9; µF = 0.9;
µpb = 0.5. And the density bound constraints for synthetic models are 0 ≤ m ≤ 1.1 g/cm3

for all variables in the DE population. When inverting the gravity data of the synthetic
models, the initial model of the density distribution is created randomly from 0 to 10−2.
Besides, crossover rate sorting proposed by Zhou et al. is used to maintain the exploration
ability of algorithm further [48]. The key idea of CR sorting mechanism is to assign a
smaller CR to a vector with better fitness.

4.2. The Impact of Weighted Moving Average Smoothing

Here, the rectangular (Figure 2a) and dipping (Figure 2b) prism are adopted to verify
the effectiveness of smoothing. To simplify the discussion, the norm of regularization term
is set to 2 for two type of prism models. Additionally, considering that the smoothness
of obtained models is controlled by the values of s f factor, the different s f values will
be selected. In this part, s f is set as 0, 1, 2 and 3, while s f = 0 means no smoothness is
applied in the inversion process. The inverted results for these two models are shown in
Figures 3 and 4, respectively. Obviously, according to the models obtained with different
s f values, incorporating the smoothness technique with mutation strategy of DE can help
strengthen the continuity among the variables.
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Obviously from Figure 5 when s f 6= 0, which mean smoothness is applied in the
inversion process, the inversion can be significantly accelerated.

4.3. The Effect of p Value

For the Lp-norm based gravity inversion, the value of p actually plays a key role in
determining the density distribution and shape of density source. To get a proper p value,
the U prism model is selected to conduct the inversion with different p values. In this
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paper, the candidate values of p are 1, 1.1, 1.3, 1.5, 1.7, and 2, respectively. The inverted
results are shown in Figure 6. We can observe that the density obtained by a larger p value
is lower than the one with a smaller p. Besides, by comparing with the designed model, the
large p values, especially when the p is close to 2, will increase the range of the predicted
density model, and make the boundaries of model blur. On the contrary, a smaller p is
helpful in describing the shape of the density model accurately, but it may weaken the
continuity of the obtained model. Overall, in our opinion, it is appropriate to set p less
than 1.5.
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4.4. Gravity Data with Gaussian Noise

To prove that a new method works correctly, it is essential to test it on data with noise
since actual gravity data may be contaminated by noise. Here, Gaussian white noise with a
mean value 0 and a standard deviation equal to 10% of the maximum value of synthetic
data are added. By using the proposed inversion method, fittings between the observed
and model response for these noisy data are shown in Figure 7. The inversion results
of noise data are shown in Figure 8. According to the results, one can conclude that the
Lp-norm inversion of gravity is robust, and capable of reflecting the real shape of the field
source from the noisy data.
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5. Field Example

The Shihe iron ore deposit is located in the northern part of the Hengshan-Wutaishan
dome in the Lvliang-Taihang fault block, North China. The main exposed strata are
the Paleoproterozoic Jingangku Formation, the Mesoproterozoic Changcheng System,
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the Cambrian, and Quaternary. The Jingangku Formation is the ore-bearing unit that
comprises metamorphic amphibolite-like rocks. The density of rock and mineral in this
area is shown in Table 1. The garnet magnetite quartzite has the highest average density,
and the difference between its density and the one of surrounding rock amphibolite has
reached 0.38 g/cm3.

Table 1. Density parameters of minerals and rocks in the Shihe area.

Mineral Number of Specimens Arithmetic Mean
(g/cm3)

PlagioclAse amphibolite 41 2.78
Garnet Magnetite Quartzite 30 3.16

Biotite Granulite 27 2.88
Amphibole Plagioclase 7 2.65

Layer Number of specimens Arithmetic mean
(g/cm3)

Quaternary system 6 1.53
Jingangku formation 106 2.78

Since there are negative residual anomalies in the original data, in order to fit this
part of the data, the search range of Lp-norm gravity inversion in this area is set to
[−0.5, 0.5] g/cm3. The horizontal cell size for subsurface space is set to 20 m during
the inversion process, and the vertical cell size changes proportionally. The results with
different p values are shown in Figure 9; it can be concluded that the top buried depth of
the iron ore is about 400 m, and the depth of the ore body extends more than 400 m.
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Figure 9. The Lp-norm inversion results of abnormal gravity field in the Shihe area. (a,c,e,g) are the
results while p = 1, p = 1.1, p = 1.5 and p = 2, respectively; the line denotes the drill-hole, the cyan
block denotes the ore body, and (b,d,f,h) are the corresponding data fit lines.

Observed from Figure 9, the density distribution results obtained by Lp-norm regular-
ization inversion with different p values are similar, and are in good agreement with the
one obtained by drill-hole information. In Figure 9, the relation between the three inversion
results and the geological interpretation of the ore body is also shown. Obviously, the in-
version results Lp-norm with p ≤ 1.5 are reliable, which shows that the Lp-norm inversion
algorithm in this paper can improve the quality of inversion and bring the restored model
closer to the real situation. Additionally, by comparing the L2-norm regularization results
shown in Figure 9 with L1, L1.1, and L1.5, it is easy to see that the L2-norm inversion
technique failed to draw the real shape of the ore deposit.

6. Conclusions

In this work, an attempt was made to test the applicability and effectiveness of
adaptive DE on Lp-norm gravity inversion. As far as this work is concerned, this is
the first attempt at applying DE for physical property inversion using gravity data. In
the application of this stochastic search algorithm, to further improve the exploration
ability, the evolved direction of the DE population in this paper is guided adaptively.
Besides, in order to maintain the physical property to distribute in a continuous space,
the perturbation direction in the mutation operation is smoothed by using the weighted
moving average smooth technique. In addition, adaptive adjustment of the regularization
factor is proposed to balance the effect of data misfit and Lp-norm regularization term.
In the present algorithm, synthetic data experiments are performed using noise free and
noisy data sets calculated from simple-shaped causative bodies. From the example of
synthetic models, the adaptive DE algorithm with improved mechanisms shows favorable
results and is capable of achieving a density distribution with sharp boundary by setting
a proper p value. In addition, the proposed algorithm was also tested on a field data
from the Shihe iron deposit; the predicted density distribution was verified by drill-hole
information. Finally, in this work, we discussed the application of an improved JADE
version in Lp-norm gravity inversion. Some recent DE variants demonstrated excellent
performance for single objective optimization problems. Their application in geophysical
inversion will be done in future research.
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