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Abstract: The low-carbon economy, as a major trend of global economic development, has been a
widespread concern, which is a rare opportunity to realize the transformation of the economic way in
China. The realization of a low-carbon economy requires improved resource utilization efficiency and
reduced carbon emissions. The reasonable location of logistics nodes is of great significance in the
optimization of a logistics network. This study formulates a double objective function optimization
model of reverse logistics facility location considering the balance between the functional objectives of
the carbon emissions and the benefits. A hybrid multi-objective optimization algorithm that combines
a gravitation algorithm and a particle swarm optimization algorithm is proposed to solve this reverse
logistics facility location model. The mobile phone recycling logistics network in Jilin Province is
applied as the case study to verify the feasibility of the proposed reverse logistics facility location
model and solution method. Analysis and discussion are conducted to monitor the robustness of the
results. The results prove that this approach provides an effective tool to solve the multi-objective
optimization problem of reverse logistics location.

Keywords: reverse logistics location; optimization; energy consumption; benefits; modelling

1. Introduction

China is the world’s most populous country, with a population of more than 1.41 bil-
lion as of 2021. At present, the academic circles have extensive discussions on the resource
utilization of waste products, and the research on the reverse logistics of waste products
is gradually being carried out with the continuous extension from both the academic
world and industries in recent years [1,2]. According to the findings of Rogers and Tibben-
Lembke, the total logistics cost amounted to USD 862 billion in 1997, and the total cost
spent in reverse logistics is enormous and amounted to approximately USD 35 billion,
which was around 4% of the total logistics cost in the same year [3]. The concerns about
energy saving, green legislation and green manufacturing are increasing [4].

The concept of reverse logistics was put forward by Stock in the 1990s, which aims
at high efficiency and environmental protection and which maximizes the application
value of products by optimizing the operation structure [4]. With the ever-rising needs
of reverse logistics, firms possessing optimal planning of return routes, inventory and
warehouse layouts for returned products are more competitive than the others. Reverse
logistics has changed the original resource flow mode, and the single logistics system has

Appl. Sci. 2021, 11, 6466. https://doi.org/10.3390/app11146466 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11146466
https://doi.org/10.3390/app11146466
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11146466
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11146466?type=check_update&version=2


Appl. Sci. 2021, 11, 6466 2 of 25

evolved into a closed-loop system because of the participation of reverse logistics. Reverse
logistics, including product return, maintenance, remanufacturing, waste disposal and
other processes, is the mirror reverse process of traditional logistics. The purpose of this
method is to extract and utilize the value in the waste repeatedly and to improve the
production chain [5]. Regarding distribution paths, the routing and scheduling of reverse
logistics are more complex than those of forward logistics. The routing of reverse logistics
starts from the designated regional distribution center to the centralized return center and
then to manufacturers for remanufacturing or to manufacturers directly without passing
through the centralized return center. Due to the uncertainty of return quantities, the
physical flow channel is more complicated than that in forward logistics. Since different
areas have various product return rates, the locations of collection points can significantly
affect the efficiency of recycling [3].

A series of systemic theoretical explorations and literature reports for reverse logis-
tics location have been investigated in recent years [5,6]. For example, Savaskan et al.
established a decentralized decision system with three schemes and concluded that the
agent nearest to the customer is the best one to undertake product recycling [7]. Park
et al. analyzed the influences of different subjects on recycling price and profit and built
a closed-loop supply chain model with a single recycling channel [8]. Liu et al. investi-
gated the competition between formal recycling channels and the informal, concluding
that high-quality recycled products were more attractive to the two recycling channels,
while the non-normal recycling channels were willing to recycle at a higher price [9]. Tas-
birul et al. estimated the economic value generated in the recycling logistics of electronic
waste gas based on the sales inventory life model and provided suggestions for decision
makers [10]. In addition, construction of a reverse logistics model is an important part
of the research on reverse logistics location. Shih et al. studied the recycling model of
waste household appliances with the aim of minimizing the recycling cost and analyzed
the influence of recovery rate and storage state on the recycling network [11]. Lee et al.
built a two-stage recycling model and carried out an entry study on the problem of uncer-
tain recycling quantity [12]. To solve the multi-objective optimization problem of reverse
logistics location, some evolutionary algorithms have been applied, e.g., the ant colony
algorithm [13], simulated annealing algorithm [14], particle swarm optimization [15] and
the genetic algorithm [16].

In summary, most of the existing research literature starts from cost recovery or
benefit recovery and takes the maximum benefit or minimum cost as the objective function.
However, economic benefit is only one of the benefits of reverse logistics, and how to use
recycling behavior to produce considerable environmental benefits cannot be ignored. It
is contrary to the original intention of the circular economy to take economic benefit as a
single goal. Thus, it is necessary to take energy consumption or other indicators that can
reflect the utilization of resources into consideration and to consider the balance between
each indicator and the profit of each objective. In addition, how to efficiently achieve
optimal design under multiple factors and objective functions has become a significant
research topic and can be regarded as a typical multi-objective optimization problem.

This paper formulates a double objective function optimization model of reverse
logistics facility location considering the symmetry among the functional objectives of
the carbon emissions and benefits. A hybrid multi-objective optimization algorithm that
combines a gravitation algorithm and a particle swarm optimization algorithm is proposed
to solve this reverse logistics facility location model. Subsequently, an empirical case
of a mobile phone recycling logistics network in Jilin Province is applied to verify the
feasibility of the proposed reverse logistics facility location model and the multi-objective
optimization method. Analysis and discussion are conducted to monitor the robustness of
the results.

The paper is organized as follows: Section 2 introduces a reverse logistics facility
location model with the functional objectives of addressing carbon emissions and the
resulting benefits. In Section 3, we develop a hybrid multi-objective optimization algorithm,
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combining the theories of the gravitation algorithm and the particle swarm optimization
algorithm. An empirical case of the mobile phone recycling logistics network in Jilin
Province is applied to verify the effectiveness of the model and solution methodology in
Section 4. Analysis and discussion are conducted in Section 4. Finally, the conclusions of
this paper are drawn in Section 5.

2. Reverse Logistics Facility Location Model
2.1. Problem Description
2.1.1. Assumptions

To make the model easy to quantify and to make the optimization algorithm convenient
to process, the following assumptions are made for the waste product recycling network:

Assumption 1. Recyclers work with product sellers, so there is no need to build another collection
point. Product sales points of each city are recycling points. This model is a simulation of waste
product recycling in a province, so the recycling logistics in the city are not considered. That is, the
logistics costs from the consumer to recycling points are ignored.

Assumption 2. It is possible for a city to build both storage points and specialized treatment plants,
and the recycling plant has the capacity to dispose of dismantled waste, so there is no need to build
another waste treatment plant. The value products obtained through professional processing are
sold separately, so the outflow logistics of the treatment plant are not studied, but only the simple
reverse logistics process is studied here.

Assumption 3. The whole recycling path of waste products can be roughly described as: recycling
point–storage point–professional disposal point. The recycling operation period is one year, and the
waste products produced during the recycling period will be recycled through this process.

Assumption 4. This paper studies the product recycling treatment in the province, and the default
transportation mode is road transportation. Therefore, the unit transportation cost between each
facility is fixed, and the transportation cost is only related to the distance and transportation volume.

Assumption 5. The fixed costs of building the same facilities should use uniform market prices,
which do not vary from region to region. During the recycling period, no transportation activities
are carried out between logistics facilities with the same function.

Assumption 6. There is a quantitative limit on the amount of recycling accommodated by storage
points and professional disposal points. However, the second-hand product market, component
manufacturers and recycling material recyclers have no demand restriction on the recycled waste
product flowing to them; that is, the amount of recycling of existing products has not reached
market saturation.

Assumption 7. Freight charges between different facilities in the same location are ignored
by default.

Assumption 8. Classified storage points have fixed unit storage costs, and professional disposal
points have fixed operating costs, which are positively correlated with the amount of storage and
processing, respectively.

2.1.2. Model Parameters

• Logistics facility

I is the collection of recycling points, in the model, which is all the cities participating
in product recycling, i ∈ I; P is the set of established detection classification points, p ∈ P;
Pmin and Pmax are respectively the lower limit and upper limit of the number of detection
classification points; D is the set of established collection processing points, d ∈ D; Dmin
and Dmax are respectively the lower limit and upper limit of the number of collection
processing points.
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si is the amount of recycling at the recycling point i; Sp is the amount of storage at
the detection classification point P; Sd is the amount of disposal at the recycling disposal
point d.

lip is the route distance between recycling point i and detection classification point p;
lpd is the route distance between detection classification point p and recycling processing
point d; Mp and Md are respectively the volume limits of the detection classification point
and the recycling processing point. Meanwhile, it is assumed that there is no volume
limit when the product seller acts as the recycling point. Xip and Xpd are respectively
the transportation volume of waste products from the recycling point i to the detection
classification point p and the transportation volume of waste products from the detection
classification point p to the recycling and treatment point d.

• Classification of waste products

According to the availability of waste products, the products are divided into dis-
mountable type c1, recyclable parts type c2, and recyclable parts type c3, and the proportion
of the three types in the total amount of recycled products is l1, l2 and l3. R1 and R2 are
respectively the weight ratio of usable materials of dismountable products and usable
parts and components of recyclable products. r1 is the unit value of disassembled products
after material extraction, and the unit is CNY/kg; r2 is the market value of disassembled
parts of recyclable parts, and the unit is CNY/kg; r3 is the second-hand market value of
products that can be renovated and sold for a second time, and the unit is CNY/unit. W is
the average weight of the product.

• Cost of recycling

Fi, Fp and Fd represent the initial construction costs of the recycling point, detection
classification point and recycling treatment point, respectively, in which the construction
cost of the recycling point is zero or ignored. y represents the transportation cost of waste
products per unit distance per unit quantity, and the unit is CNY/kg·km. In the process of
recycling, Np refers to the cost generated by the processing unit product at the detection
classification point, and the unit is CNY/part. The recycling cost generated by the recycling
point is determined by the type of recycling. The recycling cost for the disassembled
product, the recyclable part and the product sold for the second time that can be repaired
are respectively N1, N2 and N3. The recycling price of waste products is q, and the unit is
CNY/part.

wy represents the carbon emission from waste product transportation per unit distance
per unit quantity; wf represents the carbon emission from waste product processing per
unit quantity at the detection classification center; wn represents carbon emission from
the second refurbishment treatment in the recycling and treatment of waste products per
unit quantity; wl represents carbon emission from the disassembly of recyclable parts in
the recycling and treatment of waste products per unit quantity; wc represents carbon
emission from the fine disassembly in the recycling and treatment of waste products per
unit quantity; wo represents carbon emission from waste disposal of waste products per
unit quantity.

• Decision variable

Rp is the variable 0 or 1, indicating whether the detection classification point is es-
tablished in city p. If it is 1, it means that this point is selected as the classification point;
if it is 0, it means that no classification point has been established at this point. Rd is a
variable of 0 or 1, indicating whether a recycling processing point is established in city d. If
it is 1, it means that this point is selected as the processing point; if it is 0, no processing
point is established at this point. Xip is the quantity of waste products transported from
recycling point i to detection classification point p, and Xpd is the quantity of waste products
transported from detection classification point p to recycling and processing point d.
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2.2. Target Function of Considering Carbon Emission
2.2.1. Carbon Emission Cost Calculation

The purpose of reverse logistics is to save energy and reduce emissions. In the
research boom of the low-carbon economy and green logistics, greenhouse gas emissions
have always been the focus of attention [17–19], and the setting of logistics nodes is closely
related to carbon emissions. How to integrate the idea of emission reduction into the
system design and build a green logistics network plays a practical role. Some results
have been achieved by taking carbon emissions as a function parameter and participating
in the optimization process with a quantitative method [20–24]. Considering the carbon
emission sources of a reverse logistics network, they are mainly divided into transport
carbon emission and carbon emission processing [25].

The carbon emission in logistics transportation includes the indirect or direct carbon
dioxide emission from various substances and vehicles [26]. According to the theory of
energy consumption, vehicle carbon emissions are related to route slope, body weight
and route length [27–29]. There are obvious uncertainties between people and the road
environment, which are treated as deterministic factors in this paper. When the vehicle
itself is used as a means of transport, it is purchased uniformly by the company, and the
factors affecting vehicle carbon emissions such as engine and shape have also been fixed.
Therefore, as long as carbon emissions are under fixed conditions, considering vehicle fuel
consumption is directly linked to vehicle carbon emission quantification. Therefore, it can
be summarized as: carbon emissions = fuel consumption * CO2 emission coefficient [30].
Therefore, transport carbon emissions can be quantified by the carbon emission coefficient
of recycled products per unit distance per unit weight [31]. To be specific, the transportation
is divided into two stages: recycling center to sorting center and sorting center to processing
center, and the carbon emissions are represented by distance and transportation volume.

Waste products also produce carbon emissions in the processing process, and for
different processing processes, carbon emissions are different. The product treatment
process can be divided into classification treatment at the detection classification center,
secondary renovation treatment in recycling treatment, recyclable parts dismantling in re-
cycling treatment, fine dismantling in recycling treatment and waste treatment. According
to the different process carbon emission standards [32,33], the carbon emission of product
recycling process can be obtained.

2.2.2. Establishment of Dual Objective Functions

To minimize carbon emissions and increase recycling benefits, a dual-objective facility
location optimization model constrained by multiple resources, e.g., recycling volume and
recycling facilities, was established [34,35].

Minimum carbon emission is

MinE1 = T1 + T2 (1)

where E1 represents the total carbon emission in the whole recycling process, T1 represents
the carbon emission in the transportation process, and T2 represents the carbon emission
in the treatment process.

For transport carbon emissions:

T1 =
I

∑
i

P

∑
p

Xip · Rp · wy ·W · lip +
P

∑
p

D

∑
d

Xpd · Rp · Rd · wy ·W · lpd (2)

For dealing with carbon emissions:

T2 =
P
∑
p

sp · Rp · wy ·W +
D
∑
d

sd · l3 · Rd · wn +
D
∑
d

sd · l2 · Rd · wl

+
D
∑
d

sd · l1 · Rd · wc +
D
∑
d

sd · Rd · wc ·W · [l1(1− R1) + l2(1− R2)]

(3)
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Maximum recycling benefits are

MaxE2 = c1 − c2 − c3 − c4 (4)

where E2 represents the recovery income net profit of waste products, c1 represents recy-
cling income, and c2 represents the transportation cost of waste products, which is related
to the transportation volume and transportation distance. c3 represents product recovery
cost and processing cost, where the processing cost is related to the processing stage and
has different processing cost standards. c4 represents the construction cost of the detection
classification center and the recycling treatment center.

For recycling income:

c1 =
I

∑
i

si · l3 · r3+
I

∑
i

si · l2 · r2 · R2 ·W +
I

∑
i

si · l1 · r1 · R1 ·W (5)

For transportation costs:

c2 =
I

∑
i

P

∑
p

Xip ·W · lip · q +
P

∑
p

D

∑
d

Xpd ·W · lpd · q (6)

For processing costs:

c3 =
I

∑
i

si · q +
P

∑
p

sp · Np +
D

∑
d

sd · N3 · l3 +
D

∑
d

sd · N2 · l2 +
D

∑
d

sd · N1 · l1 (7)

For the construction cost:

c4 =
P

∑
p

Fp · Rp +
D

∑
d

Fd · Rd (8)

To sum up, the model objective function can be expressed as:

MinE1 = T1 + T2 =
I

∑
i

P

∑
p

Xip · Rp · wy ·W · lip+
P

∑
p

D

∑
d

Xpd · Rp · Rd · wy ·W · lpd

+
P

∑
p

sp · Rp · w f ·W +
D

∑
d

sd · l3 · Rd · wn +
D

∑
d

sd · l2 · Rd · wl

+
D

∑
d

sd · l1 · Rd · wc +
D

∑
d

sd · Rd · wc ·W · [l1 · (1− R1) + l2(1− R2)]

MaxE2 = c1 − c2 − c3 − c4 =
I

∑
i

si · l3 · r3 +
I

∑
i

si · l2 · r2 · R2 ·W +
I

∑
i

si · l1 · r1 · R1 ·W

−
[

I

∑
i

P

∑
p

Xip ·W · lip · q +
P

∑
p

D

∑
d

Xpd ·W · lpd · q +
I

∑
i

si · q

+
P

∑
p

sp · Np +
D

∑
d

sd · N3 · l3 +
D

∑
d

sd · N2 · l2 +
D

∑
d

sd · N1 · l1

+
P

∑
p

Fp · Rp +
D

∑
d

Fd · Rd

]
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• Constraints

Recycling amount of the recycling center is equal to the storage amount of the classification
detection center and is also equal to the processing amount of the recycling treatment center:

I

∑
i

si =
P

∑
p

sp =
D

∑
d

sd (9)

The transport volume from the recycling center to the classification detection center
is equal to the recycling volume of the recycling center; the transport volume from the
classification detection center to the recycling treatment center is equal to the storage
amount of the classification detection center:

I

∑
i

si =
I

∑
i

P

∑
p

Xip · Rp

P

∑
p

sp =
P

∑
p

D

∑
d

Xpd · Rd · Rp (10)

I

∑
i

Xip · Rp ≤ Mp (11)

P

∑
p

Xpd · Rp · Rd ≤ Md (12)

Pmin ≤∑ p ≤ Pmax (13)

Dmin ≤∑ d ≤ Dmax (14)

3. Solution Methodology
3.1. Gravity Algorithm

The gravity algorithm regards the optimal solution set as a space, and the single
solution in the solution set is the scattered particles in this space [36]. These particles are
attracted by each other and produce an aggregation effect. The cleverness of this algorithm
lies in the correlation between the fitness of the solution and the gravity of the object [37].
Additionally, the particle with the lower gravity is attracted to the particle with the higher
gravity. In the end, the space appears to be the result of the particles being clustered in an
optimal position.

Assume that the total number of particles in the gravitational space is N, and the
position of the ith particle is defined as:

Xi =
(

x1
i , x2

i , · · · , xN
i

)
, i = 1, 2, ..., N (15)

where xd
i represents the position of particle i in the d dimension.

Because of gravity, the particles move with varying accelerations, thus renewing their
positions. The particle position update formula is as follows:

vd
i (t + 1) = rand · vd

i (t) + ad
i (t) (16)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (17)

ad
i =

Fd
i (t)

Mii(t)
(18)

where Fd
i represents the sum of the attractive forces on particle i in the d dimension; ad

i (t)
represents the d dimensional acceleration of particle i at time t; Mii(t) represents the inertia
of particle i, and it is proportional to the mass of particles.

In the simplified model, the particle inertial mass can be expressed by the fitness value
of the particle solution. The larger the fitness value is, the larger the inertia mass of the
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particle is, and the smaller the motion acceleration of the particle is, the more stable the
particle position is. The specific formula of particle mass expressed by the solution fitness
value is as follows:

mi(t) =
f iti(t)− worst(t)
best(t)− worst(t)

(19)

where f iti represents the fitness value of the particle solution; worst(t) represents the
minimum fitness value of the solution set, representing the worst particle; best(t) represents
the maximum fitness of the solution set, representing the optimal particle.

The inertia value of the particle can be obtained from the particle mass:

Mii(t) =
mi(t)

N
∑

j=1
mj(t)

(20)

According to the law of universal gravitation, the attraction of a particle is proportional
to its own gravity and the gravity of other particles. Therefore, the core formula of GSA
algorithm—namely, the particle gravity formula—can be obtained:

Fd
i (t) =

N

∑
j=1,j 6=i

rand · Fd
ij (21)

Fd
ij(t) = G(t) ·

Mpt(t)×Maj(t)
Rij(t) + ε

·
(

xd
j (t)− xd

i (t)
)

(22)

G(t) = G0 × e−α t
T (23)

Rij(t) = ‖Xi(t), Xj(t)‖ (24)

where Fd
ij represents the attraction of particle i attracted by particle j in the d dimension

space; G(t) represents gravity constant, which is the correction constant used to calculate
the gravity of particles. Its value decreases with time, indicating that particles tend to be
stable; G0 represents initial gravitational constant; T represents time constant, which refers
to the maximum number of iterations in the algorithm; Rij(t) represents the distance of
particle i and j at time t; α, ε represents the correction constant.

3.2. The Gravitational Particle Swarm Optimization Algorithm

Bringing in the idea of particle swarm optimization algorithm, by combining the
velocity update formula and the universal gravitation algorithm, search speed and accuracy
of the universal gravitation algorithm are improved [38]. Combining the advantages of
both, Ma et al. proposed a novel hybrid optimization algorithm. It can well improve the
algorithm performance [39]. Therefore, altering the core formula of the particle swarm
optimization–particle velocity update formula, the velocity formula applied to universal
gravitation algorithm is obtained.

vd
i (t + 1) = rand · vd

i (t) + c1r1ad
i (t) + c2r2(gbesti(t)− xi(t)) (25)

To balance the two algorithms [40] and to make their respective advantages comple-
mentary to each other, the optimal value operator, pbest, in particle swarm velocity formula
is deleted. In addition, a balance between optimizing in the whole situation and searching
for local optimization is sought. After referring to previous studies [41], the learning factors
c1, c2 in the velocity formula are improved.

c1 = 1− e−η( t
T )

2
(26)

c2 = e−η( t
T )

2
(27)
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where η represents operator constant.
The specific steps of the algorithm are as follows:
Step 1: Initialize the position and velocity of particles.
Step 2: Calculate the fitness values of the particle solution sets.
Step 3: Knowing the position of particles, the initial mass, initial force and initial

acceleration of the particle can be obtained according to the Equations (18)–(24).
Step 4: After arriving at the optimal solution of the particle swarm, it will be considered

as the motor direction of the particle.
Step 5: Update the velocity of particles according to Equations (16), (17) and (26).
Step 6: Judge whether or not the number of iterations or the result of the population

reach the standard. If optimal solution sets were found, stop iterating. If not, go back to
step 2 again.

Step 7: Stop cycling and output the optimal solution sets.

3.3. The Framework of the Proposed Multi-Objective Algorithm

Based on the above improvement of the universal gravitation algorithm, the hybrid
gravitational particle swarm optimization algorithm is obtained. To apply this algorithm
to the multi-objective model, there are five missions that need to be finished: individual
(solution) coding, initial particle swarm formation, adaptive value calculation and Pareto
solution screening, individual update and update of the dominant solution set.

• Coding mode

The coding form of the solution directly affects the efficiency of the algorithm. For
this reason, this paper designs a coding scheme based on multi-constraints, which has
lower decoding complexity and can easily perform mutation and crossover operations.
According to the feature of questions, a solution is coded as an integer value vector, which
contains two pieces of code. One section codes the location of the classification detection
points. The other section codes the location of the recycling and processing center. As
shown in Table 1, section X is the distribution of classification detection centers in urban
agglomeration, and section Y is the distribution of recycling and processing centers in
urban agglomeration. For example, X = {1, 1, 0, 1, 0, 0, 1}, the first element is 1, indicating
that a classification detection center has been established in city 1, and the third element is
0, indicating that no classification detection center has been established in city 3, and so on.

Table 1. Coding scheme.

1 1 0 1 0 0 1 1 0 0 0 1 0 0

X1 X2 X3 X4 X5 X6 X7 y1 y2 y3 y4 y5 y6 y7

• Generate the initial particle swarm

The values of individuals in the initial particle swarm are randomly generated under
multiple constraints. To obtain the initial individual, the particle is set as the length of
individual 2N according to the particle coding mode, where N represents the number
of urban agglomeration. For the constituent elements in an individual, each element
has a state. If the element is a logistics facility setting point, its state is 1. If not, its
state is 0. Usually, as the number of urban points increases, the number of site selection
schemes for logistics facilities will also increase dramatically. Obviously, some of the
site selection schemes generated initially are not feasible; that is, they cannot satisfy
specific constraints. They need to be tweaked, and a common approach is to regenerate
or rebuild. To make the algorithm quickly generate finite solutions and converge to
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feasible solutions, each individual in the initial population is initialized by Algorithm 1.

Algorithm 1. Initial Particle Swarm Generation

Input: NIND (Particle swarm size), N (The number of urban points)
Output: Pop (Initial population)
(1) i = 1;
(2) While i < = NIND Do
(3) Pop (i) = zeros (n*2);
(4) M = unidrnd (N)
(5) While M < Pmin or M > Pmax Do
(6) M = unidrnd (N);
(7) N = unidrnd (N)
(8) While N < Dmin or N > Dmax Do
(9) N = unidrnd (N);
(10) Use above gotten M and N. Choose randomly the city waiting for site selection. And the
corresponding location code of the individual is changed to 1.
(11) i++;
(12) End While.

• Adaptive value calculation and Pareto solution screening

To evolve for the better, the particle swarm must be evaluated by comparing the fitness
value of each individual (site selection scheme). This scheme contains two targets. A site
selection scheme of the model can be decoded for a solution X. Decode X and use the
target formula to calculate the result value of two targets. For the speed and accuracy of
optimizing, the result value is transformed to some extent, and then the fitness value f 1
and f 2 related to the two resulting values are obtained.

After calculating fitness value, the next key mission is searching for the Pareto solution
from the particle swarm. The Pareto optimal solution sets mean that no solution is equal to
or superior to the Pareto optimal solution sets in every objective evaluation. The solutions
are chosen by comparing every target to ensure that they are the Pareto optimal solution.
Algorithm 2 describes how to obtain the Pareto solution by screening all the solutions.

Algorithm 2. Pareto Rank and Crowding Distance Calculation of Particle Swarm Individuals

Input: Pop (swarm)
Output: P (record Pareto rank of the particle swarm); S (record particle crowding distance of the
particle swarm)
(1) Use the target formula to calculate the target value of particle swarm individuals. The
transportation of waste products among logistics facilities is based on the principle of the nearest
point. Only when the destination facility reaches its maximum capacity can they proceed to the
next nearest point. The target value also needs to be transformed through fitness, and two targets
value are transformed the fitness value with the smaller the better.
(2) i = 1
(3) While i < = NIND Do
(4) Initialize P(i) = 0;
(5) For Pop(i), traversal the whole particle swarm. If there is a particle j and a relationship between
its fitness value and fitness value of individual i: f 1(i) > f 1(j) and f 2(i) > f 2(j), Do
(6) P(i)++;
(7) For particle i, use the Euclidean distance between particles to calculate its crowding degree S(i);
(8) End While.

• Individual update

To evolve in an optimal direction for the whole particle swarm, the law of individual
variation is crucial. The improved universal gravitation algorithm brings in the particle
swarm velocity update formula. Figure 1 shows an example in which a particle individual
uses the velocity update formula to finish its own evolution. Additionally, Algorithm 3 de-



Appl. Sci. 2021, 11, 6466 11 of 25

scribes how to obtain the updating solution of the individual particle by velocity updating.

Algorithm 3. Individual Update

Input: Pop, P, S
Output: PopNew (New particle swarm)
(1) i = 1
(2) While i < = NIND Do
(3) Initialize the particle velocity Vi = 0;
(4) Calculate the particle accelerated velocity of individual i through the formula for calculating
the acceleration of gravity.
(5) The superior individuals in the dominant solution set were randomly selected as GBest.
(6) Calculate the velocity Vi of the particle i.
(7) Obtain the new solution of particle i.
(8) i++;
(9) End While.
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According to Figure 1, each individual in the Pop performs evolutionary operations
with Gbest and the direction in which the individual is attracted, and then the new indi-
vidual is created. All the new individuals performed by the evolutionary operations form
a new swarm PopNew. Sometimes evolved individuals may appear to be non-feasible
solutions. Shadow elements evolved new individuals, as shown in Figure 1. For this
reason, some genes are adjusted by Algorithm 4 to satisfy the feasibility of solutions. As
can be seen from Figure 2, the marked seventh and ninth genes in the shadow do not
satisfy feasibility. After adjustment, a feasible new solution individual forms in the end.

Algorithm 4. Feasibility of Correction Solution

Input: Pop(i)
Output: PopNew(i)
(1) M = Find(Pop(i, 1: N) == 1)
(2) If M < Pmin or M > Pmax Do
(3) If M > Pmax, the city point of after reaching the upper limit of the number of classification
points is changed to 0; If M < Pmin, the non-1 city point is randomly selected and changed to 1
until M satisfies the constraint.
(4) M = Find (Pop(i, N + 1: N + N) == 1)
(5) If M < Dmin or M > Dmax Do
(6) If M > Dmax, the city point of after reaching the upper limit of the number of classification
points is changed to 0; If M < Dmin, the non-1 city point is randomly selected and changed to 1
until M satisfies the constraint.
(7) End.
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• Update swarm

The non-dominated sorting algorithm is used to divide the swarm solution into
multiple levels according to its Pareto rank. Meanwhile, an excellent solution set is used
to store the top-level solutions found during the search. In every generation, all the
non-dominated solutions in the current swarm are seen as candidate solutions of the
updating excellent solution set. The Pareto rank of candidate solutions is higher, and
the crowding distance is larger, so the solution is selected more easily and added to the
excellent solution set.

• Improve Gravity multi-objective algorithm flow

The multi-objective algorithm uses the number of maximum iterations gmax as the
termination criterion. That is, when the number of maximum iterations gmax is reached,
output the Pareto solution and terminate the algorithm. Pareto optimality means that
no solution is equal to or superior to the Pareto optimal solution sets in every objective
evaluation. The flow chart of this proposed algorithm is shown in Figure 3.
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4. Case Study
4.1. Background
4.1.1. Description of Basic Situation

A mobile phone recycling enterprise plans to set up a mobile phone recycling logistics
network in Jilin Province. The province is divided into nine mobile phone recycling zones
by cities, as shown in Figure 4. Through the analysis in the previous chapter, the enterprise
takes the mobile phone sellers in each city as the recycling station, making each city own a
recycling station, where the recycling scope can cover most areas of the city. The enterprise
plans to set up testing and classification centers and recycling and processing centers from
the nine recycling zones. In order to meet the demand for recycling, the number of testing
and classification centers needs to be controlled between three and five, and the number of
recycling and processing centers needs to be controlled between two and four.
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1 

 

 
Figure 4. Regional map of Jilin Province.

According to the Jilin Statistical Yearbook 2018, by the end of 2017, the number of
permanent residents in Jilin had reached 27.17 million, where the mobile phone users had
reached 28.69 million, and the per capita number of mobile phones had reached more than
one by the end of 2017, according to data from the Ministry of Industry and Information
Technology. The frequency of mobile phone users replacing their mobile phones is affected
by the upgrading of mobile phones and the contracts of mobile phone operators. Through
market research and analysis, the mainstream mobile phone replacement strategy in the
present mobile phone market is to replace every two years. Combined with data from the
Ministry of Industry and Information Technology, this paper stipulates that each user owns
1.1 mobile phones on average.

From the update speed of mobile phones, nearly half of China’s mobile phones are
facing elimination every year. However, because the market of mobile phone recycling is
not sound yet, the recycling rate of mobile phones has been kept at a low level. According
to investigation, the recovery rate of mobile phones in China is about 1–2%, which is a huge
gap compared with the 30% recovery rate in developed countries. The big gap between
the number of discarded mobile phones and the amount of recycling shows that there is
a lot of room for improvement in China’s mobile phone recycling market. It is believed
that with the development of a mobile phone recycling market, the recycling rate of used
mobile phones will eventually reach a satisfactory level. Taking the reverse logistics facility
established in this paper as an example, its perfect recycling process will greatly improve
the recycling rate of mobile phones, so the preset recycling rate of mobile phones in Jilin
Province would be 20%. Through calculation, the recycling situation of mobile phones in
each city of Jilin Province is obtained, as shown in Table 2.
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Table 2. Recycled mobile phones in Jilin Province in 2017.

City Population
(Ten Thousand)

Mobile Phone Number
(Ten Thousand)

Mobile Phone Obsolescence
(Ten Thousand)

The Recycling Number
(Ten Thousand)

Changchun 748.90 823.79 411.90 82.38
Jilin 415.35 456.89 228.44 45.69

Siping 338.00 371.80 185.90 37.18
Sonyuan 288.00 316.80 158.40 31.68
Tonhua 232.00 255.20 127.60 25.52

Yanbian Korean
Autonomous Prefecture 227.00 249.70 124.85 24.97

Baishan 129.00 141.90 70.95 14.19
Liaoyuan 118.00 129.80 64.90 12.98
Baicheng 190.90 209.99 105.00 21.00

4.1.2. Analysis of Mobile Phone Recycling Value

At present, the recycling value of mobile phones is mainly divided into three parts.
First, popular phones return to the market after cleaning and refurbishing. Second, defec-
tive popular phones are dismantled and sold as parts. Third, after professional processing
and extraction of precious metals, the scrap machine can recover gold, silver, copper, palla-
dium and other precious metals from the waste mobile phone [38]. By comparing popular
phones in the market, it is assumed that the average weight of mobile phones is 125 g/unit,
and the proportion of disassembled mobile phones, recyclable parts mobile phones, re-sold
mobile phones that can be renovated and scrapped by each testing and classification center
is 20%, 30%, 40% and 10%, respectively.

To better measure the recycling value of a mobile phone, the recycling of waste mobile
phones is divided into three levels, which include a refurbishing machine, parts dismantling
machine and material dismantling machine. The parts are divided into two parts: the main
board and the casing. The processing cost and selling price list of the repairable machine
and parts are obtained as shown in Table 3.

Table 3. Part of disposal costs and prices of used mobile phones (unit: CNY/unit).

The Whole
Mobile Phone

Mobile Phone
Motherboard Mobile Phone Shell

Processing cost 60 15 5
Selling price 500 34 20

For the dismantling material, by referring to the data and comparing with the actual
situation, mobile phone motherboards and mobile phone shells accounted for 80% of the
weight and 20% of mobile phone, respectively. The material disassembly ratio of the two
modules is listed as shown in Tables 4 and 5. In addition, the processing cost and selling
price list of various materials can be obtained as shown in Table 6.

Table 4. Material composition of mobile phone motherboard.

Gold Silver Copper Palladium Other metals

0.03% 0.02% 13% 0.01% 86.94%

Table 5. Cell phone shell material composition.

Glass Plastic Metal

46% 20% 34%
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Table 6. Material treatment cost and price (unit: CNY/kg).

Gold Silver Copper Palladium Glass Plastic Metal

Processing cost 41 15 10 36 0.2 1.4 5
Selling price 6002 1300 21 4004 0.5 3.7 12

4.1.3. Analysis of Mobile Phone Recovery Cost

Recycling facilities are divided into three types: recycling station, detection classifica-
tion station and professional processing plant. For the recycling station, we can cooperate
with mobile phone sellers, so the fixed cost can be ignored. As for the detection and
classification station and professional processing factories, China’s mobile phone recycling
is not centralized at present, and the corresponding facilities are rarely built. Based on the
experience of the facility, the following assumptions are obtained.

(1) The initial capital for the construction of a classified storage station is CNY 140,000,
the daily classified storage cost of used mobile phones is 14 CNY/unit, and the fuel
consumption of used mobile phones per unit volume is 41,000 J/kg.

(2) The professional treatment plant needs special equipment and capabilities, so
the initial construction fund is CNY 1.8 million. The unit disposal cost of the recycling
processing station for a scrap treatment part is 7 CNY/unit. Waste fuel consumption per
unit volume of processing is 89,000 J/kg.

(3) The cost per unit distance in the transportation process of used mobile phones is
35 CNY/km·ton. The carbon emission from the transport of used mobile phones per unit
distance per unit quantity is 13 KG/km·kg.

Referring to the prices of mobile phone recyclers such as Huishubao, the recycling price
of used mobile phones mostly fluctuates around CNY 200. In this paper, the purchase price
is set at 200 CNY/unit. In addition, the transportation cost of mobile phone recycling is
related to the transportation distance and the transportation weight as seen above. For this
reason, the route distances between recycling areas in Jilin Province are shown in Table 7.

Table 7. Distance between cities in Jilin Province.

The Distance between
Cities (km)

Chang
Chun

Ji
Lin

Si
Ping

Son
Yuan

Tong
Hua

Yanbian
North Korea

Autonomous Prefecture

Bai
Shan

Liao
Yuan

Bai
Cheng

Changchun 0 122 116 168 264 443 263 112 350
Jilin 122 0 234 279 281 317 262 231 454

Siping 116 234 0 283 259 554 372 83 465
Sonyuan 168 279 283 0 431 578 429 278 191
Tonghua 264 281 259 431 0 479 60 182 614
Yanbian

North Korea
Autonomous prefecture

443 317 554 578 479 0 416 529 760

Baishan 263 262 372 429 60 416 0 254 611
Liaoyuan 112 231 83 278 182 529 254 0 459
Baicheng 350 454 465 191 614 760 611 459 0

Considering the carbon emissions in the transport and processing stages, the carbon
dioxide emission coefficient of gasoline used in the disposal stage is 2.9, while the carbon
dioxide emission coefficient of electric energy used in the processing stage is 0.9. The
carbon emission standard of each type of waste mobile phone is obtained by using the
carbon emission coefficient in the processing stage, as shown in Tables 8 and 9.

Table 8. Carbon emission from partial treatment of mobile phones (kg/unit).

Whole Mobile Phone Mobile Phone Motherboard Mobile Phone Shell

Unit carbon emission 1.9 13 19
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Table 9. Carbon emission from material treatment (kg/unit).

Gold Silver Copper Palladium Glass Plastic Metal

Unit carbon emission 1.04 1.50 2.30 1.28 2.03 1.84 1.63

4.2. Results and Analysis

Given the reverse logistics network model of used mobile phones established in the
above two chapters and aiming at the two objective functions of carbon emission minimiza-
tion and revenue maximization, the improved universal gravitation algorithm was used as
the optimization tool. The method was implemented in Matlab R2014 and ran on a PC with
Intel(R)Core(TM)i5 CPU(2.53GHz/4.00g RAM) with Windows 7 operating system. In this
paper, we set the parameters as follows: gmax = 200, PS = 100 and limit = PS/2. Considering
that the determination of these values is not the primary study task, the specific contents
are not presented in this paper.

4.2.1. Optimization Results

Using the algorithm model, the two objectives of minimum carbon emission and
maximum revenue were considered to be solved separately, and two optimization results
were obtained. Then, the optimal site selection results were obtained by solving the
optimization again for the two objectives.

• Consider only the case where carbon emissions are minimal

After the optimization model of the single object gravitation algorithm, the proposed
algorithm was executed in gmax = 200 generation to achieve full convergence. The minimum
amount of carbon emission was 2,579,108,513 kg, and the evolutionary results are shown
in Figure 5. The optimal location of carbon emission can be obtained in Figure 6.
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Figure 6. Optimal location of carbon emission.

Figure 6 represents the optimal location of carbon emission, in which the solid points
represent the classification and testing centers, and the hollow points represent the recycling
and processing centers. In this figure, the X-axis indicates the longitude of the city, and the
Y-axis indicates the latitude of the city. As shown in Figure 6, the optimal solution is:

1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0

Corresponding the optimal solution to the selected city, the classification and testing
center can be established in Changchun, Jilin, Siping, Tonghua and Baicheng, and the
recycling and processing center can be established in Changchun, Jilin, Siping and Liaoyuan.
Consequently, the carbon emissions of the recycling network can be minimized. The carbon
emissions of each type are shown in Table 10. It can be seen from the table that the transport
carbon emissions account for the largest part of the recycling carbon emissions, accounting
for more than 95%, which reminds us that in the construction of the recycling network,
we should pay more attention to the optimization of the route to reduce the transport
carbon emissions.

Table 10. Table of carbon emission target results.

Carbon Emissions Total Carbon
Emissions,/E1

Transport Carbon
Emissions/T1

Carbon Emissions in
Disposal/T2

Function value (kg) 2,814,143,312.5977 2,792,627,500.00000 21,515,812.5977280

• Consider only the case of maximum benefit

Through the optimization model of the single object gravitation algorithm, the pro-
posed algorithm was executed in gmax = 200 generation to achieve full convergence. The
maximum value of the recovered income was CNY 206,683,179.8. Figure 7 shows the
evolution result of the recovery revenue target. The optimal site selection of recovery
income can be obtained in Figure 8.
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Figure 7. Recovery revenue target evolution results.
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Figure 8. Optimal site selection of recovery income.

Figure 8 represents the optimal site selection of recovery income, in which the solid
points represent the classification and testing centers, and the hollow points represent the
recycling and processing centers. In this figure, the X-axis indicates the longitude of the
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city, and the Y-axis indicates the latitude of the city. As shown in Figure 8, the optimal
solution is:

1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0

Corresponding the optimal solution to the selected city, the classification and testing
center was established in Changchun, Jilin, Songyuan and Baishan, and the recycling and
processing center was established in Jilin and Siping. At this time, the profit value of the
recycling network could reach the maximum. The various benefit/cost values are shown in
Table 11. It can be seen from the table that in the recovery cost, the recovery and processing
cost accounts for the largest part, accounting for more than 90% of the total cost. In order
to save cost and improve revenue, it is necessary to make a breakthrough in the recovery
process. In addition, transportation cost is also a point that needs to be paid attention to.
Reasonable planning of routes can save costs.

Table 11. Revenue Target Results Table (Yuan).

Benefit/Cost Gross
Profit/E1

Recycling
Income/C1

Cost of Trans-
portation/C2

Recovered
Cost/C3

Infrastructure
Costs/C4

Function value 206,683,179.8 619,845,508.3 1,904,908.688 407,097,419.8 4,160,000

• Consider dual targets of carbon emissions and recycling revenue

It can be seen from the single objective analysis above that the carbon emission target
is mainly affected by transportation, so the appropriate increase of classification detection
stations and recycling and processing stations can effectively reduce carbon emissions,
while the recycling income is mainly affected by the processing cost, so the recycling task
can be completed with fewer logistics facilities to get more benefits. To sum up, in order
to achieve the dual goals of maximizing benefits and minimizing carbon emissions, it is
necessary to balance the number and location of logistics facilities. Figure 9 shows the
convergence record of logistics site selection in the process of dual-objective evolution.
It can be seen that after 100 times of evolution, the algorithm completed the balance of
the dual-objective.
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The optimized Pareto solution set is partially shown in Table 12, and its binocular
values are shown in Table 13, where different solutions represent the different selected
cities. Table 14 shows the changes in the selection of classification detection stations and
recycling processing stations.

Table 12. Two-objective partial Pareto solution.

1 1 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0
1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0
1 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

Table 13. Pareto solution target value of the dual target part.

The Ordinal Number of the Pareto Solution Recovery of Benefits (Yuan) Carbon Emission (kg)

1 205,302,443 4,020,005,113
2 205,312,161.2 3,991,128,213
3 205,243,776 4,194,329,913
4 205,246,210.3 4,187,096,713
5 205,204,772.5 5,142,226,213

Average value 205,261,872.6 4,306,957,233

Table 14. Pareto solution of double target city.

Number of Classification Stations Classification Area Number of Processing Stations Processing Area

5 Changchun, Jilin, Siping,
Songyuan, Baishan 3 Changchun, Jilin, Songyuan

5 Changchun, Jilin, Siping,
Songyuan, Tonghua 3 Changchun, Jilin, Songyuan

5 Changchun, Jilin, Siping,
Tonghua, Yanbian 3 Changchun, Jilin, Tonghua

5 Changchun, Jilin, Songyuan,
Tonghua, Liaoyuan 3 Changchun, Songyuan, Liaoyuan

3 Changchun, Songyuan, Baishan 3 Changchun, Songyuan, Baishan

4.2.2. Sensitivity Analysis

In order to test the sensitivity of the improved universal gravitation algorithm to the
parameters of the model, the recovery rate and recovery price were taken as the analysis
quantities. For the recovery rate, four cases of 10% reduction, 5% reduction, 5% increase
and 10% increase were simulated on the basis of the original setting, which were compared
with the original results, as shown in Table 15.

Table 15. Results at different recoveries.

Recovery Rate Carbon Emission
Target (kg) Benefit Targets (Yuan) Multi-Target Carbon

Emissions (Average/kg)
Multiobjective Return

(Average/Yuan)

10% 1,779,132,956.3 103,209,298.6 2,722,906,655 102,499,555.1
15% 1,706,053,659.4 154,269,820.1 2,611,061,105 153,208,946.7
20% 2,814,143,312.6 206,683,179.8 4,306,957,233 205,261,872.6
25% 2,267,799,015.7 257,983,113.5 3,470,794,586 256,209,030.8
30% 3,089,479,168.9 310,472,439.6 4,728,350,043 308,337,401.5

The results show that when the recovery rate decreases, the site selection of recycling
facilities basically remains unchanged. When the recovery rate of each recovery station
increases by 5% and 10%, the possibility of alternative city 6 as the facility site is greatly
increased. Through comparison, it can be seen that once the recovery rate changes, the
site selection of recycling facilities will also change accordingly. However, the existing
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cities that have established logistics facilities have little change, and the main change is the
construction of logistics facilities in remote areas.

To test the sensitivity of the improved gravitation algorithm to the parameters of the
model, the facility capacity was taken as the analysis quantity. According to the facility
capacity, four scenarios of 20% reduction, 40% reduction, 20% increase and 40% increase
were simulated on the basis of the original setting, which were compared with the original
results, as shown in Table 16.

Table 16. Results of different facility capacities.

Facilities Capacity Carbon Emission
Target (kg)

Benefit
Target (CNY)

Multi-Target Carbon
Emissions (Average/kg)

Multi-Objective Benefit
(Average/Yuan)

60% 1,292,562,212.6 203,526,880.0 1,978,225,539 202,127,278.6
80% 1,637,062,212.6 205,222,804.0 2,505,471,881 203,811,540.2

100% 2,814,143,312.6 206,683,179.8 4,306,957,233 205,261,872.6
120% 2,242,048,412.6 206,799,041.6 3,431,384,103 205,376,938.4
140% 2,274,738,212.6 20,703,8051.8 3,481,414,807 205,614,305

The results show that when the capacity of recycling facilities is reduced, the number
of cities with recycling facilities will increase significantly, which brings about the change
of transportation routes. When the capacity of each recycling facility increases by 20%
and 40%, the number of recycling facilities will be reduced and fixed gradually, and
transportation carbon emissions and transportation costs will also have corresponding
changes. In conclusion, although the change of the capacity of recycling facilities will also
have an impact on the site selection of recycling facilities, the recycling benefits will not
have a large fluctuation.

4.2.3. Discussion

Based on the results of Section 4.2, the conclusions can be summarized by stating that
the formulated reverse logistics facility location model and the proposed multi-objective
algorithm are effective for solving the problem of reverse logistics location based on
energy consumption.

To illustrate the advantages of this study, the contributions and significance can be
summarized as follows. From the theoretical viewpoint, a double objective function opti-
mization model of reverse logistics facility location was constructed in which the capacity
of recycling center, classification center, processing center and the transportation volume
between different recycling facilities were taken as constraints, and the two objective func-
tions of low-carbon and maximum revenue were used to optimize the location scheme of
logistics facilities. From the practical viewpoint, the aim of the multi-objective optimization
of reverse logistics location is to put the findings into production and use in daily life.
In addition, this study proposes the solution framework of the multi-objective problem
of reverse logistics location, which can be used in different cities/areas with different
features/constraints.

This study presents an accurate and systematic method/tool to solve the multi-
objective optimization problem of reverse logistics location and can assist researchers
in better comprehending the multi-objective optimization theoretically, as well as assisting
designers in developing a better security system in urban planning.

5. Conclusions

With the deepening of the research on resource reuse, product recycling has attracted
the attention of enterprises and academic researchers. In the research on product recycling,
the research on reverse logistics networks, especially the location of reverse logistics
facilities, has always been the focus. In this paper, energy consumption was taken as a
starting point, the carbon emissions and benefits in the reverse logistics network were
taken as the functional objectives for modeling and optimization, and an improved gravity
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optimization algorithm was used to solve the reverse logistics facility location model,
arriving at an excellent set of location schemes. Considering the influencing factors of
network facilities construction, this paper evaluated the alternatives with multiple indexes,
and made the final choice of facilities location. The main conclusions can be summarized
as follows:

(1) A double objective function optimization model of reverse logistics facility location
was constructed. The three-level recycling facilities of recycling center, classification center
and processing center were combined with the original logistics system of manufacturers,
suppliers and consumers to form a closed-loop logistics system. In order to study the
facility location problem of three-level reverse logistics, the capacity of recycling center,
classification center, processing center and the transportation volume between different
recycling facilities were taken as constraints, and the two objective functions of low-carbon
and maximum revenue were used to optimize the location scheme of logistics facilities.
The carbon emission target was divided into two parts: transportation carbon emission
and treatment carbon emission. According to the different stages of transportation and
treatment, the carbon emission in the process of product recovery was quantified, and the
income was divided into four parts according to the different stages of recovery, and the
total recovery income was calculated, respectively.

(2) The improved universal gravitation algorithm was used to solve the location model
of reverse logistics facilities, and the Pareto set of location scheme was obtained. By com-
bining the optimization characteristics of classical particle swarm optimization algorithm
and universal gravitation algorithm, the two algorithms complemented each other, and
a hybrid particle swarm optimization algorithm with better optimization performance
was obtained. Taking the mobile phone recycling in Jilin Province as an example, it was
proved that the hybrid algorithm has excellent convergence performance, meets the needs
of solving the facility location model, and obtains the optimal solution set satisfying the
double objectives. In addition, the accuracy and stability of the algorithm were verified by
different recovery rate and facility capacity.

In future research, our work will focus on the following: (1) applying additional
effort to real-time advanced methods for selecting Pareto solutions [42–44] and (2) after
noting that the raw data have uncertain and imprecise features, integrating an advanced
optimization method in the model [45,46].
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