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Abstract: This paper presents an infrared pulsed modulator into which quantum cascade lasers
and a current driver are integrated. The main goal of this study was to determine the capabilities
of a new modulator design based on the results of its electrical model simulation and laboratory
experiments. A simulation model is a unique tool because it includes the electrical performance of
the lasing structure, signal wiring, and driving unit. In the laboratory model, a lasing structure was
mounted on the interfacing poles as close to the switching electronics as possible with direct wire
bonding. The radiation pulses and laser biasing voltage were registered to analyze the influence of
laser module impedance. Both simulation and experimental results demonstrated that the quantum
cascade laser (QC laser) design strongly influenced the shape of light, driving current, and biasing
voltage pulses. It is a complex phenomenon depending on the laser construction and many other
factors, e.g., the amplitude and time parameters of the supplying current pulses. However, this work
presents important data to develop or modify numerical models describing QC laser operation. The
integrated modulator provided pulses with a 20–100 ns duration and a frequency of 1 MHz without
any active cooling. The designed modulator ensured the construction of a sensor based on direct laser
absorption spectroscopy, applying the QC laser with spectral characteristics matched to absorption
lines of the detected substances. It can also be used in optical ranging and recognition systems.

Keywords: quantum cascade laser; laser controller; infrared modulator; laser spectroscopy; free
space optics

1. Introduction

Quantum cascade (QC) laser technology is a commonly used radiation source in many
applications that operates in mid-and far-infrared wavelengths [1–3]. These lasers are
mainly used in chemical sensing and spectroscopy, in which low noise and high stability of
both the light power and spectra are required [4,5]. To this application, a special low-noise
current driver and temperature stabilizing unit were constructed [6]. However, these lasers
are also being used in other applications as a result of their features, e.g., high power,
modulation bandwidth, direct current control, compact size, room-temperature operation,
and operation in high transparent spectral ranges of the atmosphere. These features are
important for telecommunication, security, and defense technologies [7,8].

Some research works of the modeling techniques used for a simulation of QC lasers
have been conducted. Their main focus was to describe the physical processes in electron
transport in multiple-quantum-well heterostructures to improve properties for operating
temperature, efficiency, and spectral range [9].

What is more, some electrical equivalent circuits were also developed to simulate the
laser operation, analyzing the laser electrical features and driving electronics. These works
use an emulator of simulating electrical circuits without creating additional mathematical
functions or numerical calculations [10]. It is not so computationally intensive and can be
implemented in lasing structure optimization or an applied-level device.

Although a simulation model of a realistic circuit should consider five rate equations
of quantum wells, three-level or two-level models with certain approximations have been
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used [10–12]. Based on these models, the light-current characteristics of QC laser were
analyzed. These simulations were limited to intensity modulation characteristics for a
different ratio to the threshold current.

However, only a few papers describe a QC laser pulse response [13]. The obtained
results were used to define the influence of different bias currents on the turn-on delay of
the pulse current conversion to the light signal. During described simulations, no model of
the current driving unit was applied. The results verification was based on data from other
circuit models or numerical calculations. These can be critical for some aspects of applied
science in which laser-based systems are analyzed.

QC lasers require a new class of pulse drivers because their operational characteristics
are different from those of a laser diode [14]. These lasers need driving signals (current
and voltage) of an order higher than those of a bipolar diode laser [15]. The high voltage
results from the applied cascade construction, in which the energy of the emitted photons
is multiplied by the number of stages (e.g., 30–50). It can reach 20 V or more. The applied
intersubband transitions are characterized by a lower optical gain than the interband,
requiring high supplying currents. Therefore, the threshold current density of QC lasers
is more than one order higher than that of diode lasers [16]. These features represent a
challenge when constructing a laser driver that can consider both current and voltage. In
these devices, various methods are applied to connect the signals to the QC laser. The most
popular is to design unique signal poles or sockets on the printed circuit board (PCB) to
connect the pins of the laser housing, e.g., butterfly, transistor outline package (TO), high
heat load housing (HHL), and others. However, in a short pulse transmission, the main
issues are impedance matching and inductance minimization. However, the matching
can be impossible, because laser impedance depends on its construction and fabrication,
temperature, or level of driving current [17]. The most critical is its dynamic change during
current switching.

The properties of QC laser modulator radiation are matched to its application. Most
often, they concern a required shape and the power of the emitted light. In the case of gas
sensing devices, the applied laser absorption spectroscopy (LAS) technique determines
the optical signal shape. This shape has a form ranging from a simple pulse to complex
waveforms. For example, a QC laser pulse with a time duration of 500 ns was used in
an intra-pulsed tuned LAS to detect the spectra of nitrogen oxide (NO) and nitrous oxide
(N2O) at around 5.25486 µm and 4.52284 µm, respectively [18]. Shorter pulses are also
used, for example, in cavity-enhanced absorption spectroscopy to detect ammonia (NH3),
with a QC laser emitting 50 ns pulses at 200 kHz frequency around 6.8 µm [19].

More complex optical signals are preferable in a tunable laser absorption spectroscopy
(TLAS). To obtain scanning of an absorption line range, the QC laser spectra are tuned
applying both current ramp signal and high-frequency wave. Many LAS setups use tunable
QC lasers, e.g., direct absorption spectroscopy or wavelength modulation [20]. In these
setups, IR modulators generated the current signal consisting of, for example, a slow ramp
(10 Hz) and a sinusoid (8 kHz) [21].

A high rate of radiation modulation is the primary goal of IR modulator construction
for free-space optics (FSO). Some experimental results with GHz- range modulation of QC
lasers have been described. In those tests, some specific architectures of laser structure were
used [22]. For example, a laser waveguide with a microstrip line ensured a modulation rate
of up to 14 GHz [23]. However, a ‘high speed’ technology of QC lasers is underdeveloped.
The modulation speeds up to 26.5 GHz were obtained using a special design QC laser
placed on a cold finger with continuous-flow liquid nitrogen and driven with bias-tee and
a microwave signal [24].

There are many other applications for which it is important to design a compact and
low-power consumption IR modulator. For example, it could be used as an alarm beacon
with optical signals detected at extended ranges, a jamming device to disorientate an
incoming missile threat, or a light source for beam riding and ranging systems. There are
only a few such devices described in the literature [25]. However, they can work in pulsed
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mode with closed construction, allowing light pulse generation in strictly defined pulse
configurations at the maximum repetition rate of 500 kHz.

This study describes an integrated IR pulsed modulator consisting of a QC laser
structure and a current switching module. It ensured the generation of short light pulses
(tens of ns) with a maximum frequency of 1 MHz, using direct wire bonding of the
lasing structure and the current terminals. Various simulations of this configuration were
performed considering different QC laser electrical parameters. Finally, the preliminary
experiments were performed with the designed modulator. The obtained results provided
experimental verification of, e.g., the influence of both QC laser parameters and the driving
signal interface on the light pulses, determination of the electrical scheme of the QC laser,
and the integrated modulator. In the future, this modulator can be installed in some
standard housings, e.g., HHL, butterfly.

2. QC Compact Laser Modulator Design

A compact laser modulator was built using a laser switching high-speed iC-G30
iCSY HG20M module (iC-House Corporation, Bodenheim, Germany) and a laser structure
designed at the Institute of Electron Technology (Warsaw, Poland) [26,27]. The module
is equipped with six channels, providing a speed of up to 250 MHz, current pulses of up
to 5 A (per channel), and an output voltage of 30 V. Its main capabilities are independent
and simple voltage control of channel currents, parallel channel operation of up to 6 A
(constant mode) and up to 30 A (pulsed mode), and thermal shutdown. The QC laser was
designed to operate at room temperature. Its parameters and construction mean it can be
mounted directly on the signal pole of the laser switching module without the need to use
an extra cooling unit. The optical power and voltage vs. current characteristics of the laser
and a picture of the integrated modulator are presented in Figure 1.

Figure 1. Optical power and voltage vs. current of the mounted QC laser (a) and a picture of the integrated IR modulator (b).

3. Simulations

The pulse operation performances of the laser modulator were analyzed using SPICE
(Simulation Program with Integrated Circuit Emulation) models of the switching module
and the prepared electrical model of the QC laser (LTSpice XVII software ver.17.0.27.0,
Analog Devices, Norwood, MA, USA). During the simulations, no parameters for the PCB
technology were included. Such assumptions simplify the scope of simulations but should
be considered in actual conditions [28]. Its manufacturer delivered the SPICE description
of the switching module. For the QC laser, the SPICE model was prepared using data
from Alpes Lasers (St Blaise, Switzerland) for the lasing structure, and IXYS Corporation
(Milpitas, CA, USA) for the inductance of the laser package [29,30]. In Figure 2, an electrical
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schematic of the IR lighting device is presented. The Alpes laser model combines a resistor
(RL) and two capacitors (C1, C2). The RL values depend on the laser operation point
(e.g., for a low current: 10–20 Ω, and for the lasing current: 1–3 Ω). The C1 (~100 pF) and C2
(below 100 pF) are mainly determined by bonding pads and laser mounting technologies,
respectively. IXYS Corporation determines the inductance level (L) for various signal
interface technologies applied in laser housings. For example, a connection of two points
at a distance of 0.2 mm, with a copper wire 0.014 mm in diameter and a height of 0.06 mm,
gives an inductance of 3.6 nH.

Figure 2. Electrical scheme of the IR modulator (VDD—voltage supply of the module, VI (CI)—
voltage control of output current, EF-EN—differential triggering signals).

A simulation of the light device was performed for different lasing structure electrical
parameters (Figure 3). The reactance parts of load impedance did not influence the pulse
amplitude (Figure 3a,b). The capacitances generate some oscillations at the pulse rising
edge caused by feedback signals conditions. Growing these capacitances, the response
time constant also increases. The most critical issue is load inductance, considering pulse
shape and its oscillations. We observed a slower modulator response and current high-
level changes for both biasing ranges. A current-voltage dependence for the inductor
and signal resonance conditions defined these effects. Even at the rising and falling parts
of the pulse, these signal fluctuations can be the critical point for the current amplitude,
causing, e.g., laser structure damage. The bonding pad capacitance is an almost ideal
plate capacitor with a PTFE dielectric [31]. For inductance, the bonding wire generally
is 1 nH/mm. However, all of these parameters vary from laser to laser. To reduce pulse
degradation, i.e., overshoot and ringing, any unnecessary hardware between the switching
unit and the laser must be avoided. That is why the laser’s direct and short connection to
the electronics is preferable [32].

The load resistance has a direct influence on current amplitude and response time
constant (Figure 3c). High resistance attenuates signal fluctuations at the pulse rising edge
and increases its fall time. The current level is inversely proportional to this resistance.
This is a crucial issue with regard to QCL’s switching with dynamic resistance. There is
a need to supply lasing structure to ensure population inversion (high resistance—low
current—no light) and to emit photons (low resistance—high current—light) [33].
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Figure 3. Simulation results of the modulator for different lasing structure electrical parameters:
capacitance (a), inductance (b), and resistance (c).

4. Tests of the Laser Switching Module

The switching module tests were performed to analyze the influence of the load
resistance on the shapes of the generated current pulses from the switching module using
a special test board. The electrical signals were registered using the same scope Tektronix
MSO 6 with the current probe CT-1 and the active differential voltage TDP-1500 probe.
Figure 4 presents both the current and voltage signals for the two load resistances. These
resistances were measured using a Keithley 236 source-measure unit. The module was
operating in the current source region, where the current depends only on the ‘load’ of the
biasing voltage. In this region, its output resistance is lower than 300 mΩ.

Figure 4. Normalized electrical driving signals: current (a) and voltage (b).
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We observed both voltage and current oscillations at the falling slope for low load
resistance. Impedance mismatching caused the transmission and reflection effects in the
signal line. An increase in load resistance allowed for the minimizing of these effects with
the limited bandwidth.

The load resistance influenced both edges of the voltage signals, but for the current,
that was only noticed for the falling one. These differences can modulate the lasing
conditions of the QC structure as determined by both current and voltage signals. In
practice, these conditions are difficult to predict because they are related to the change in
the QC laser impedance during its operation. Therefore, both the signal interface and QC
laser parameters form the shapes of the light pulses.

5. Laboratory Tests of the IR Modulator

The preliminary tests of the IR modulator were performed using the lab setup pre-
sented in Figure 5. The modulator was placed on the test board to supply all signals (the
voltage supply of the switching module, the differential triggering signals, and the biasing
of the QC laser). The device was switched using the AFG 3252 model generator (Tektronix,
Beaverton, OR, USA). The light pulses were registered with the PVI-4TE-10.6 (VIGO Sys-
tem S.A., Warsaw, Poland) detection module with a responsivity of 2.5 × 104 V/W and
bandwidth of 500 MHz. An oscilloscope of the MSO 6 model (Tektronix) with the active
probe (TDP-1500, Tektronix) visualized the voltage biasing of the laser structure. There was
no technical possibility of registering current pulses (the laser wire was directly bonded on
the driver signal pole) and analyzing their shapes.

Figure 5. View of the testing setup and lasing device placed on the test board irradiating
detection module.

Figure 6 presents some shapes of the registered voltage signals and radiation pulses
for different pulse time durations at a frequency of 1 MHz. The voltage signal came ~5 ns
faster than the light one, and the laser biasing voltage limited its amplitude. It agrees
strongly with the data described in [28].

Some fluctuations caused by impedance mismatching of the signal interface were also
observed. The high similarity of the shape of voltage signals obtained during reference
measurements using a resistor (Figure 4b) and the QC laser is notable. But these shapes
differed from those of the light pulses. A slower rising edge and laser pulse oscillations
were noticed.
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Figure 6. Registered signals for different pulse durations: biasing voltage (a) and radiation pulses (b).

Some virtues of the experimental and simulation results are shared, e.g., inflection
in the rising slope, oscillations at the top signal, and some peaks at the falling edge
(Figure 7). These effects were not registered for the tests with resistances, indicating that
their source is a powered laser structure. This is a new aspect for analyses of QC laser
module construction for applied science. Experimental results of laser biasing voltage and
light pulse also defined the time delay of ~5 ns. This phenomenon was analyzed during
modulation simulations.

Figure 7. Comparison of experimental results (laser biasing voltage and light pulse) with simulation
results (laser current).

6. Conclusions

This study presents the preliminary test of an integrated IR modulator. A unique
characteristic of this study was the simulation of the electrical signals supplying the quan-
tum cascade lasers, and the integration of the lasing structure and the current switching
module. For this purpose, an electric circuit for the lasing structure was proposed. The
simulated results defined the influence of impedance mismatching on both the current and
voltage supply signals. It was shown that both signal interfaces and laser parameters form
the shape of light pulses. The QCL impedance has non-Ohmic character. That is why it
requires more advanced models to describe the behavior of the laser. A perfect impedance
match is also impossible, because the QCL impedance changes with the modulation of the
driving signal.

Finally, the integrated IR modulator was constructed. The shapes of its light pulses
were comparable to the driving current obtained during simulations. These results confirm
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the phenomenon of dynamic changes in QC laser impedance with current pulse duration.
The electrical circuit emulation does not ensure the observation of these results. However,
they provide new knowledge in the field of modeling QC lasing structures considering the
laser-system approach.

The practical result of the work is an IR modulator that generates MWIR pulses using
a QC laser operated at room temperature. The light time parameters, time duration of few
tens of ns and max. frequency of 1 MHz, are unique results considering the performance of
the other available compact QC laser modules.

Theoretically, the applied switching module also provides a bandwidth of 250 MHz
and the generation of complex waveforms using six independently controlled current
signals of up to 5 A, and a biasing voltage of 30 V. In the future, it will give new opportu-
nities for many advanced applications. Such a modulator with combined optical signals
is needed, e.g., in tunable direct laser absorption spectroscopy, multi-level optical signal
transmission, and ultra-short pulse generation with a pre-biasing current.
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