
applied
sciences

Article

New Vector-Space Embeddings for Recommender Systems

Sandra Rizkallah * , Amir F. Atiya and Samir Shaheen

����������
�������

Citation: Rizkallah, S.; Atiya, A.F.;

Shaheen, S. New Vector-Space

Embeddings for Recommender

Systems. Appl. Sci. 2021, 11, 6477.

https://doi.org/10.3390/app11146477

Academic Editor: Ángel

González-Prieto

Received: 6 June 2021

Accepted: 8 July 2021

Published: 13 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Engineering, Faculty of Engineering, Cairo University, Giza 12613, Egypt;
amir@alumni.caltech.edu (A.F.A.); sshaheen@eng.cu.edu.eg (S.S.)
* Correspondence: sandrawahid@cu.edu.eg

Abstract: In this work, we propose a novel recommender system model based on a technology
commonly used in natural language processing called word vector embedding. In this technology, a
word is represented by a vector that is embedded in an n-dimensional space. The distance between
two vectors expresses the level of similarity/dissimilarity of their underlying words. Since item
similarities and user similarities are the basis of designing a successful collaborative filtering, vector
embedding seems to be a good candidate. As opposed to words, we propose a vector embedding
approach for learning vectors for items and users. There have been very few recent applications of
vector embeddings in recommender systems, but they have limitations in the type of formulations
that are applicable. We propose a novel vector embedding that is versatile, in the sense that it is
applicable for the prediction of ratings and for the recommendation of top items that are likely to
appeal to users. It could also possibly take into account content-based features and demographic
information. The approach is a simple relaxation algorithm that optimizes an objective function,
defined based on target users’, items’ or joint user–item’s similarities in their respective vector spaces.
The proposed approach is evaluated using real life datasets such as “MovieLens”, “ModCloth”,
“Amazon: Magazine_Subscriptions” and “Online Retail”. The obtained results are compared with
some of the leading benchmark methods, and they show a competitive performance.

Keywords: collaborative filtering; item recommendations; item vectors; recommender systems;
spherical embeddings; word embeddings

1. Introduction

The growing long term trend towards the increasing role of online services has ac-
celerated even further since the start of the pandemic in 2020. These services include
e-commerce, online advertisement, streaming services, booking channels and others. This
poses a challenge since there are millions of users and millions of products or items and
they need to “find” each other. Recommender systems [1,2] aim to provide this matching.
They are basically intelligent systems that predict the user’s preferences and recommend
the items that would most likely interest him/her. The purchase behavior of a user gener-
ally follows a pattern that reveals his likings, and this purchase pattern plays an important
role in recommending items to the user. For example, a user who may have a purchase
pattern of buying or giving high ratings for high end electronic gadgets is more likely to
initiate a purchase action if he is presented with a recommendation of similar gadgets.

Recommender Systems benefit both the consumer and the businesses. The consumer
gets to easily find the products or services he seeks, and businesses will increase their sales
as they will be targeting more willing users. Recommender Systems can be classified into
six classes [3]:

• Collaborative Filtering: These are referred to as “people-to-people correlation”. These
systems recommend items for users based on other users with similar taste. Two types
of collaborative filtering exist [4]:

– User–user (user-based): items are recommended based on the ratings that users
with similar tastes have given to these items.

Appl. Sci. 2021, 11, 6477. https://doi.org/10.3390/app11146477 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7736-8944
https://orcid.org/0000-0002-2449-6130
https://doi.org/10.3390/app11146477
https://doi.org/10.3390/app11146477
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11146477
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11146477?type=check_update&version=2

Appl. Sci. 2021, 11, 6477 2 of 18

– Item–item (item-based): items are recommended based on the similarity between
them. The similarity computation between items depends on users who have
rated/purchased both of these items.

• Content-Based: Recommendations are suggested based on the user’s history of prefer-
ences and profile where the features of the items are taken into consideration. For exam-
ple a user who liked or purchased a particular item with certain features/specifications
and a certain price range is more likely to show interest in another item possessing
similar features.

• Demographic: These systems categorize users and provide recommendations based on
the demographic profile of the user, such as age, gender, country, occupation, and so
forth. Users in the same demographic group tend to have similarities in their interests,
as opposed to users in different demographic groups.

• Knowledge-Based: These systems use knowledge to construct relations between items
and users’ needs and preferences. The recommendations are suggested based on how
the item is beneficial to a certain user.

• Community-Based: These systems make use of the information available in social
networks. Recommendations can also be considered as “people-to-people correlation”,
but this time relying on the user’s network of friends.

• Hybrid: These systems combine different approaches from those mentioned above.

“Collaborative Filtering” (CF) is one of the most widely used Recommender Systems
classes [5]. Because the user’s past transactions and the item’s past ratings and selling
events may not be large enough to assess his preference for the item, other like-minded
users’ behavior and other resembling items will be used as proxies. In other words, users
with similar taste are matched with the current user, their purchasing and ratings behavior
is observed and, based on that, items are recommended to the user in question. In such
models, novel items are also introduced to the user in order to discover new interests. It is
well-known that less frequently sold items present the greatest challenge in Recommender
Systems because of the dearth of purchasing precedence. This makes collaborative filtering
a promising approach.

Recommendations generated by CF fall into two classes: prediction or recommenda-
tion. The first one attempts to predict the rating that the user is likely to give to a certain
item. Recommendation is concerned with the top k items that the user is likely to be
interested in or purchase [6]. Conventional approaches for CF include matrix factoriza-
tion and neighborhood-based collaborative filtering. Matrix factorization [7] is based on
building a user–item interaction matrix to which dimensionality reduction techniques such
as Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) are
applied. In neighborhood-based CF, user–item interactions are directly used (based on
neighbors or similar items/users) to predict interest for new items [8].

Moreover, recent research in the field of recommender systems has adopted a number
of techniques, including deep learning [9–12]. Different architectures of neural networks are
proposed such as multilayer perceptron (MLP), convolutional neural network (CNN) and
recurrent neural network (RNN). The non-linearity in data can be effectively modeled by
deep neural networks through non-linear activations. This allows the capturing of complex
and detailed user–item interaction patterns. Deep learning is also beneficial in learning
useful representations from input data, specially where in real applications descriptive
information about items and users is accessible. Interface optimization is also introduced
in recommender systems where visual aspects are taken into consideration [13,14].

In this work, we propose the use of a novel technology called word vector embedding
for the Recommender Systems problem. This technology was introduced and was further
developed in the natural language processing field. In word vector embedding, words are
represented as numerical vectors where the vectors’ positions in an n-dimensional space
convey the words’ semantics. Words of similar meanings will have vectors near each other
from the distance point of view. In other words, the vector encodes the corresponding

Appl. Sci. 2021, 11, 6477 3 of 18

word’s meaning together with all its semantic relations with similar and dissimilar words
of the corpus.

Recommender systems are also based on similarities (items to items and users to
users). They seem to be promising candidates for the application of vector embedding
systems. Users can be represented as vectors that embody all their likings, interests and
demographics, with similar-minded users having vectors that are nearby in the space.
In other words, the vector encodes the type of person and his preferences. Similarly,
an item or a product is a complex entity that is described by several features, for example
purchase patterns, ratings, product description and specification, and common preferences
among similar users. All this makes simple feature vector modeling not straightforward,
and this calls for vector embeddings that are learned using intricate similarity modeling
by careful placement of the vectors. In the embedding approach, the item or product is
modeled as a vector that encodes the intrinsic features, values and preferences of this item,
where these features are encoded over all of its components in a distributed fashion.

The application of word embeddings to recommender systems is a fairly new idea.
Only a few works have simultaneously applied this idea recently. The goal of this research
is to explore the vector embeddings as a potential addition to the arsenal of other existing
technologies, The other goal is to introduce a novel vector embedding that makes this
technology applicable to more Recommender Systems problem types. Conventional word
vector embeddings, such as the word2vec method [15,16], are trained on context or co-
occurrence data. This means that they operate on a basket of purchased items (for a
specific user) and from that they infer the similarities between items and possibly provide
a recommendation. Therefore, they are not applicable to the problem of learning user
ratings, because this basket of elements does not exist and only ratings of items by users do.
The method we propose here is applicable in a direct way to both the “recommendation”
problem (recommending items to the user based on his past purchases) and the “prediction”
problem (predicting a rating for a novel item based on the users’ previous patterns of
ratings). Moreover, it is very versatile in the sense that it could take into account content-
based features, demographic features and social network connections. All these features
could be encoded in the vector representations, with CF being the dominant component.
Many other conventional approaches, such as matrix factorization, do not directly model
the combined effect of CF, content-based, demographic-based and social network features.

In addition, our proposed model has several other beneficial features:

• For our “prediction” problem we have a novel modeling framework. We train an
embedding whereby each user maps to a vector and each item maps to a vector in the
same space. The users’ and items’ vectors train side by side, and user–item, user–user
and item–item similarities can be taken into account;

• The design is much easier than existing embedding methods. Rather than the ex-
isting cumbersome (deep) neural network based approaches that are trained using
context data [15,16], the proposed approach is a simple relaxation procedure that is
computationally efficient;

• The proposed method possesses an explicit capability to model sentiment, such as
likes/dislikes. This is because the vectors are placed in a spherical space. This allows
it to directly tackle the polarity issue, that is, “like” (vectors will be near each other)
and “dislike” (vectors are on opposite poles of the sphere). Sentiment feedback in the
form of like/dislike is particularly prevalent in video channels and music subscription
services;

• The algorithm has an incremental nature. This makes adding a user or an item require
only a small computational load;

• Conventional methods, such as matrix factorization using SVD or otherwise, are
computationally very expensive, especially since the number of users and the number
of items can be several tens of thousands. Even though using gradient methods for
cases of matrix sparsity can reduce the computational cost, this is still a challenge. At
the very least, the storage of such a huge matrix is a problem;

Appl. Sci. 2021, 11, 6477 4 of 18

• Rather than dealing with huge user vectors, such as in the neighborhood-based
techniques, our proposed embedding method considers (user or item) vectors of
dimensions 10, 20 or 50. All information is therefore efficiently compressed;

• The developed embedding model produces a performance competitive with the
state-of-the-art conventional recommender systems.

2. Related Work

This section addresses the existing work in the literature on recommender systems,
and specifically on collaborative filtering. The section is divided based on the major
approaches that are adopted, with a focus on the proposed word embedding works in the
field of Recommender Systems.

2.1. Matrix Factorization

The matrix factorization approach is based on building a user–item interaction matrix,
for example user–item rating or purchase events matrix. The matrix is often organized such
that one dimension represents users while the second dimension represents items. Usually,
user–item matrices are sparse as a user is likely to rate or purchase a limited number of
items. The approach further decomposes this matrix into the product of two matrices of
lower dimensionality. This can be accomplished using dimensionality reduction techniques
such as Singular Value Decomposition (SVD) or Principal Component Analysis (PCA).
The goal of the approach is to discover the latent features underlying the interactions
between users and items. The method can be briefly outlined as follows:

Consider R to be the ratings matrix, which includes the users’ ratings for items.
The goal is to find the two matrices P and Q such that R ≈ P×QT . This way, user–item
interactions can be modeled as inner products. Each user is associated with a vector p
while each item is associated with a vector q. The inner product between qi and pu captures
user u’s taste/interest for item i. The dimensionality reduction problem is often augmented
by a regularization factor, in order to reduce overfitting. Even though the SVD method can
obtain an exact solution, due to the computational complexity, stochastic gradient descent
is more often used to solve the problem [17–19].

There have been some variants and improvements of the standard matrix factorization
approach. Only a few examples are given below just as an illustration. In [20], the matrix
factorization is enhanced by using social networks’ information through incorporating
social regularization. The social regularization is developed in such a way that a user’s
taste is close to the user’s friends’ average taste.

In [21], an Enhanced SVD (ESVD) matrix factorization model is proposed. The model
combines classical matrix factorization techniques with active learning in order to perform
ratings completion. Moreover, an iterative multi-layer ESVD model is proposed to improve
the accuracy of prediction.

In [22], a new regularization method is proposed for matrix factorization. The method
is called the elastic net, such that both ridge and lasso regularization methods are combined
in a linear way. Moreover, stochastic gradient descent is applied to fit the model. The goal
of the model is predicting the users’ ratings for unseen movies.

2.2. Neighborhood-Based Collaborative Filtering

This is the other major methodology for tackling the Recommender Systems problem.
In this approach, the user–item interactions are directly used to predict the potential
interest in new items. Two strategies are typically adopted: user-based or item-based
recommendations. In user-based methods, the prediction is based on the ratings of other
users for a specific item. These users are the neighbors, that is, the users with similar taste
to the given user. In item-based methods, the roles of items and users are reversed, and the
prediction is based on the given user’s ratings for similar or neighbor items.

In user-based models, the set of k neighbors for a given user are first extracted based on
the used similarity measure. The rating prediction can then be performed using aggregation

Appl. Sci. 2021, 11, 6477 5 of 18

approaches such as the average and the weighted sum. In item-based models, the k
neighbors for each item in the system are first determined. The rating prediction is based
on the ratings the given user has assigned to the neighboring items (by averaging or other
aggregation methods). This approach is known for its simplicity and reasonably good
results. However, it suffers from low scalability and sparsity of the Recommender Systems
databases [23–25].

Some variants and modifications of the neighborhood approach have also been pro-
posed. Again, only a few examples are given below. In [26], a neighborhood-based CF
approach is proposed. The approach aims at enhancing the computed neighborhood such
that fake neighbors are eliminated. Fake neighbors are users who have spurious similarities,
but the resemblance is not genuine. In addition, semantic similarity is also deployed, in the
sense that users do not need to have ratings for the same items in order to be compared.

In [27], an adaptive k-nearest neighbors collaborative filtering is proposed for rec-
ommender systems. A knowledge-based domain specific ontology is devised to obtain
customized recommendations.

In [28], a user-based recommender system is proposed. A method is developed to
select the optimal neighborhood for a given user. The selection is performed using two
strategies: k-nearest neighbors and threshold-based neighbors. The threshold is computed
as the distance between a given user and its neighbors, proving that using higher thresholds
is more error prone.

In [29], traditional user-based collaborative filtering approaches are extended to
achieve better accuracy and coverage levels. The proposed method relies on covering-
based rough set theory where redundant users are removed. Since popular items appeal to
many users, this can generate many non-genuinely similar users, which preferably have to
be eliminated.

2.3. Word Embedding

Word embedding [30] applications to Recommender Systems have recently been
proposed. In such models, items or users are represented by vectors, which are learned
from the data. The main goal is to have a low dimensional vector space that contains
beneficial information for recommending items. To our knowledge, most of the work done
in this area is based on the word2vec model, introduced in [15,16].

In [31], the authors propose an approach that embeds products into the vector space.
The products’ vectors are learned using a skip-gram model [16] such that products with
similar contexts (purchases) have close vectors. Then, clustering of the products’ vectors is
performed using the K-means clustering algorithm. Moreover, the transition probabilities
between clusters are modeled. Products with the highest cosine similarities from the highest
probability clusters are used for recommendations. Furthermore, vectors are learned for
users such that these vectors are updated to predict the products from the users’ purchases.
It is noted that user to product recommendations are less persistent than product to product
recommendations due to the need to continuously account for the new user’s purchases.
The proposed model relies on email receipts data.

In [32], an item embedding approach is proposed, extending the Prod2Vec model
introduced in [31]. The extension is based on incorporating items’ metadata during the
training phase. The approach is tested on a music dataset.

In [33], a co-factorization model is proposed. The building blocks of the proposed
model are matrix factorization and item embedding. The item embeddings are learned
based on the word2vec model introduced in [16]. The embeddings are learned using the
user’s consumed items in addition to co-occurrence counts, which are computed as the
number of users who consumed both items. The model is tested using datasets for scientific
papers, movies and songs.

In [34], recommendations for venues and check-ins are presented for users. The model
is based on word2vec techniques: skip-gram and continuous bag of words (CBOW),
introduced in [15,16]. Vectors for items as well as users are learned. Moreover, three

Appl. Sci. 2021, 11, 6477 6 of 18

recommendation methods are proposed. The first method is based on recommending the
most similar items to a given user by calculating the cosine similarity between the items’
vectors and the user’s vector. The second method finds the users similar (neighbors) to a
given user and then the recommendation is made using these neighbors’ preferred items.
Finally, the third method combines the previous two methods. The neighbors are found,
then the most similar items to both the given user and the neighbors are found and used
for recommendation. The approach is tested using a Foursquare check-in dataset.

In [35], a recommender system is proposed based on CBOW word2vec [15] and
GloVe [36]. The approach mimics these NLP models such that items are treated as words
and users’ sessions are treated as sentences. Vectors are learned for items where items’
similarities are computed using the cosine distance. These similarities are used to perform
recommendations based on the user’s history. Moreover, at the recommendation phase
the items’ similarities are weighted with the user’s ratings to obtain a ranked set of rec-
ommendations. The approach is tested on a movie dataset where a recall@20 measure is
used for performance evaluation. The testing is performed by removing the last movie
that the user has seen and uses the last k user’s seen movies to recommend a set of 20
movies. If the recommended set includes the movie held out for testing, then a success is
counted, otherwise a failure. Finally, the percentage of successes over all users is computed.
The authors showed that the GloVe based model outperforms the word2vec based model.

In [37], an item-based collaborative filtering method is proposed. The method is based
on the word2vec skip-gram model with negative sampling, introduced in [16]. The paper
highlights the effectiveness of item-based similarities for recommender systems where
the user information is not incorporated into the model. The authors make a number of
justifications as follows. First, better item representations are generated since such methods
optimize learning the items’ relations directly. Second, the users’ information may not
be available, for example, a number of online stores allow transactions without requiring
the explicit identification of users. Third, the model’s computational complexity increases
when the number of users notably exceeds the number of items. In the proposed model,
vectors for items are learned where a sentence of words is represented as a basket of items.
The model is applied on a music dataset as well as a product dataset.

Again in [38], an item-based collaborative filtering method is proposed. Vectors for
items are learned based on the skip-gram model with negative sampling, introduced in [16].
Moreover, a new user preference model is designed such that short-term and long-term
user preferences are defined.

In [39], an item-based collaborative filtering method is also proposed. The method uses
the skip-gram model with negative sampling, introduced in [16] to learn items’ vectors.
These vectors are learned from transactions data. Moreover, user representations are
also generated using average and max pooling for the user’s transactions. These users’
representations are used to obtain a ranked list of recommendations. The method is tested
using an online retail dataset.

In [40], the change in a user’s interest given new recommendations is addressed. An at-
tentive item2vec model is proposed, extending the model introduced in [37]. The model
learns attributes for user behavior given potential recommendations of items using a
context–target attention mechanism. Finally, a neural representation for the user is gener-
ated.

3. Proposed Approach

The proposed approach assigns a vector for each item and/or user. The location of
the vector is designed in such a way that vectors in the vicinity of each other correspond to
similar items or users. The vectors are of relatively high-dimension, in order to encode all
the diverse information in the items, and are typically selected somewhere between 10 and
50 in dimension. We assume that the vectors lie on a sphere (i.e., their length is fixed as
‖x‖ = 1). This endows it with a sentiment polarity feature. For example, a user who likes
an item will have his vector close to the item’s vector, but if he dislikes it, his vector will be

Appl. Sci. 2021, 11, 6477 7 of 18

at the polar opposite of the item’s vector. The training algorithm that designs the locations
of the vectors is a simple relaxation algorithm that works by minimizing a simple error
function. An analogous methodology has been developed for the natural language field
in [41]. The next subsections elaborate each of the developed systems.

3.1. General Approach

Each user is represented by a vector, and each item is represented by a vector in
the same space (i.e., they have the same dimension). Let xi denote such vector represen-
tation. Assume ‖xi‖ = 1,that is, the vectors lie on the unit sphere. In addition to the
sentiment polarity issue, this assumption represents a normalization operation for the
vectors, and therefore prevents run-away similarity or distance computations. The distance
between any two vectors ‖xi − xu‖2 = ‖xi‖2 + ‖xu‖2 − 2xT

i xu = 2− 2xT
i xu is therefore

negatively proportional to their dot product. Rather than using distance as dissimilarity
measure, as in many word embedding methods, we use the dot product as a similarity mea-
sure.

The proposed vector embedding algorithm is supervised in nature, unlike many of the
other word embedding methods that are unsupervised or semi-supervised. The algorithm
seeks to determine the vectors pertaining to the users and items such that they satisfy
given similarity numbers. Thus, it optimizes the locations of the xis such that the achieved
similarity xT

i xu is as close as possible to the target similarity score sui. Towards this end,
we define the following optimization problem:

E = ∑
u

∑
i

wui

[
xT

u xi − sui

]2

subject to||x|| = 1, ∀u, i, (1)

where wui is a weighing coefficient that could potentially put a different emphasis on
different terms. There are a number of different versions and similarity terms that could be
utilized. A general form that takes into account different possible similarity measures is
the following:

E =
U

∑
u=1

U

∑
u′=1

w1

[
xT

u xu′ − vuu′
]2

+
U

∑
u=1

N

∑
i=1

w2

[
xT

u xi − rui

]2

+
N

∑
i=1

N

∑
i′=1

w3

[
xT

i xi′ − oii′
]2

subject to||x|| = 1, ∀u, u′, i, i′. (2)

We explain this general formulation as follows. Let xu and xu′ be vectors pertaining to
the users and let xi and xi′ be vectors pertaining to the items. The first term corresponds to
user–user similarity, where the dot product xT

u xu′ is the computed similarity of the vectors
representing user u and user u′, and vuu′ is the target similarity to be learned. This term
can be used to model the following:

• Demographic similarities: For example users who have similar demographic features,
such as age, gender, country, profession, and so forth, will have assigned target
similarities vuu′ some number close to 1, while users with only a fraction of the
demographic features will have a low target similarity;

• Community-based: Users who are in similar social networks, such as being friends,
will have a high target similarity, otherwise it is low;

• Purchase pattern similarities: The target similarity vuu′ can be proportional to the
amount of items in common in both users’ purchasing patterns.

Appl. Sci. 2021, 11, 6477 8 of 18

The second term corresponds to user–item similarity, where the dot product xT
u xi is

the predicted similarity of user u and item i, and rui is the target similarity to be learned.
This term can be used to model the following:

• Rating similarities: For example, the user u gives a rating for an item i and this rating
would be set as the target similarity rui. (A high rating will produce a large similarity
and vice versa.) This way, we can predict how any user would rate an item, by simply
computing the similarity as the dot product after training is complete. This is what
we call “Prediction”;

• Purchase pattern based: The target similarity rui can be proportional to the amount of
times the user u purchased this item i in previous purchases.

The third term corresponds to item–item similarity, where the dot product xT
i xi′ is the

predicted similarity of items i and i′, and oii′ is the target similarity to be learned. This term
can be used to model the following:

• Content-based: For example, items i and i′ that are similar or related product-types
and have similar features and/or have a similar price range would have a high target
similarity oii′ ;

• Purchase pattern based: The target similarity oii′ is proportional to the number of
times the items i and i′ are purchased together by some user. This is what we call
“Recommendation".

Please note that the weighting functions wij should be set to be proportional to the
importance of the term considered. For example, CF-related terms, such as Prediction,
Recommendation, or Term 2’s purchase pattern, should be weighted higher than the
other terms.

Let us for now consider Equation (1), as this is the general form that encompasses
Equation (2) and other forms. The objective of the approach is to find the vectors xi that
minimize the error defined in (1). The goal is to have these vectors express the desired
similarities, that is, the dot products would be as close as possible to the given similarity
values sij. The norm bound (xTx = 1) can be incorporated as a Lagrange multiplier.

Solving this optimization problem all at once is hard, as this is a fourth order multi-
dimensional polynomial equation. However, if we consider a specific item or user’s vector
xj and fix the others, it becomes a quadratic equation (with a Lagrange multiplier term)
and therefore has an analytic solution. We exploit this fact and develop a relaxation
algorithm such that one vector is learned at a time while fixing the others. After that,
another vector is learned (again while fixing the others), and so on until all the vectors are
learned. The algorithm does not stop at this point but a few more cycles are performed,
going through all vectors one-by-one, until convergence. The convergence is marked such
that the decrease in error is no longer significant from one cycle to the other. Here is a short
description of the steps. For more details refer to [41], including a proof of convergence.
The steps of the training algorithm are summarized as follows:

1. Generate the initial vectors xi randomly, normalizing them as unit length.
2. For i = 1 to N perform the following:
3. Fix all xj except xi and update xi as follows:

xi = A−1b, (3)

where

• A is a matrix defined as:
A = ∑

j 6=i
wijxjxT

j − λI, (4)

• b is a vector defined as:
b = ∑

j 6=i
wijxjsij, (5)

Appl. Sci. 2021, 11, 6477 9 of 18

• λ is the scalar Lagrange multiplier, evaluated using a simple one-dimensional
bisection search so that: xT

i xi = 1.

4. Repeat Steps 2–3 until the vectors converge.

Since a vector may be involved in more than one transaction, that is, user u rates a
number of items or item i is rated by a number of users, there is a competition between
vectors such that the vectors are placed optimally with respect to each other, satisfying the
similarities of the collective set of transactions. After training is complete, the similarity
between any two vectors xi and xj can be simply obtained using their dot product.

In order to have some focus in the work and avoid straying into too many possible
avenues of application of this vector embedding, we will concentrate in this work on the
“Prediction” and the “Recommendation” formulation (Terms 2 and 3 in (2)). These are
described next.

3.2. Prediction

In this formulation, we seek to predict the similarity scores between a user u and item i.
An example is the prediction of how user u would rate item i. This would be accomplished
by observing the pattern of ratings of the concerned user and other similar users and items.
This problem corresponds to Term 2 in Equation (2), which tackles user–item similarity
terms, where vectors xi correspond to the items, and vectors xu correspond to the users.

The system uses a corpus of users’ transactions where a transaction specifies that user
u rated item i with the rating rui. The ratings are typically available as a number on a scale
of 1 to 5 or 1 to 10 (which are translated in a normalized fashion to be in the range from
0 to 1), or they are “like” and “dislike” (for which rui is taken as 1 and −1 respectively).
Available ratings are used in the error function, and missing ratings (which is the great
majority) will be estimated after training, using the dot product between the corresponding
vectors. The error function is given by:

E =
U

∑
u=1

N

∑
i=1

wui

[
xT

u xi − rui

]2

subject to||x|| = 1, ∀u, i, (6)

where:

• xu is the user’s vector.
• xi is the item’s vector.
• rui is the rating user u assigned to item i, fed to the system as the rating scaled value

where the maximum value is 1.
• wui is a weighing coefficient that constraints the system, which is designed to put

different emphases on different ratings terms. In most practical cases we take wui as
constant or one, unless certain ratings are deemed more influential.

• U is the number of users.
• N is the number of items.

The algorithm to minimize this error function (6) is similar to that described in the last
subsection. The proposed approach will therefore have the vectors for the users and the
vectors for the items side-by-side in the same space. A vector pertaining to a user will be
close to one pertaining to an item if the user likes the item. Like-minded users will also be
drawn together, even though not explicitly trained for that. This is because common item
preferences will act as the glue that pulls the users’ vectors together. The same applies for
vectors of similar items.

3.3. Recommendation

Recommendation is the problem of recommending items to the user based on the
purchasing pattern of the user and other similar users. This corresponds to Term 3 in
the formulation (2). The system uses a corpus of users’ transactions where a transaction

Appl. Sci. 2021, 11, 6477 10 of 18

specifies the items purchased by a user. Representative vectors are to be learned for items
such that items occurring together in transactions are placed close to each other in the
vector space. The more transactions that include an item pair, the closer the vectors of
these items are placed with respect to each other. This conveys the fact that these items
are more likely to be purchased together following a purchase pattern. For example, items
such as “keyboard” and “mouse” are more likely to be purchased together than items such
as “keyboard” and “cap”. After training is complete, the similarity between vectors is
determined by computing the dot product.

The input to the model is a corpus of users’ transactions. The method begins by
parsing transactions such that item pairs are extracted. Each item pair is assigned a score
proportional to the number of transactions where this item pair occurs. The error function
is given by:

E =
N

∑
i=1

N

∑
i′=1

wii′
[

xT
i xi′ − oii′

]2

subject to||xi|| = 1, i = 1, . . . , N, (7)

where:

• x is the item’s vector.
• oii′ is a number proportional to the number of transactions where the items i and i′

occur together, fed to the system as a scaled value where the maximum value is 1.
• wii′ is a weighing coefficient whose purpose is to put different emphases on different

terms. Typically we take them to equal one.
• N is the number of items.

Vectors are learned for the items such that the dot products between such vectors are
as close as possible to the given similarity values oii′ . The algorithm for training such a
model is similar to the one described in the previous subsection.

To recommend items for a given user, we use “Average pooling”. A vector is computed
representing the user’s taste. This vector depends on the user’s transactions’ history. In our
model, this user representative vector is computed using average pooling on vectors of
the items that are present in this user’s transactions’ history, as in (8). The user’s vector
adequately represents the user’s taste as it is placed in a middle ground between the
different items that this user purchased.

Vecuser =
1
T

T

∑
t=1

itemvect, (8)

where

• itemvec is the vector of the item.
• T is the number of items in the user’s history.

Next, recommendations for items are performed by obtaining the items that are close
to the user’s vector. This can be obtained by computing the dot product between the user’s
vector and the item’s vector. Then, items that have the largest dot products are returned as
the system’s recommendation. Figure 1 summarizes this method.

Appl. Sci. 2021, 11, 6477 11 of 18

Figure 1. Recommender Systems Average Pooling Method.

4. Evaluation and Results
4.1. Prediction

The proposed models are tested on some of the most popular datasets in the Rec-
ommender Systems field: “MovieLens” [42]: “MovieLens 100 K” and “MovieLens 1 M”.
Moreover, we have also tested the “ModCloth” [43] dataset, which is a sparser dataset.
Sparsity here refers to the fact that each user rated only a small number of items. Further-
more, we evaluated the performance on “Amazon: Magazine_Subscriptions” (Amazon
MS) [44]. This dataset has a relatively small number of reviews/ratings, thus the results
give us insight into how the approaches perform in such cases. Table 1 outlines the different
aspects for each dataset used. For all these datasets, the ratings provided are on a scale
from 1 to 5.

Table 1. Datasets Aspects.

Dataset

Aspect MovieLens 100 K MovieLens 1 M ModCloth Amazon MS

Total number of ratings 100,000 1,000,209 99,893 2375
Number of users 943 6040 44,784 348
Number of items 1682 3706 1020 157

Maximum number of ratings by one user 737 2314 250 30
Minimum number of ratings by one user 20 20 1 3

Mean number of ratings by one user 106 165.6 2.2 6.8
Median number of ratings by one user 65 96 1 6

For each dataset, we adopted the following experimental procedure:

• Applied 5-fold cross-validation.
• Five experiments were performed such that four folds were used as the training set

and the remaining fifth fold was used as the test set, where in each experiment the
folds were rotated as in the standard K-fold validation procedure.

• The training set consisted of the transactions fed to the vectors’ learning algorithm
where users’ and items’ vectors of dimension 50 were learned for all the used datasets
except the “Amazon MS” dataset where the vector’s dimension is only 10. The ratings
in the given transactions were first normalized by dividing by five before being fed to
the algorithm (so the maximum rating value became 1 and the minimum rating value
became 0.2).

• The test set was the set used for performance evaluation by predicting the rating value
for each transaction in the set. The prediction was performed by calculating the dot
product between the user’s vector and the item’s vector involved in the transaction.
Then, the obtained predicted rating was restored to the original ratings’ scale (for
example by multiplying by 5).

Appl. Sci. 2021, 11, 6477 12 of 18

• For each test set, two evaluation metrics were computed: Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) [45].
RMSE =

√
(1
|Q|)∑(u,i)εQ(rui − r̂ui)2

MAE = 1
|Q| ∑(u,i)εQ |rui − r̂ui|

, where Q is the test set, rui is user u’s true rating given to item i and r̂ui is the predicted
rating of the Recommender System.

• The mean value for each metric RMSE and MAE was computed for all the five folds.
This is the value recorded in the results.

Furthermore, we compared the obtained results with the benchmark methods intro-
duced in [46,47]. These methods are described as follows:

• Singular Value Decomposition (SVD) [48]:
SVD is the matrix factorization technique where the m × n ratings matrix R (that
includes users’ ratings for the items) is factored into three matrices as follows:
R = U.S.VT , where U and V are orthogonal matrices of sizes m × r and n × r
respectively.
r is the rank of the rating matrix R.
S is an r× r diagonal matrix that includes all singular values of matrix R stored in
descending order.
The SVD approach is a kind of dimensionality reduction method and it provides
the best lower rank approximations for the original matrix R. The matrix S can be
reduced to Sk by including only the largest k diagonal values. Consequently, U and
V are reduced, obtaining Rk = Uk·Sk·V′k . For user u and item i, the rating prediction
is computed as the dot product between the u-th row of UkS1/2

k and i-th column of
S1/2

k V′k followed by adding the user average back.
• SVD++ [49]:

This is an extension of the SVD approach, where implicit feedback is incorporated.
An implicit feedback refers to the fact that a user u rated an item i without regard to
the value of the given rating.

• Non-negative Matrix Factorization (NMF) [50]:
This approach is similar to SVD; however, stochastic gradient descent (SGD) is used
for the optimization procedure. SGD is carried out with a specific choice of step size
ensuring the non-negativity of factors given that the factors’ initial values are positive.

• Slope One [51]:
The technique relies on the SlopeOne algorithm, where predictors are used to compute
the average difference between the ratings of one item and another for users who
rated both. The rating prediction is defined as:

ˆrui = µu +
1

card(Ri(u))
∑jεRi(u) dev(i, j)

, where µu is the average of ratings given by user u.
Ri(u) is the set of relevant items: the set of items j rated by user u that also have at
least one common user with i.
card is the number of elements in a set.
dev(i, j) is the average deviation of ratings of items i with respect to items j, given by:

dev(i, j) =
1

card(Uij)
∑uεUij

rui − ruj

• K-Nearest Neighbors (k-NN) [24]:
The predictions of ratings are performed based on the ratings given by the user’s
nearest-neighbors. In such models, known as memory-based models, the stored
ratings are directly used in the prediction process.

• Centered k-NN [24]:
This is a k-NN technique that takes into account the average ratings of each user to
provide a corrective action to the prediction.

Appl. Sci. 2021, 11, 6477 13 of 18

• k-NN Baseline [52]:
This is a k-NN technique that incorporates baseline estimates. These estimates account
for data tendencies such as the likelihood that some users give higher ratings than
other users or that some items receive higher ratings than other items.

• Co-Clustering [53]:
Clusters are built simultaneously for users and items. The predictions are based on
the average ratings of the co-clusters (user–item neighborhoods). Formally, rating
prediction is given as:
ˆrui = Cui + (µu − Cu) + (µi − Ci)

, where Cui is the average rating of co-cluster Cui for user u and item i.
Cu is the average rating of user u’s cluster.
Ci is the average rating of item i’s cluster.

• Baseline [52]:
In this technique, a simple baseline estimate is computed for the rating predictions,
taking into account the aforementioned data tendencies. Formally, rating prediction is
defined as:
ˆrui = bui = µ + bu + bi

, where µ is the overall average rating.
Parameters bu and bi are determined by solving a least squares problem.

Table 2 shows the errors of the proposed models as well as the competing approaches,
using the five fold validation test. Missing entries mean that the system crashed and was
not able to produce any results.

Table 2. Prediction Recommender Systems Results.

MovieLens 100 K MovieLens 1 M ModCloth Amazon MS

Approach RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Sphere (our proposed method) 0.923 0.738 0.857 0.684 1.165 0.783 1.03 0.605
SVD 0.934 0.737 0.873 0.686 1.056 0.828 0.971 0.724

SVD++ 0.92 0.722 0.862 0.673 1.06 0.829 0.941 0.689
NMF 0.963 0.758 0.916 0.724 1.2 0.948 1.035 0.759

Slope One 0.946 0.743 0.907 0.715 1.150 0.87 0.996 0.637
k-NN 0.98 0.774 0.923 0.727 - - 1.156 0.771

Centered k-NN 0.951 0.749 0.929 0.738 - - 0.958 0.611
k-NN Baseline 0.931 0.733 0.895 0.706 - - 1.038 0.699
Co-Clustering 0.963 0.753 0.915 0.717 1.137 0.856 0.986 0.619

Baseline 0.944 0.748 0.909 0.719 1.041 0.82 1.002 0.766
Random 1.514 1.215 1.504 1.206 1.398 1.06 1.437 1.059

From Table 2, one can observe that among a total of 11 methods, our approach
obtained the best RMSE for the MovieLens 1 M dataset, the second best RMSE (0.923)
for the MovieLens 100 K dataset (being very close to the best RMSE (0.92) obtained by
the SVD++ method) and the best MAE for ModCloth and Amazon MS datasets. Overall,
the best two models are our proposed Sphere model and SVD++. We suggest these models
be the candidates to be tested when designing a recommender system and possibly using
these approaches in a hybrid model.

One can observe that all the approaches produced higher errors for the ModCloth
dataset. This is due to the fact that ModCloth is a sparser dataset. It has many fewer
reviews per user than the other datasets. Another point worth mentioning is that for all
KNN-based algorithms, the RAM (12 GB) crashed while running for ModCloth dataset,
that is, such algorithms consume huge memory sizes and do not scale well when increasing
the number of users as in this dataset. Furthermore, our algorithm converges in a relatively
low number of cycles. The average number of cycles are 10, 23, 11 and 7 for MovieLens
100 K, MovieLens 1 M, ModCloth and Amazon MS datasets, respectively. The algorithm’s
computational complexity is detailed in Appendix A.

Our algorithm possesses other benefits as well. It does not suffer as much as SVD++
and k-NN from memory problems. In the latter two approaches, a huge user–item ratings

Appl. Sci. 2021, 11, 6477 14 of 18

matrix has to be stored, even though it is sparse. In our approach, in contrast, only the user–
item review pairs have to be stored and used in the algorithm, which provides memory
savings. Another advantage is that our algorithm is incremental in nature. So it can add
any extra user or item without having to retrain the entire vectors’ space. For example, it
can begin the retraining process from the previous state of the vectors instead of starting
with random vectors and retraining entirely from scratch. This incremental feature may
be lacking in the SVD-type methods and it is not clear how one can start from a previous
solution if extra data arrive.

However, the major advantage of our approach is its versatility. One can add user–user
and item–item similarities to the existing user–item similarities. This makes the approach
more general and allows us to add content-based, demographic and other similarities to
create one large model that takes into account all available information. On the other hand,
a model such as SVD is designed to handle only user–item similarities.

4.2. Recommendation

For the recommendation problem we used the “Online Retail” dataset [54] as a case
study. This dataset includes customers’ transactions for an online retailer that focuses
on selling all-occasion gifts. These transactions occurred between 1 December 2010 and
9 December 2011. The dataset contains 541,909 instances where each instance has the
following attributes:

• InvoiceNo: invoice number, which is a unique number identifying each transaction.
• StockCode: item/product code, which is a unique number identifying each prod-

uct/item.
• Description: item/product descriptive name.
• Quantity: quantity of item/product per transaction.
• InvoiceDate: day and time of transaction.
• UnitPrice: price of item/product.
• CustomerID: customer number, which is a unique number identifying each customer.
• Country: country where customer resides.

We parsed the data to obtain the unique customers, there was a total of 4372 customers.
Next, we divided the data into training and test sets where 80% and 20% of the customers
constituted the training and test sets, respectively. The training set was used to provide
input to the proposed item embedding algorithm where the items’ vectors of dimension
20 were learned. After obtaining vectors for items, we recommended items for customers.
For testing, the most recent transaction(s) of each customer were excluded from any
computations in order to be used for assessment. These transactions were not regarded as
part of the customer’s history but were regarded as the customer’s future transactions to be
compared against the recommended items by the system. The number of such transactions
was taken as one (i.e., the most recent customer’s transaction) in one experiment, and two
(i.e., the most recent two customer’s transactions) in another experiment. These numbers
were chosen as indicated in this dataset. The number of transactions per customer had an
average of seven and a median of four. Finally, to assess the performance, the items in the
excluded transactions were compared with the recommended items to determine the hit
rate, which is defined as:

HitRate = ∑cεC HitRatec

C
, (9)

where

• HitRatec equals 1 if there is a hit for customer c and 0 otherwise. A hit is determined
when at least one item in the set of recommended items matches one of the items in
the true most recent transaction(s) of customer c.

• C is the total number of customers in the test set.

Moreover, we built another model that learns vectors (also of dimension 20) for items
using the word2vec embedding approach [16]. This model was trained such that the

Appl. Sci. 2021, 11, 6477 15 of 18

customer’s transaction was regarded as the sentence while the item was regarded as the
word. Therefore, the customers’ transactions were fed to the model the same way sentences
were fed during training word2vec on text corpora. The aim of building such a model was
to compare the performance of the two models: using our sphere embedding approach
and using the word2vec embedding approach. We performed a number of experiments
changing k, which represents the number of items to recommend. Table 3 shows the
performance (hit rate) of both models (larger numbers mean better recommendation).

Table 3. The Hit Rate of the Recommendation Results for the Proposed Sphere Model and Word2vec.

k = 1 k = 5 k = 10 k = 15 k = 20

Sphere (our approach)

Future Transactions = 1 0.186 0.435 0.524 0.602 0.665
Future Transactions = 2 0.268 0.544 0.639 0.704 0.756

word2vec

Future Transactions = 1 0.098 0.306 0.447 0.516 0.573
Future Transactions = 2 0.14 0.404 0.549 0.626 0.685

From Table 3, the following observations can be stated:

• As k increases, the “HitRate” increases, because there would be more chance that the
user’s purchase is included in the recommended basket of items.

• Our approach outperforms word2vec for all k values.

A point that is worth mentioning is that, when using the word2vec approach, the
user’s positive taste can be represented, but not the user’s negative taste. This is because
vectors are learned for items in the users’ history transactions. The question here is how
such model can represent the user’s negative taste, that is, the items that the user marks as
uninteresting or marks as a dislike. This negative taste also plays a great role in the items to
be recommended. The word2vec model has no way to link the user’s positive and negative
tastes in one comprehensive model. On the other hand, our model can represent this
negative taste since the learned vectors for items are embedded on the sphere. The polar
nature of the sphere allows the placement of the uninteresting or disliked items at opposite
poles of the sphere. Therefore, our model can comprehensively represent positive as well
as negative tastes.

The word2vec possesses another serious limitation. It is applicable to the “Recom-
mendation” problem only. This is because it is designed to be trained on context data. This
means that it is given a number of items in a basket of purchases (or a number of words
in a sentence) and it is trained to predict an item in the group (or a word in the midst of
the sentence). This makes it difficult to use for the “Prediction” problem, analyzed in the
previous subsection.

5. Conclusions

This work tackles a new field of items/users embeddings where vectors are learned
for items/users as opposed to words. We develop new models for recommender systems
that are based on embedding items/users as vectors on a sphere. The method is a simple
relaxation algorithm where representative vectors are learned. These vectors encode the
underlying features for items/users. The developed approach is applicable to different for-
mulations of Recommender Systems, and in particular is tested on the “prediction” and the
“recommendation” problems. Moreover, the approach can model a number of interactions
including item to item, user to item and user to user. The proposed approach can also in-
clude content-based and demographic similarities, which are typically hard to incorporate
in a model. The generality of using any target similarity can open the door for other types,
including using other input domains such as textual reviews, browsing patterns, and so
forth. These topics have experienced little application in recommender systems and could

Appl. Sci. 2021, 11, 6477 16 of 18

be promising to consider. The proposed models are successfully applied to real life datasets
including “MovieLens”, “ModCloth”, “Amazon: Magazine_Subscriptions” and “Online
Retail” as case studies, and they show competitive results. Moreover, the diversity of the
used datasets (dense vs sparse and large number of ratings vs small number of ratings)
provides an analytical insight into the performance of different recommender systems’
approaches.

Author Contributions: Conceptualization, S.R. and A.F.A.; methodology, S.R., A.F.A. and S.S.;
software, S.R.; validation, S.R; formal analysis, S.R., A.F.A., and S.S.; investigation, S.R., A.F.A.,
and S.S; resources, S.R.; data curation, S.R.; writing—original draft preparation, S.R.; writing—review
and editing, S.R. and A.F.A.; visualization, S.R.; supervision, A.F.A. and S.S.; project administration,
A.F.A. and S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Complexity Analysis

Let N be the number of vectors (number of users plus the number of items). Also,
let M be the dimension of the vector and let R be the average number of ratings per user
(or average number of ratings per item if we are dealing with items). The computations
involve the following for the basic method:

(a) Computing the matrix A according to Equation (4): The complexity is O(M2R).
Note that the summation is over existing ratings for user i, rather than over all items,
so it is not a large summation.

(b) Computation of b according to Equation (5) is O(MR).
(c) Computation of Equation (3) is O(M3).
(d) Computation of λ through the bisection search is O(M3B), where B is the number

of bisection search steps. Typically B is around 20.
(e) Each of these computations is repeated N times (the total number of vectors or users

and items).
(f) Typically N is very large (several thousands), while M, the dimension of each vector

is usually small (we take it as 10, 20 or 50). Using this fact and retaining only the
largest terms, we get the amount of computation per cycle as approximately equal
to O(NM2R + NM3B).

(g) The term N × R (number of users times number of ratings per user plus number
of items times number of ratings per item) is essentially twice the total number
of ratings (twice because we count that from the users’ side and also from the
items’ side).

(h) So the total complexity per cycle is O(KM2 + NM3B) where K is the total number
of ratings.

(i) We have also implemented an accelerated version of the part that searches and
computes λ using eigenvalue decomposition. This relieves us from solving the linear
equations B times. The complexity of the λ search using bisection becomes O(NM3)
instead of O(NM3B) per cycle, i.e., better than the previous basic algorithm. So the
total complexity per cycle becomes O(KM2 + NM3). The details are not given here
to avoid distraction to algorithmic issues.

(j) For the off-line algorithm, i.e., applying the algorithm from scratch to train all vectors
the complexity equals the preceding times the number of cycles C, i.e., O(CKM2 +
CNM3). Typically C is around 10 to 20. For the update phase, i.e receiving an extra
rating or user and hence implementing only one cycle, the complexity becomes
O(M2R + M3) (for the eigenvalue λ search method).

(k) The terms C, M, and B in the complexity formula are usually small, e.g., 10 to
50. The only impactful terms are K (the total number of ratings) and N (the total
number of users plus items). These can for example be 100,000 or a million. What

Appl. Sci. 2021, 11, 6477 17 of 18

is important in the complexity analysis is that these terms (i.e., the K and the N)
turned out to appear as linear terms, not more.

References
1. Ortega, F.; González-Prieto, Á. Recommender Systems and Collaborative Filtering. Appl. Sci. 2020, 10, 7050. [CrossRef]
2. Fayyaz, Z.; Ebrahimian, M.; Nawara, D.; Ibrahim, A.; Kashef, R. Recommendation Systems: Algorithms, Challenges, Metrics, and

Business Opportunities. Appl. Sci. 2020, 10, 7748. [CrossRef]
3. Ricci, F.; Rokach, L.; Shapira, B. Recommender systems: Introduction and challenges. In Recommender Systems Handbook; Springer:

Boston, MA, USA, 2015; pp. 1–34.
4. Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-based collaborative filtering recommendation algorithms. In Proceedings of the

10th International Conference on World Wide Web, Hong Kong, China, 1–5 May 2001; pp. 285–295.
5. Sohail, S.S.; Siddiqui, J.; Ali, R. Classifications of Recommender Systems: A review. J. Eng. Sci. Technol. Rev. 2017, 10, 132–15 .

[CrossRef]
6. Isinkaye, F.O.; Folajimi, Y.; Ojokoh, B.A. Recommendation systems: Principles, methods and evaluation. Egypt. Inform. J. 2015,

16, 261–273. [CrossRef]
7. Gómez-Pulido, J.A.; Durán-Domínguez, A.; Pajuelo-Holguera, F. Optimizing Latent Factors and Collaborative Filtering for

Students’ Performance Prediction. Appl. Sci. 2020, 10, 5601. [CrossRef]
8. Yang, Z.; Wu, B.; Zheng, K.; Wang, X.; Lei, L. A survey of collaborative filtering-based recommender systems for mobile internet

applications. IEEE Access 2016, 4, 3273–3287. [CrossRef]
9. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput.

Surv. 2019, 52, 1–38. [CrossRef]
10. Bobadilla, J.; Alonso, S.; Hernando, A. Deep Learning Architecture for Collaborative Filtering Recommender Systems. Appl. Sci.

2020, 10, 2441. [CrossRef]
11. Shafqat, W.; Byun, Y.C.; Park, N. Effectiveness of Machine Learning Approaches Towards Credibility Assessment of Crowdfund-

ing Projects for Reliable Recommendations. Appl. Sci. 2020, 10, 9062. [CrossRef]
12. Shafqat, W.; Byun, Y.C. Incorporating Similarity Measures to Optimize Graph Convolutional Neural Networks for Product

Recommendation. Appl. Sci. 2021, 11, 1366. [CrossRef]
13. Sulikowski, P.; Zdziebko, T. Horizontal vs. Vertical Recommendation Zones Evaluation Using Behavior Tracking. Appl. Sci. 2021,

11, 56. [CrossRef]
14. sulikowski, P.; Zdziebko, T.; Coussement, K.; Dyczkowski, K.; Kluza, K.; Sachpazidu-Wójcicka, K. Gaze and Event Tracking for

Evaluation of Recommendation-Driven Purchase. Sensors 2021, 21, 1381. [CrossRef]
15. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,

arXiv:1301.3781.
16. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their

compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems—Volume 2
(NIPS’13), Lake Tahoe, NV, USA, 5–8 December 2013; Curran Associates Inc.: Red Hook, NY, USA, 2013; pp. 3111–3119.

17. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [CrossRef]
18. Yang, X.; Guo, Y.; Liu, Y.; Steck, H. A survey of collaborative filtering based social recommender systems. Comput. Commun. 2014,

41, 1–10. [CrossRef]
19. Girase, S.; Mukhopadhyay, D. Role of matrix factorization model in collaborative filtering algorithm: A survey. arXiv 2015,

arXiv:1503.07475.
20. Ma, H.; Zhou, D.; Liu, C.; Lyu, M.R.; King, I. Recommender systems with social regularization. In Proceedings of the Fourth

ACM International Conference on Web Search and Data Mining, Hong Kong, China, 9–12 February 2011; pp. 287–296.
21. Guan, X.; Li, C.T.; Guan, Y. Matrix factorization with rating completion: An enhanced SVD model for collaborative filtering

recommender systems. IEEE Access 2017, 5, 27668–27678. [CrossRef]
22. Mitroi, B.; Frasincar, F. An elastic net regularized matrix factorization technique for recommender systems. In Proceedings of the

35th Annual ACM Symposium on Applied Computing, Brno, Czech Republic, 30 May–3 April 2020; pp. 2184–2192.
23. Melville, P.; Sindhwani, V. Recommender systems. Encycl. Mach. Learn. 2010, 1, 829–838.
24. Desrosiers, C.; Karypis, G. A comprehensive survey of neighborhood-based recommendation methods. In Recommender Systems

Handbook; Springer: Boston, MA, USA, 2011; pp. 107–144.
25. Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender systems survey. Knowl.-Based Syst. 2013, 46, 109–132.

[CrossRef]
26. Martín-Vicente, M.I.; Gil-Solla, A.; Ramos-Cabrer, M.; Pazos-Arias, J.J.; Blanco-Fernández, Y.; López-Nores, M. A semantic

approach to improve neighborhood formation in collaborative recommender systems. Expert Syst. Appl. 2014, 41, 7776–7788.
[CrossRef]

27. Subramaniyaswamy, V.; Logesh, R. Adaptive KNN based recommender system through mining of user preferences. Wirel. Pers.
Commun. 2017, 97, 2229–2247. [CrossRef]

http://doi.org/10.3390/app10207050
http://dx.doi.org/10.3390/app10217748
http://dx.doi.org/10.25103/jestr.104.18
http://dx.doi.org/10.1016/j.eij.2015.06.005
http://dx.doi.org/10.3390/app10165601
http://dx.doi.org/10.1109/ACCESS.2016.2573314
http://dx.doi.org/10.1145/3285029
http://dx.doi.org/10.3390/app10072441
http://dx.doi.org/10.3390/app10249062
http://dx.doi.org/10.3390/app11041366
http://dx.doi.org/10.3390/app11010056
http://dx.doi.org/10.3390/s21041381
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1016/j.comcom.2013.06.009
http://dx.doi.org/10.1109/ACCESS.2017.2772226
http://dx.doi.org/10.1016/j.knosys.2013.03.012
http://dx.doi.org/10.1016/j.eswa.2014.06.038
http://dx.doi.org/10.1007/s11277-017-4605-5

Appl. Sci. 2021, 11, 6477 18 of 18

28. Ayyaz, S.; Qamar, U. Improving collaborative filtering by selecting an effective user neighborhood for recommender systems. In
Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22–25 March 2017;
pp. 1244–1249.

29. Akama, S.; Kudo, Y.; Murai, T. Neighbor Selection for User-Based Collaborative Filtering Using Covering-Based Rough Sets. In
Topics in Rough Set Theory. Intelligent Systems Reference Library; Springer: Cham, Switzerland, 2020; Volume 168, pp. 141–159.

30. Gutiérrez, L.; Keith, B. A systematic literature review on word embeddings. In International Conference on Software Process
Improvement; Springer: Cham, Switzerland, 2018; pp. 132–141.

31. Grbovic, M.; Radosavljevic, V.; Djuric, N.; Bhamidipati, N.; Savla, J.; Bhagwan, V.; Sharp, D. E-commerce in your inbox: Product
recommendations at scale. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Sydney, NSW, Australia, 10–13 August, 2015; pp. 1809–1818.

32. Vasile, F.; Smirnova, E.; Conneau, A. Meta-prod2vec: Product embeddings using side-information for recommendation. In
Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 225–232.

33. Liang, D.; Altosaar, J.; Charlin, L.; Blei, D.M. Factorization meets the item embedding: Regularizing matrix factorization with
item co-occurrence. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September
2016; pp. 59–66.

34. Ozsoy, M.G. From word embeddings to item recommendation. arXiv 2016, arXiv:1601.01356.
35. Krishnamurthy, B.; Puri, N.; Goel, R. Learning vector-space representations of items for recommendations using word embedding

models. Procedia Comput. Sci. 2016, 80, 2205–2210. [CrossRef]
36. Pennington, J.; Socher, R.; Manning, C. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October, 2014; pp. 1532–1543.
37. Barkan, O.; Koenigstein, N. Item2vec: Neural item embedding for collaborative filtering. In Proceedings of the 2016 IEEE 26th

International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, Italy, 13–16 September 2016; pp. 1–6.
38. Yang, Z.; He, J.; He, S. A collaborative filtering method based on forgetting theory and neural item embedding. In Proceedings of

the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China,
24–26 May 2019; pp. 1606–1610.

39. Lu, N.; Ohsawa, Y.; Hayashi, T. Learning Sequential Behavior for Next-Item Prediction. In Proceedings of the Annual Conference
of JSAI 33rd Annual Conference, Niigata, Japan, 4–7 June 2019; p. 3B4E203._3B4E203. [CrossRef]

40. Barkan, O.; Caciularu, A.; Katz, O.; Koenigstein, N. Attentive Item2vec: Neural attentive user representations. In Proceedings of
the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain,
4–8 May 2020; pp. 3377–3381.

41. Rizkallah, S.; Atiya, A.F.; Shaheen, S. A Polarity Capturing Sphere for Word to Vector Representation. Appl. Sci. 2020, 10, 4386.
[CrossRef]

42. Harper, F.M.; Konstan, J.A. The movielens datasets: History and context. Acm Trans. Interact. Intell. Syst. 2015, 5, 1–19. [CrossRef]
43. Wan, M.; Ni, J.; Misra, R.; McAuley, J. Addressing marketing bias in product recommendations. In Proceedings of the 13th

International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 February, 2020; pp. 618–626.
44. Ni, J.; Li, J.; McAuley, J. Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November, 2019; pp. 188–197.

45. Chen, M.; Liu, P. Performance Evaluation of Recommender Systems. Int. J. Perform. Eng. 2017, 13. [CrossRef]
46. Hug, N. Surprise: A python library for recommender systems. J. Open Source Softw. 2020, 5, 2174. [CrossRef]
47. Surprise. Available online: https://github.com/NicolasHug/Surprise (accessed on 29 January 2021).
48. Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Application of Dimensionality Reduction in Recommender System A Case study; Technical

Report; Minnesota Univ Minneapolis Dept of Computer Science: Minneapolis, MN, USA, 2000.
49. Kumar, R.; Verma, B.; Rastogi, S.S. Social popularity based SVD++ recommender system. Int. J. Comput. Appl. 2014, 87, 33–37

[CrossRef]
50. Luo, X.; Zhou, M.; Xia, Y.; Zhu, Q. An efficient non-negative matrix-factorization-based approach to collaborative filtering for

recommender systems. IEEE Trans. Ind. Inform. 2014, 10, 1273–1284.
51. Lemire, D.; Maclachlan, A. Slope one predictors for online rating-based collaborative filtering. In Proceedings of the 2005 SIAM

International Conference on Data Mining, Newport Beach, CA, USA, 21–23 April 2005; pp. 471–475.
52. Koren, Y. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans. Knowl. Discov. Data 2010, 4, 1–24.

[CrossRef]
53. George, T.; Merugu, S. A scalable collaborative filtering framework based on co-clustering. In Proceedings of the Fifth IEEE

International Conference on Data Mining (ICDM’05), Washington, DC, USA, 27–30 November 2005; p. 4.
54. Chen, D.D. Online Retail Dataset. 2015. Available online: https://archive.ics.uci.edu/ml/datasets/online+retail (accessed on 27

August 2020).

http://dx.doi.org/10.1016/j.procs.2016.05.380
http://dx.doi.org/10.11517/pjsai.JSAI2019.0_3B4E203
http://dx.doi.org/10.3390/app10124386
http://dx.doi.org/10.1145/2827872
http://dx.doi.org/10.23940/ijpe.17.08.p7.12461256
http://dx.doi.org/10.21105/joss.02174
https://github.com/NicolasHug/Surprise
http://dx.doi.org/10.5120/15279-4033
http://dx.doi.org/10.1145/1644873.1644874
https://archive.ics.uci.edu/ml/datasets/online+retail

	Introduction
	Related Work
	Matrix Factorization
	Neighborhood-Based Collaborative Filtering
	Word Embedding

	Proposed Approach
	General Approach
	Prediction
	Recommendation

	Evaluation and Results
	Prediction
	Recommendation

	Conclusions
	Complexity Analysis
	References

