
applied
sciences

Review

Combinatorial Optimization Problems and Metaheuristics:
Review, Challenges, Design, and Development

Fernando Peres and Mauro Castelli *

����������
�������

Citation: Peres, F.; Castelli, M.

Combinatorial Optimization Problems

and Metaheuristics: Review,

Challenges, Design, and Development.

Appl. Sci. 2021, 11, 6449. https://

doi.org/10.3390/app11146449

Academic Editor: Federico Divina

Received: 21 June 2021

Accepted: 9 July 2021

Published: 13 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Campus de Campolide, Nova Information Management School (NOVA IMS), Universidade NOVA de Lisboa,
1070-312 Lisboa, Portugal; fperes@novaims.unl.pt
* Correspondence: mcastelli@novaims.unl.pt

Abstract: In the past few decades, metaheuristics have demonstrated their suitability in addressing
complex problems over different domains. This success drives the scientific community towards
the definition of new and better-performing heuristics and results in an increased interest in this
research field. Nevertheless, new studies have been focused on developing new algorithms without
providing consolidation of the existing knowledge. Furthermore, the absence of rigor and formalism
to classify, design, and develop combinatorial optimization problems and metaheuristics represents a
challenge to the field’s progress. This study discusses the main concepts and challenges in this area
and proposes a formalism to classify, design, and code combinatorial optimization problems and
metaheuristics. We believe these contributions may support the progress of the field and increase the
maturity of metaheuristics as problem solvers analogous to other machine learning algorithms.

Keywords: standardization; framework; metaheuristic; combinatorial optimization problems

1. Introduction

Combinatorial optimization problems (COPs), especially real-world COPs, are chal-
lenging because they are difficult to formulate and are generally hard to solve [1–3].
Additionally, choosing the proper “solver algorithm” and defining its best configuration
is also a difficult task due to the existence of several solvers characterized by different
parametrizations. Metaheuristics are widely recognized as powerful solvers for COPs,
even for hard optimization problems [2,4–8]. In some situations, they are the only feasible
approach due to the dimensionality of the search space that characterizes the COP at hand.

Metaheuristics (MH) are general heuristics that work at a meta-level, and they
can be applied in a wide variety of optimization problems. They are problem-agnostic
techniques [4,9–13] that establish an iterative search process to find an optimal solution
for a given problem [6,14,15]. Metaheuristics are extensively used in several areas such as
finance, production management, production, healthcare, financial, telecommunication,
and computing applications that are NP-hard in nature [2,10,16].

Nevertheless, a determined metaheuristic cannot have a great performance in all
categories of optimization problems because its approach may not work well in several
other problems, a hypothesis already proved by “No Free Lunch” theorems [14,15,17–19].
These points have “engaged” the research community to develop a vast number of meta-
heuristics [6,15,19].

Theoretically, metaheuristics are not tied to a specific problem, thus allowing the same
heuristic to be used to solve different types of COPs. Metaheuristics can be adapted to
incorporate problem-specific knowledge [4]. However, in practical terms, these incorpo-
rations always require some level of customization to adapt them to the peculiarities of a
COP. For instance, it is not plug-and-play as occurs with Scikit Learn, where any data and
parameters are passed as input for the classifiers.

Consequently, this customization requires a set of efforts to effectively ensure that the
metaheuristics can properly manipulate the COP solutions’ representation, such as methods

Appl. Sci. 2021, 11, 6449. https://doi.org/10.3390/app11146449 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8793-1451
https://doi.org/10.3390/app11146449
https://doi.org/10.3390/app11146449
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11146449
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11146449?type=check_update&version=1

Appl. Sci. 2021, 11, 6449 2 of 39

for exploration and exploitation compatible with the solutions’ encoding. Moreover,
the COP formulation also needs to provide features (data and behaviors) required by
metaheuristics to guarantee the proper functioning of the search process for finding an
optimal solution.

The lack of rules and formalisms to standardize the formulation of COPs and a
software design pattern to develop metaheuristics makes this activity more challenging and
makes it difficult the progress and consolidation of the field. The absence of standardization
and the lack of guidelines to organize COP and metaheuristics [5,7,9,12,17,18] make difficult
the classification and comparison of metaheuristics’ behaviors and performance.

Consequently, this leads researchers to start “almost” from scratch [3,5,9,16,18] by
building their own version of the algorithm. Consequently, this situation decreases the
potential of COP (as a “piece of software”) and metaheuristic reuse. Especially because
they were not designed as independent software units, the interoperability among COPs
and metaheuristics without code changes is, most of the time, impossible. Because of this,
extra efforts are needed to develop or adjust the metaheuristics to deal with the specific
problem [3,4,7,20], reducing the time spent on the analysis and tuning the results.

This study aims to provide a thorough review of the COP and MH by presenting
the main concepts, algorithms, and challenges. Using these review inputs as a basis, this
research proposes a standardization and a framework for COP and MH, named ToGO
(Towards Global Optimal). Therefore, this is a review paper accompanied by a framework
proposal to provide answers to open questions and well-known issues raised by the
research community. From these perspectives, to guide this research, we formulated five
research questions. They were conceived as guidelines to conduct the research and organize
the concepts, definitions, discussions, decisions, and conclusions.

1.1. Research Objective and Questions

This review paper aims to organize a body of knowledge by arranging the funda-
mental concepts and building blocks necessary to design and implement COPMH. Conse-
quently, this paper has two main objectives. Section 1 provides a review of the field and
Section 2 propose a standardization. In the review, two central points will be researched:
in Section 1.1, the most important concepts and definitions (COPMH) and in Section 1.2
the main challenges of the field. For the second objective, this work must consider at least
three classes of behavior: combinatorial optimization problem and its building blocks
(Section 2.1), metaheuristics interface and interactions (Section 2.2), and typical operations
that a framework structure should consider (Section 2.3). To address these objectives, we
formulated five research questions. Before proceeding to the description of each research
question, it is important to highlight that RQ-1 and RQ-2 are concerned with the review ob-
jectives of this paper. Moreover, they were designed, especially RQ-1, to provide essential
inputs to the other research questions (RQ-3, RQ-4, and RQ-5).

RQ-1: What are the fundamental concepts of COP (combinatorial optimization prob-
lem) and metaheuristics?

Rationale: The response to this question aims to offer the necessary knowledge to
comprehend this research and its fundamental concepts. These concepts are vital for the
reader and provide a broad perspective as a starting point in the COP and metaheuristics
field. It also must support the understanding of the standard proposed and its definitions
in this study.

RQ-2: What are the main challenges of the COP and metaheuristics research field?
Rationale: This question intends to draw attention to fundamental issues of the COP

and metaheuristics research field by investigating several papers and other pieces of
knowledge. Consequently, this question also can lead to future studies that may require
community attention. Additionally, some of these open questions can provide valuable
contributions to RQ-3, RQ-4, and RQ-5, considering that some issues can be treated through
some guidelines and formalism.

Appl. Sci. 2021, 11, 6449 3 of 39

RQ-3: What are the features of COP and metaheuristics that could be developed as
independent methods in a framework structure?

Rationale: By answering this question, the main idea is to identify the elements that
should be part of a framework structure because they can be reused in other situations by
any COP or heuristic (without coding efforts in future problems). Consequently, avoiding
the development of components that can be reused. Additionally, it also reduces the efforts
to formulate a problem or develop a metaheuristic, make them leaner and simpler to define.

RQ-4: How can we develop a body of knowledge to formulate combinatorial opti-
mization problems in a standard way?

Rationale: This question has many facets. It involves different aspects, which englobes
the conceptual and practical perspectives to design and implement COP in a generic
way. Therefore, a problem standard must consider a wide range of different problem
specificities and several aspects of communication with heuristics and framework methods.
The objective behind this is to provide guidelines to formulate COP in a standard way that
can be manipulated by any method that knows its standard.

RQ-5: How can we define a standard design for metaheuristics completely without
coding links to the problems?

Rationale: The answer to this question should provide a software pattern for meta-
heuristics, defining a set of behaviors and standard API (Application Programming Inter-
face). Furthermore, a metaheuristics standard must follow a problem standard that also
provides its own API. Therefore, it must know how to manipulate the COP by being aware
of its behaviors. Consequently, the answer to RQ-4 will support the answer to this question.

1.2. Out of Scope (Delimitations)

This review paper does not consider publication intensity. Consequently, it does not
list the main sources of research such as conferences, proceedings, journals, etc. The list of
references provides several papers that may guide the reader through this research area.

2. Materials and Methods

This chapter provides a comprehensive review of the fundamental definitions of com-
binatorial optimization problems and metaheuristics. Consequently, this section supplies
the needed knowledge to the reader to facilitate the understanding of these subjects and
the standard proposed in this work. Therefore, this section also aims to answer RQ-1: What
are the main concepts of COP (combinatorial optimization problem) and metaheuristics?

2.1. Optimization

Optimization can be summarized as a collection of techniques and algorithms [6,8,16,21,22]
to find the best possible solution (optimal or near-optimal) iteratively. From a searching
approach perspective, they can be organized into three classes of methods: (1) enumerative,
(2) deterministic, and (3) stochastic [10,23–26].

The enumerative methods are based on a brute force approach because it inspects all
possible solutions in the search space. For an understandable reason, it always will find the
optimal global solution. However, computationally speaking, this approach only works in
small search spaces. On the other hand, the most challenging problems, with a vast search
space, may require an enormous amount of time to list all solutions, something not feasible
most of the time. In these cases, different approaches are required.

The deterministic methods can be seen as an extension of the enumerative approach.
They use knowledge of the problem to develop alternative ways to navigate search space.
Deterministic methods are excellent problem-solvers for a wide variety of situations, but
they are problem-dependent. Consequently, they have difficulties when it is not possible
to apply the knowledge of the problem effectively. Deterministic methods receive this
classification because their parameters’ values and the initialization approach determine
their result. In other words, if a particular configuration is used, the output solution will
always be the same.

Appl. Sci. 2021, 11, 6449 4 of 39

The stochastic methods are problem-agnostic and include uncertainty. They move in the
search space using a sophisticated navigation model, applying a probabilistic approach—random
but guided by probabilities—to explore the search space [27,28]. Since the stochastic
methods are based on randomness aspects, the solution returned will almost always
be different. Therefore, it is not possible to determine which will be the final solution
and its performance [29]. They are an excellent alternative in scenarios where the data
are unpredictable, the problem knowledge cannot be used, and the other approaches
(enumerative and deterministic) do not have a good performance or are not feasible.

2.2. Optimization Problem

Human beings face difficulties daily—challenging or contradictory situations—that
need to be resolved to reach the desired purpose. These situations, in practical terms, can be
called problems. Theoretically, from a psychological perspective, a problem can be summed
up as difficulty that triggers an analytical attitude of a subject to acquire knowledge to
overcome it [30–32]. From a computer science perspective, a problem is a task that an
algorithm can solve or answer. From a practical perspective, computational problems can
be broadly classified into six main categories of problems: ordering, counting, searching,
decision, function, and optimization. Concerning ordering, counting, and searching, their
own definitions describe their objectives as problems. A decision problem is a class of
problems that decides after the analysis of a situation. The return of this type of problem is
an answer (a judgment) that only is determined by two possible outputs {“Yes”, “No”} or
{1, 0} [30,31]. Whereas a function problem is an extension of the decision, any data type can
be returned.

An optimization problem (OP) is a class of problems resolved by optimization meth-
ods that aim to find an optimal solution in a vast set of possible solutions [2,23,33–35].
Consequently, the output of an optimization problem is the solution itself.

Definition 1. An optimization problem can be formalized in the following way:

P = (S, f , Ω) (1)

where:

• P represents the optimization problem;
• S symbolizes the search space of the problem domain;
• f represents the objective function (OF); and
• Ω corresponds to the set of problem’s constraints.

The search space S is defined through a set of variables = {X1, X2, . . . , Xn}, generally
called decision variables or design variables. They can be seen as the data or the dimensions
that are explored to search for a solution. The search space may be subject to a set of constraints
Ω or restrictions. These restrictions are a set of definitions used to specify whether a solution
is feasible or not. In other words, they regulate whether a solution can be accepted according
to the rules of the problem domain. The f fitness function or objective function is used to
assess and determine the quality of the solutions and guide the search process.

Definition 2. A fitness function has as an output a real number (R), often called fitness.

f : S → R (2)

∀ s ∈ S, f (s) = f itness (R)

This number enables the possibility to compare the performance of all possible solu-
tions of a certain optimization problem [6,23,34,36].

Appl. Sci. 2021, 11, 6449 5 of 39

Combinatorial Optimization Problems

Optimization problems are divided into two categories of problems, (1) continuous
and (2) combinatorial problems [35]. Continuous optimization problems are composed
of continuous decision variables, and they can generate an infinite number of valid solu-
tions. Combinatorial optimization problems (COP)—also known as discrete optimization
problems—are defined by discrete decision variables and their elements. The solution of a
COP is represented by an arrangement of these elements. Since a solution is a combination
(or permutation) of elements, a COP has a finite number of solutions. The definition of the
encoding rules between combinations or permutations will depend on the needs of the
problem and its solution representation.

Example 1. Considering Travel Salesman Problem (TSP), a solution is a route formed by an ordered
arrangement of cities. In other words, the order of the cities is essential, and their repetition is not
allowed. Therefore, this solution’s encoding must follow the permutation rules where the elements
cannot be repeated.

Continuous optimization can use derivatives and gradients to describe the slope of
a function [35]. However, combinatorial optimization does not count with this support.
Consequently, combinatorial problems generally are more challenging problems to be
solved. They are usually NP-hard problems, and there is no deterministic method capable
of solving them in polynomial-time [30,37,38]. In real problems, the search space often
is vast, and the landscape is commonly unknown. Moreover, the performance of COP
methods requires good strategies to balance the exploration and exploitation to navigate the
search and find optimal solutions. These characteristics turn combinatorial optimization
problems into a challenging activity [38,39].

2.3. Combinatorial Optimization Problem Classification System

After an extensive review of the combinatorial optimization problem (COP)—capturing
different aspects explored in various studies—some critical definitions are organized jointly
in this paper. The objective is to consolidate several dimensions of COP classification,
providing a bigger view of a COP. However, it is noteworthy this work does not aim to
create a classification system for COP. Still, it can provide a preliminary view that can
be used as an input for future studies with the clear intention to develop a classification
system of COP that the community can widely adopt.

In this paper, we intend to offer a complementary perspective for the formal de-
scription of the optimization problems. We consider this activity essential for the study’s
objectives: to propose a standard and formalism to support the formulation, design, and
implementation of COP in a standard way. There, considering this aspiration, the organi-
zation provided by this work is synthesized in the following Figure 1. Moreover, a brief
description of each dimension is available in the subsequent sections.

2.3.1. Number of Objectives: Single Objective Versus Multi-Objective

From a perspective of the number of objectives, the COP can have two behav-
iors: (1) single-objective and (2) multi-objective combinatorial optimization problems
(MOCOP) [40–45]. In a single-objective problem, the fittest solution is easily determined by
the best value returned by the fitness function. In contrast, in multi-objective problems, the
optimization process must consider all objectives simultaneously [38]. The performance
of a solution in each criterion is not enough, and an analysis that considers all criteria
together must support this process. Moreover, the objectives may potentially conflict and
concur with each other [19,24,40–42,46,47]. Thus, MOCOPs require additional efforts to
assess, compare, and determine which solution performs better than others, balancing
multiple criteria.

In practical terms, assessing the solutions’ quality is performed by a function that
supports the selection process. Essentially, this function receives a set of solutions and the

Appl. Sci. 2021, 11, 6449 6 of 39

problem’s objectives. As a result, it returns a set of “best” solutions that are chosen by a
specific assessment approach. Several approaches can be used to perform this evaluation.
They can be split into two categories of methods: (1) Pareto and (2) non-Pareto [45].

Remark 1. These functions used to assess multi-objective problems are generic. Consequently, other
optimization problems can reuse these functions because they often are problem-agnostic. However,
rarely a particular problem may provide a specific multi-objective assessment. For instance, one
method that considers the other fitness values in a weighted formula.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 39

Figure 1. Combinatorial optimization problem—building blocks.

2.3.1. Number of Objectives: Single Objective Versus Multi-Objective

From a perspective of the number of objectives, the COP can have two behaviors: (1)

single-objective and (2) multi-objective combinatorial optimization problems (MOCOP)

[40–45]. In a single-objective problem, the fittest solution is easily determined by the best

value returned by the fitness function. In contrast, in multi-objective problems, the

optimization process must consider all objectives simultaneously [38]. The performance

of a solution in each criterion is not enough, and an analysis that considers all criteria

together must support this process. Moreover, the objectives may potentially conflict and

concur with each other [19,24,40–42,46,47]. Thus, MOCOPs require additional efforts to

assess, compare, and determine which solution performs better than others, balancing

multiple criteria.

In practical terms, assessing the solutions’ quality is performed by a function that

supports the selection process. Essentially, this function receives a set of solutions and the

problem’s objectives. As a result, it returns a set of “best” solutions that are chosen by a

specific assessment approach. Several approaches can be used to perform this evaluation.

They can be split into two categories of methods: (1) Pareto and (2) non-Pareto [45].

Remark 1. These functions used to assess multi-objective problems are generic. Consequently,

other optimization problems can reuse these functions because they often are problem-agnostic.

However, rarely a particular problem may provide a specific multi-objective assessment. For

instance, one method that considers the other fitness values in a weighted formula.

2.3.2. Optimization Objective Direction

Definition 3. Each objective has an objective function and an objective direction. A fitness

function has two main purposes: (1) they determine the quality of the solutions and (2) guide the

search by indicating promising solutions [9,40]. The objective direction can be divided into two

categories of optimization: (1) minimization or (2) maximization.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 ∀ 𝑠 ∈ 𝑆, 𝑓(𝑠̅) ≥ 𝑓(𝑠) ∀ 𝑠 ∈ 𝑆, 𝑓(𝑠̅) ≤ 𝑓(𝑠)
(3)

In general terms, when the lowest fitness defines the best performance, then it is a (1)

minimization problem, and in this particular case, the fitness function also can be called

“cost function”. On the other hand, when the highest fitness determines the best

performance, it is a (2) maximization problem. In this case, the fitness function also can be

called “value function” or “utility function”.

Figure 1. Combinatorial optimization problem—building blocks.

2.3.2. Optimization Objective Direction

Definition 3. Each objective has an objective function and an objective direction. A fitness function
has two main purposes: (1) they determine the quality of the solutions and (2) guide the search by
indicating promising solutions [9,40]. The objective direction can be divided into two categories of
optimization: (1) minimization or (2) maximization.

Maximization Minimization∀ s ∈ S, f (s) ≥ f (s) ∀ s ∈ S, f (s) ≤ f (s) (3)

In general terms, when the lowest fitness defines the best performance, then it is
a (1) minimization problem, and in this particular case, the fitness function also can be
called “cost function”. On the other hand, when the highest fitness determines the best
performance, it is a (2) maximization problem. In this case, the fitness function also can be
called “value function” or “utility function”.

2.3.3. Subproblems (Single-Problem Versus Multi-Problem)

Some problems, due to their complexity, need to be split into subproblems in order to
be adequately resolved (“divide to conquest” strategy). Therefore, the problems, consider-
ing the number of subproblems, can be classified into two classes: (1) single optimization
problems (single-problems), which are composed of only one problem, and (2) multiple op-
timization problems (multi-problems) [48–50], which are a non-trivial arrangement of two
or more problems. A point that needs to be emphasized is that a problem can be composed
of two subproblems (multi-problems), where the first subproblem has one objective (single
objective) and the second subproblem has two objectives (multi-objective).

Multi-objective problems require extra efforts to select the optimal solutions (Pareto
optimal) and also demand additional work because it is necessary to balance the results
of the subproblems to attend to the global perspective of the higher-level problem. The
higher-level problem may have global objectives that must also be achieved, and they
cannot be entirely perceived by the parts separately.

Appl. Sci. 2021, 11, 6449 7 of 39

A typical example is the artificial problem named Traveling Thief Problem (TTP)
proposed by Bonyadi et al. (2013) [48]. It is an optimization problem composed of two well-
known problems: TSP (Travel Salesman Problem) and KP (Knapsack Problem), organized
in a higher-level problem. By way of example, guaranteeing the best loading ships and
logistics may not ensure the best profitability. In other words, “the fittest” profitability may
not be guaranteed by “the fittest” ship loading solution (equivalent to KP part) and “the
fittest” ship scheduling (equivalent to TSP part).

2.3.4. Unconstrained Versus Constrained

In general terms, constraints are a set of prerequisites—that sometimes are necessary—
to determine if a solution is valid, according to the criteria of a specific problem. Conse-
quently, an optimization problem can be (1) constrained or (2) unconstrained [6]. Therefore,
in an unconstrained problem, all generated solutions are feasible. Oppositely, a constrained
problem is subjected to some criteria to be viable.

The constraints typically are divided into two types, (1) “hard” or (2) “soft”. The
“hard constraints” are mandatory prerequisites. They must be satisfied, and if a constrain
violation happens, the algorithm must reject the solution. “Soft constraints” are more
flexible; they are not mandatory, but desirable. If a constrain violation occurs, the algorithm
should not discard the solution. In this case, it could be addressed in the fitness function,
making the performance worse and the solution less suitable. Due to this possibility, the
“soft constraints” are sometimes called cost components.

2.3.5. Artificial Versus Real-World Problem

Optimization problems, considering their origin, can be (1) “artificially” created by
someone or (2) identified in the real world, requiring efforts to understand and specify
them. [16,49,50]. Artificial or designed optimization problems are proposed by someone,
generally as an abstraction and reduced view of reality. In this situation, the author
defines a synthetic and controlled environment. All variables and criteria are mapped and
previously specified.

By way of illustration, the required decision variables are explicitly defined to the
specific objective of the artificial problem. Consequently, the definition of the solution
encoding is facilitated, and they embrace all dimensions required. The objective functions
are precise because they were designed to determine which is the best solution. Since the
problem is proposed, there is no doubt about the concepts and criteria behind its definition.
A good example of designed problems is the Travel Salesman Problem (TSP) proposed by
Hamilton and Kirkman.

In contrast, real-world optimization problems are not artificially proposed by anyone.
They are challenging and contradictory situations that arise on a daily basis. Consequently,
first, they need to be identified, and after being identified, they also must demand a
solution. Since a solution is required, a set of efforts can start to understand and design
them. However, the reality is more challenging to be captured. Generally, they must be
investigated and consider many dimensions of the subject (systemic view).

Moreover, there is no direct feedback to inform if the problem is defined correctly or
not. Therefore, their representation will demand a certain level of knowledge about the
problem. In other words, the people who will formalize and develop the problem must
know its context and peculiarities.

2.3.6. Solution Encoding

In combinatorial optimization problems, any solution is an arrangement of elements,
combinations, or permutations. They follow a type of representation (or shape) and
encoding rules that arrange the values of the search space’s dimensions (variables) to form
a solution. The most common types of representation are (1) a linear sequence of elements
(as an array) and a (2) tree that organizes the elements recursively. However, any other data
structure can be used as a type of encoding. It will depend on the necessity of the problem

Appl. Sci. 2021, 11, 6449 8 of 39

to represent a solution. Arrays and trees are the most frequent because they are easy to
manipulate and transform, but, by way of example, (3) a graph representation that links
nodes (a linked list) can also be found. Other formats of representation require heuristics
that can handle their data structure and transform them properly.

Each type of representation may be subjected to some encoding rules that regulate
how they are created and how they can be manipulated. Solutions of linear shapes are
based on set values (symbols). They must consider the size (fixed versus mutable), the
elements’ type of arrangement, and if the elements can be repeated or if their order is
important. Solutions of three shapes generally follow a language composed of functions,
terminals, and constants.

2.3.7. Problem Data Environment

As mentioned before, the objective functions (OF) are responsible for determining the
quality of the solutions. By standard, the OF interacts directly with the decision variables
(data) to determine the solution’s quality. However, OF also can interact with a simulated
environment. In this scenario, the simulated environment receives a solution and returns
feedback which is interpreted by an OF that concludes the solution’s quality [10]. It is
analogous to the functioning of reinforcement learning (RL), where agents interact with an
environment and receive feedback (state and rewards).

The usage of simulation in optimization is an essential tool to deal with particular sce-
narios of problems [10,11,27,51] where a simulation is required. Consequently, the COP can
be divided into three classes: (1) decision variable-based, (2) simulation environment-based,
and (3) both. The challenge of simulation usage in COP is the design and implementation
of the simulated environment properly for each type of problem.

2.3.8. Problem’s Computational Complexity

The search space, which is the set of admissible solutions for an optimization problem,
is usually exponential with respect to the size of the input. This happens for the vast
majority of the real-world combinatorial problems [35]. In particular, the size of the input
is determined according to the specific problem. For instance, solving an instance of the
minimum spanning tree problem requires in input a weighted graph, and the input size
corresponds to the number of nodes and edges of such a graph. This example suggests
that different instances of the same optimization problem are characterized by a different
size of the input. As a consequence, it is not possible, for non-trivial problems, to define an
algorithm that provides an optimal solution for all the possible problem instances within a
time constraint that is polynomial in the input size [52]. For this reason, it is fundamental
to take into account the time needed by an algorithm to provide the final solution. The
time also depends on the hardware available, and the same algorithm executed on the
same instance, but different computers may provide significantly different running times.
For this reason, to perform a fair comparison, it is common to consider a different concept
that is the computational complexity of an algorithm. The computational complexity
allows calculating the time an algorithm needs to return the final answer or solution as a
function of the input size. Thus, computational complexity is the commonly used method
for comparing the running time of two different algorithms because it is independent of
the hardware on which the algorithms are executed. Computational complexity considers
the number of basic operations to be performed during the execution of the algorithm
and uses this information to provide an indication of the running time as a function of the
input size. For instance, an algorithm that must visit all the vertices V of a graph given
in input has a complexity of O(V). In other words, its complexity is linear with respect to
the input size (i.e., the number of nodes of the graph). To distinguish between easy and
difficult decision problems, one should consider the class of problems that are solvable
by a deterministic Turing machine in polynomial time and problems that are solvable
by a nondeterministic Turing machine in polynomial time. Without going into formal
detail related to the Turing machines, it is possible to provide an intuitive definition of the

Appl. Sci. 2021, 11, 6449 9 of 39

two classes of problems, which are known as (1) P and (2) NP [35]. In particular, a decision
problem is in P if and only if it can be solved by an algorithm in polynomial time. On
the other hand, a problem is called NP (nondeterministic polynomial) if its solution can
be guessed and verified in polynomial time; nondeterministic means that no particular
rule is followed to make the guess. Thus, the algorithm used to solve a problem in NP
consists of two steps. The first consists of a guess (generated in a nondeterministic way)
about the solution, while the second step consists of a deterministic algorithm that verifies
if the guess is a solution to the problem [48,53]. Finally, if a problem is NP and all other NP
problems are polynomial-time reducible to it, the problem is NP-complete. In other terms,
determining an efficient algorithm for any NP-complete problem implies that an efficient
algorithm can be found for all the NP problems.

This distinction is important in the context of metaheuristics: problems that are in
NP are commonly addressed using metaheuristics. In this case, the algorithms run in
polynomial time and provide a solution that approximates the optimal one.

2.4. Heuristics

Before proceeding further to a more in-depth description of metaheuristics, it is neces-
sary to briefly present what a heuristic is. According to Judea Pearl (Pearl, 1984), heuristics
are criteria, methods, or principles for deciding which among several alternative courses of action
promises to be most efficient in order to achieve some goal. They represent compromises between
two requirements: (1) the need to make such criteria simple, and at the same time, (2) the desire
to see them discriminate correctly between good and bad choices. In general terms, heuristics in
computer science may be summed up as the usage of useful principles and search methods
designed to resolve problems in an exploratory way, especially when it is not feasible to
find an exact solution due to its complexity in a feasible amount of time. Therefore, it tends
to involve a certain degree of uncertainty and the result is often not deterministic.

The heuristics, considering how they create solutions, is often divided into three
categories: (1) constructive and (2) improvement, and (3) hybrid heuristics [54]. The
constructive approach generates a solution element by element by analyzing the decision
variables. For instance, they take the best next piece without considering the entire solution
until they form a complete solution. In the improvement approach, the method generally
starts with a random initial solution that is improved iteratively, altering some parts to
search for a better solution. Hybrid heuristics, as the name suggests, uses both approaches,
aiming to take advantage of their methods.

2.5. Metaheuristics

Glover introduced the term “metaheuristics” (Glover, 1986) by combining two words,
meta (Greek prefix metá, “beyond” in the sense of “higher-level”) and heuristic (Greek
heuriskein or euriskein, “find” or “discover” or “search”). Metaheuristics are habitually
described as (1) problem-independent algorithms that can be (2) adapted to incorporate
problem-specific knowledge and definitions [4,27,33]. Consequently, they can resolve
several categories of optimization problems efficiently in a flexible way because they do
not have “strong” links with any specific problem.

A metaheuristic (MH) can be seen as a higher-level heuristic, composed of a master
heuristic (metaheuristic cycle) that drives and coordinates a set of subordinated heuristics
(SH)—in an iterative cycle—to explore the search space [2,4,6,14,55–57]. This relationship
between master heuristics and subordinated heuristics (SH) is illustrated in Figure 2.
Each subordinate heuristic performs a different role in the metaheuristic’s search strategy.
Thereby, the MH cycle arranges the SH to work together—in a higher level of abstraction—
to search for an optimal solution for a given problem in a coordinated way.

Appl. Sci. 2021, 11, 6449 10 of 39

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 39

2.5. Metaheuristics

Glover introduced the term “metaheuristics” (Glover, 1986) by combining two words,

meta (Greek prefix metá, “beyond” in the sense of “higher-level”) and heuristic (Greek

heuriskein or euriskein, “find” or “discover” or “search”). Metaheuristics are habitually

described as (1) problem-independent algorithms that can be (2) adapted to incorporate

problem-specific knowledge and definitions. [4,27,33]. Consequently, they can resolve

several categories of optimization problems efficiently in a flexible way because they do

not have “strong” links with any specific problem.

A metaheuristic (MH) can be seen as a higher-level heuristic, composed of a master

heuristic (metaheuristic cycle) that drives and coordinates a set of subordinated heuristics

(SH)—in an iterative cycle—to explore the search space [2,4,6,14,55–57]. This relationship

between master heuristics and subordinated heuristics (SH) is illustrated in Figure 2. Each

subordinate heuristic performs a different role in the metaheuristic’s search strategy.

Thereby, the MH cycle arranges the SH to work together—in a higher level of

abstraction—to search for an optimal solution for a given problem in a coordinated way.

Figure 2. Metaheuristics and subordinated heuristics relationship.

Informally, it is possible to say that the metaheuristics perform “blind exploration”

in a vast search space that they do not know. Consequently, they cannot “see” the whole

landscape to identify “hills” and “valleys” (optimal solutions). For that reason, the

strategies used by the heuristics (master and subordinated) to navigate in the search space

are crucial to investigate and map promising spots of the search space. Thus, everything

that a metaheuristic knows about the landscape is the “visited places” (solutions) and the

quality of these solutions (fitness). Therefore, after spending considerable time exploring

the search space, the algorithm will have some information about parts of the search space.

As a result, the best solution found is the return of the algorithm.

A metaheuristic will be successful in discovering optimal solutions on a given

optimization problem if it can conduct a good balance between exploration and

exploitation [2,16,34,58,59]. Exploration and exploitation are related concepts in some sense

because both techniques are employed to navigate and examine the search space.

However, there is a subtle difference between them. Exploration can be seen as

diversification because it aims to identify promising areas in the search space with high-

quality solutions. In contrast, exploitation can be understood as intensification because it

intensifies the search in a good region (solutions with excellent quality) of the search space

to find a better solution [2,4,34,44,58].

Figure 2. Metaheuristics and subordinated heuristics relationship.

Informally, it is possible to say that the metaheuristics perform “blind exploration”
in a vast search space that they do not know. Consequently, they cannot “see” the whole
landscape to identify “hills” and “valleys” (optimal solutions). For that reason, the strate-
gies used by the heuristics (master and subordinated) to navigate in the search space are
crucial to investigate and map promising spots of the search space. Thus, everything that a
metaheuristic knows about the landscape is the “visited places” (solutions) and the quality
of these solutions (fitness). Therefore, after spending considerable time exploring the search
space, the algorithm will have some information about parts of the search space. As a
result, the best solution found is the return of the algorithm.

A metaheuristic will be successful in discovering optimal solutions on a given
optimization problem if it can conduct a good balance between exploration and
exploitation [2,16,34,58,59]. Exploration and exploitation are related concepts in some sense
because both techniques are employed to navigate and examine the search space. However,
there is a subtle difference between them. Exploration can be seen as diversification because
it aims to identify promising areas in the search space with high-quality solutions. In
contrast, exploitation can be understood as intensification because it intensifies the search
in a good region (solutions with excellent quality) of the search space to find a better
solution [2,4,34,44,58].

2.6. Metaheuristic System of Classifications

The classification of metaheuristics is a fuzzy and debatable topic. There are various
ways and distinct dimensions to classify the metaheuristics [12,15,19,53,57,60–62]. Some
researchers generally choose the most appropriate classification criteria according to their
point of view or work [12,19,62]. This issue will be better explained in Section 3.1, Lack of
Guidelines, to organize the field.

It is essential to highlight that this article does not offer exhaustive analysis and does
not intend to propose a classification system for metaheuristics. Even so, after conducting
an extensive review, we observed some frequent classifications and distinctive perspectives
of how to classify metaheuristics. For this reason, this study attempted to unify and
accommodate all of them in a single view. As a result, we believe that this organization can
be used as an input that may contribute to a future study focused on creating a classification
system for metaheuristics. Additionally, the real idea behind this analysis is to understand
all possible perspectives of metaheuristics and use this information to support the creation
of a formalism to design and develop metaheuristics.

Moreover, after seeing a significant number of different classification methods, we be-
lieve that the most appropriate way to classify metaheuristics is to simplify the organization.
It should be through the usage of several complementary orthogonal dimensions—in other
words, a system analogous to a tag classification, where the dimensions are independent

Appl. Sci. 2021, 11, 6449 11 of 39

and do not have links. We also understand that hierarchical relationships among different
dimensions should be avoided. The idea behind this is to avoid the potential problems of
incompatibility when multiple dimensions are arranged together.

Figure 3 synthesizes our work to unify and organize the most important and distinctive
dimensions found in this revision. The next sections will provide a brief explanation of
each one of them.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 39

2.6. Metaheuristic System of Classifications

The classification of metaheuristics is a fuzzy and debatable topic. There are various

ways and distinct dimensions to classify the metaheuristics [12,15,19,53,57,60–62]. Some

researchers generally choose the most appropriate classification criteria according to their

point of view or work [12,19,62]. This issue will be better explained in Section 3.1, Lack of

Guidelines, to organize the field.

It is essential to highlight that this article does not offer exhaustive analysis and does

not intend to propose a classification system for metaheuristics. Even so, after conducting

an extensive review, we observed some frequent classifications and distinctive

perspectives of how to classify metaheuristics. For this reason, this study attempted to

unify and accommodate all of them in a single view. As a result, we believe that this

organization can be used as an input that may contribute to a future study focused on

creating a classification system for metaheuristics. Additionally, the real idea behind this

analysis is to understand all possible perspectives of metaheuristics and use this

information to support the creation of a formalism to design and develop metaheuristics.

Moreover, after seeing a significant number of different classification methods, we

believe that the most appropriate way to classify metaheuristics is to simplify the

organization. It should be through the usage of several complementary orthogonal

dimensions—in other words, a system analogous to a tag classification, where the

dimensions are independent and do not have links. We also understand that hierarchical

relationships among different dimensions should be avoided. The idea behind this is to

avoid the potential problems of incompatibility when multiple dimensions are arranged

together.

Figure 3 synthesizes our work to unify and organize the most important and

distinctive dimensions found in this revision. The next sections will provide a brief

explanation of each one of them.

Figure 3. The most common dimensions of metaheuristics classifications found in the literature. *

The Solution Manipulation Strategy requires a deeper explanation of how the metaheuristics can be

subdivided. ** The source of inspiration has several different views in the literature. *** The same

division found in the COP system of classification.

2.6.1. Optimization Method

This dimension organizes the metaheuristic according to its optimization method.

They are divided into (1) deterministic and (2) stochastic [23,24,63]. An explanation of

these methods was already provided in Section 2.1, Optimization.

Figure 3. The most common dimensions of metaheuristics classifications found in the literature. * The Solution Manipulation
Strategy requires a deeper explanation of how the metaheuristics can be subdivided. ** The source of inspiration has several
different views in the literature. *** The same division found in the COP system of classification.

2.6.1. Optimization Method

This dimension organizes the metaheuristic according to its optimization method.
They are divided into (1) deterministic and (2) stochastic [23,24,63]. An explanation of
these methods was already provided in Section 2.1, Optimization.

2.6.2. Navigation Scope Strategy

This dimension aims to point out the differences in a fundamental aspect of metaheuris-
tics’ navigation system by analyzing its meta-strategy to cover the search space. Essentially,
the methods in this perspective can be distributed into two groups of navigation scope:
(1) local and (2) global searchers [6,34,64].

Remark 2. The term “navigation scope strategy” is defined in this study because it was considered
the most suitable term to organize the definition for (1) local and (2) global searchers.

The (1) local searchers are specialized in seeking the nearest optimum solution until
achieving the peak of the region (e.g., Hill Climbing). On the other hand, the (2) global
searchers attempt to examine other areas of the search space, even if it involves moving to
worse solutions during the search (e.g., Genetic Algorithms).

2.6.3. Solution Search Strategy

The solution search strategy dimension also reveals another vital aspect of the meta-
heuristics navigation system. It is also related to the way a metaheuristic covers the search
space. However, in this case, it is associated with the number of solutions that are optimized
in each iteration. Regarding this characteristic, the methods can be split into (1) trajectory-
based (single solution) or (2) population-based (set of solutions) [2,16,34,65–67].

Remark 3. The term “solution search strategy” is defined in this study because it was pondered
as the most appropriate term to arrange the definition for (1) trajectory-based (single solution) or
(2) population-based.

Appl. Sci. 2021, 11, 6449 12 of 39

The trajectory-based methods work by improving a single solution iteratively, moving
from one solution to another, forming a trajectory (track). In contrast, population-based
metaheuristics operate by improving a set of solutions (population) simultaneously. In
other words, some operations are applied in each iteration, and the current population is
replaced by a new one (with some improved solutions). A metaheuristic population-based
can be further divided into single-population (Section 2.1) or multi-population (Section 2.2).
Multi-population is generally used to increase the diversity of the solutions [68] and
establish a parallel search through subpopulations that evolve together. Moreover, a
multi-population search may require additional mechanisms and methods to manipulate
individuals among populations.

2.6.4. Solution Creation Strategy

This dimension also reveals another crucial aspect of the metaheuristics navigation
system. In this case, it defines the strategy used to generate and transform solutions during
the search process. It also can be considered one of the most important behaviors of a
metaheuristic. The solution creation and manipulation strategy can be divided into two
main classes of algorithm behavior: (1) combination and (2) movement [12].

The (1) combination strategy, as the name suggests, is the group of algorithms that are
based on operations that are applied to mix the content of some solutions to form other
solutions. Additionally, they did not elect a reference solution to be followed. Therefore,
any solution of a set of solutions can be used to form the new ones. The Genetic Algorithm
(GA) is the most known and symbolic algorithm of this group. They can still be subdivided
into two groups, mixture (Section 1.1) and stigmergy (Section 1.2).

The methods based on “mixture” perform a direct combination of existing solutions
to form a new one. The Genetic Algorithm (GA) is the most famous metaheuristic that
uses the combination strategy. The algorithms based on stigmergy, on another side, use
an indirect combination strategy, by using an intermediary structure got from the various
solutions used to produce new solutions. Ant Colony Optimization (ACO) is the most
known algorithm in this category.

On the other hand, the algorithms that employ (2) movement strategy use a pattern
found in the current set of solutions—by using a differential vector that calculates the
intensity and direction of the movement—to generate a new solution. In addition, these
algorithms define a solution used as the reference and it is followed by others. The newly
developed solutions can replace the reference solution or compete with other followers
and replace them. The Particle Swarm Optimization is the most emblematic algorithm of
this category.

The methods based on movement can be further split into three subdivisions, all
population (Section 2.1), representative (Section 2.2), and group (Section 2.3). As the name
suggests, all population members define the movement in all population (Section 2.1).
However, each member has a different level of influence based on the distance of the
reference solution. In representative (Section 2.2), each solution is influenced by a reduced
representative solution group (PSO is classified in this subdivision). The group-based
algorithms (Section 2.3) just consider a subset of solutions to form the new solution. These
groups do not use representative criteria. They use neighborhood or subpopulations
strategy to define the groups to support the calculation and generate new solutions.

Remark 4. It is noteworthy to emphasize, to organize this dimension, we used as the main reference
the inputs provided by Molina et al., 2020 [12]. They offered an outstanding critical analysis and
recommendations about metaheuristics classification. Essentially, we used Chapter 4 (Taxonomy
as Behavior), where they analyzed several metaheuristics and organized them according to the
mechanism employed to build and modify solutions. It should be noted that this study adapted
the nomenclature to accommodate these inputs with other perspectives. For instance, “Solution
Creation” was renamed to “Combination” (1), and “Differential Vector movement” was renamed to

Appl. Sci. 2021, 11, 6449 13 of 39

“Movement” (2). Moreover, the term “Solution Creation and Manipulation Strategy” is created to
arrange this dimension because the metaheuristics can have many other types of behaviors.

2.6.5. Source of Inspiration

In the past few decades, the creation of metaheuristics algorithms was intense [6,12,15,69–72]
due to its success in solving hard problems. These algorithms usually obtain their in-
spiration from some characteristics found in nature [13,70,73–79]. Nevertheless, some
researchers have criticized the excess of new metaheuristics more focused on its metaphor
than their quality as optimization methods [12,15,80]. This issue will be discussed in-depth
in Section 3, which covers research challenges and gaps.

Furthermore, the classification of algorithms from a source of inspiration is a fuzzy
topic in the literature [6,12,15,19,20]. It is common to find divergent points of view to
classify them according to the inspiration applied. This confusion is generally related to
the absence of ground rules or due to partial views that do not consider a more extensive
classification system [12].

Moreover, some “subfields” are more mature or successful than others. Consequently,
it is easier to perceive some families of algorithms than others (e.g., Evolutionary Algo-
rithms and Swarm Intelligence). Despite this, even for these well-known families, it is
common to see distinct ways to organize them, especially in a more extensive system that
considers other types of inspirations. In other words, a family can be found at different
levels of the hierarchy in literature. For instance, some classifications organize swarm
intelligence inside the bio-inspired, and others consider swarm intelligence at the same
bio-inspired level.

We believe, as a ground-rule, that science already has an organization to classify the
areas of study (sciences). Metaheuristics did not need to reinvent the wheel. Since they are
based on science areas, the taxonomy of inspiration sources should also follow a similar
structural organization but considering a more straightforward way with fewer hierarchy
levels. Based on this assumption, this study arranged the most found source of inspiration
presented in the literature. Again, it is not an exhaustive list but rather a unified view of
the most relevant sources of inspiration, and it is illustrated in Figure 4.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 39

Figure 4. Families of metaheuristics by source inspiration or metaphor used.

Remark 5. This paper does not have the objective to go deeper into this subject. Many studies have already

stressed this analysis of the source of inspiration. For further information about this, please consult the list of

references. This section contains a list of recommended readings. You can find a section with excellent reviews

about the “source of inspiration” and its implications.

2.6.6. Memory Strategy

This is a dimension that can classify metaheuristics according to the presence of the

memory. Basically, the metaheuristics can be classified as (1) memory-less and (2)

memory-based [36]. Memory-less are metaheuristics that do not have any way to store

information during the search process and only consider the current state of solution(s).

An example of memory-less is Simulated Annealing (SA). In contrast, memory-based

metaheuristics use a mechanism to accumulate information during the iterative process to

guide the search. An example of memory-based metaheuristics is Tabu Search (TS).

2.6.7. Purebred Versus Hybrid

A metaheuristic can be (1) purebred or (2) hybrid [34,81–85]. A purebred is focused

on its methods only. Meanwhile, a hybrid metaheuristic generally has a method as a basis

and uses pieces of other metaheuristics or employs any other auxiliary methods [15] to

take advantage of other approaches.

2.6.8. Data Environment

A metaheuristic can interact directly with (1) the search variables or a (2) simulated

environment. The metaheuristics that take advantage of simulation are also known as

simheuristics. They extend the standard metaheuristics by combining metaheuristics

(optimization) and simulation [11,51,86].

In fact, the interaction with decision variables or a simulated environment is

performed by the Objective Function. Therefore, this dimension is linked to the behavior

of the Objective Function (covered in Section 2.3.7, Problem Data Environment).

Consequently, as well as the decision variables, the simulated environment must be

provided by the problem, since they are problem-related. Thus, it must be transparent for

the metaheuristics. Nevertheless, simheuristics may require some framework components

to support the usage of simulated environment and other components (e.g., fuzzy

component [51]).

Figure 4. Families of metaheuristics by source inspiration or metaphor used.

Remark 5. This paper does not have the objective to go deeper into this subject. Many studies have
already stressed this analysis of the source of inspiration. For further information about this, please

Appl. Sci. 2021, 11, 6449 14 of 39

consult the list of references. This section contains a list of recommended readings. You can find a
section with excellent reviews about the “source of inspiration” and its implications.

2.6.6. Memory Strategy

This is a dimension that can classify metaheuristics according to the presence of the
memory. Basically, the metaheuristics can be classified as (1) memory-less and (2) memory-
based [36]. Memory-less are metaheuristics that do not have any way to store information
during the search process and only consider the current state of solution(s). An example of
memory-less is Simulated Annealing (SA). In contrast, memory-based metaheuristics use a
mechanism to accumulate information during the iterative process to guide the search. An
example of memory-based metaheuristics is Tabu Search (TS).

2.6.7. Purebred Versus Hybrid

A metaheuristic can be (1) purebred or (2) hybrid [34,81–85]. A purebred is focused
on its methods only. Meanwhile, a hybrid metaheuristic generally has a method as a basis
and uses pieces of other metaheuristics or employs any other auxiliary methods [15] to
take advantage of other approaches.

2.6.8. Data Environment

A metaheuristic can interact directly with (1) the search variables or a (2) simulated
environment. The metaheuristics that take advantage of simulation are also known as
simheuristics. They extend the standard metaheuristics by combining metaheuristics
(optimization) and simulation [11,51,86].

In fact, the interaction with decision variables or a simulated environment is performed
by the Objective Function. Therefore, this dimension is linked to the behavior of the
Objective Function (covered in Section 2.3.7, Problem Data Environment). Consequently,
as well as the decision variables, the simulated environment must be provided by the
problem, since they are problem-related. Thus, it must be transparent for the metaheuristics.
Nevertheless, simheuristics may require some framework components to support the usage
of simulated environment and other components (e.g., fuzzy component [51]).

2.6.9. Solution’s Encoding

Each metaheuristic method is prepared to deal with a specific type of solution encod-
ing. Consequently, metaheuristics can only solve problems with an encoding that they can
manipulate. Likewise, a particular solution’s encoding can only be resolved by a restricted
number of metaheuristics that know how to handle its encoding. Thus, it is possible to
classify metaheuristics according to the encoding that they can manage. The differences in
the solution encoding are covered in Section 2.3.6, Solution Encoding.

By way of illustration, Genetic Algorithms (GA) and their variations of subordinated
heuristics are designed to manipulate a linear sequence of characters (an array of elements).
In comparison, Genetic Programming (GP) is prepared to deal with elements organized
recursively in a tree.

2.6.10. Parallel Processing

The capacity to perform parallel processing is another characteristic of the metaheuris-
tics, and it can be seen as an improvement to explore the search space more efficiently. The
metaheuristics can be classified into (1) mono processing and (2) multiple processing. The
mono processing is not prepared to perform parallel processing. On the other hand, the
multi-processing has an architecture prepared to perform parallel processing and consoli-
date these multiple searches [2,6,16]. It is an option to improve any metaheuristic because
they can incorporate and activate this capability when needed. In the literature, there are
several strategies of parallelization to reduce the time of the search and explore more areas
of the search space simultaneously.

Appl. Sci. 2021, 11, 6449 15 of 39

2.6.11. Capacity to Alter the Fitness Function

Considering the capacity to manipulate the fitness function, the MH can be subdivided
into two categories, (1) static and (2) dynamic [9,11,82]. The static category is the standard
way, where the MHs use the objective function as the problem designed it. In contrast,
some algorithms may change the OF behavior by incorporating some obtained knowledge
during the search process. The main idea behind this is trying to escape local optima [87].
Guided Local Search (GLS) is an example of MH with this capacity.

2.7. Metaheuristics Require Experiments to Evaluate Algorithms’ Performance

The performance evaluation is an imperative criterion for metaheuristic. Experiments
support the determining of how well a metaheuristic (MH) investigates the search space.
Additionally, considering the consequences of the “No Free Lunch” theorems, it is hard
to know in advance which MH will perform better than others. Moreover, since the most
successful MH are stochastic—due to their probabilistic nature (uncertainty)—the results of
MH tend to vary. Therefore, by considering an instance of a problem, the same algorithm
may have variances in its performance. Consequently, to compare a set of metaheuristics’
performances and determine which is the best, it is necessary to design and execute an
experiment to conduct an appropriate evaluation.

An experiment for metaheuristics evaluation involves a set of coordinated steps
in a controlled environment, and an experiment should guarantee its reproducibility
and comparability. In a summarized way, an experiment considers the following steps:
(1) objectives definition, (2) design, (3) execution, and (4) conclusions [5,58,87–89].

The first step, (1) objectives definition, aims to define the experiments’ drivers, goals,
and research questions. The design step (2) intends to specify, plan, and prepare the
experiment. It commonly considers the following activities: defining the measures and
terminology, selecting the metaheuristics, defining the parametrization tuning strategy,
determining the report format, etc. Each algorithm may have several possible parameters
configuration, and the parametrization tuning strategy defines how these configurations
will be tested. It is essential to highlight that parameter setting directly influences the
algorithm’s performance [90] and it varies by the given problem. Generally speaking, it
can happen manually by defining a set of possible configurations, or it can be conducted
automatically, supported by an optimization method. Furthermore, when it is not a real
problem, it should be necessary to choose benchmark problems and their “data” to compare
performance among designed problems.

The step experiment execution (3) is dedicated to performing the experiment, running
each configuration, and collecting its data. It is necessary to emphasize that each config-
uration must be executed enough times to conclude whether a specific configuration is
effectively better than others (e.g., thirty times may be sufficient to make conclusions statis-
tically). Consequently, the data analysis must consider a statistical approach to understand
the variance to determine whether the best performances are statistically. Consequently, it
regards dispersion statistics measures (e.g., mean, median, standard deviation, and outliers’
analysis) organized in visualizations or reports to support the decision. The final step,
(4) conclusions, aims to analyze the results and organize the conclusions of the experiment.

3. Challenges, Research Gaps, and Issues

This section aims to synthesize the main challenges, research gaps, and issues found
in this research. Several papers provided valuable inputs for this topic in their conclusions.
At the same time, we also decided to consider our experience and difficulties in developing
COP and metaheuristics. While it is not an exhaustive review, by covering these points,
this section offers a satisfactory answer for RQ-2: What are the main challenges of the COP and
metaheuristics research field? This section is organized by arranging the main findings into
groups according to the subject. A brief description of each one of them is available in the
following subsections.

Appl. Sci. 2021, 11, 6449 16 of 39

3.1. Lack of Guidelines to Organize the Field

As mentioned in Section 2.6, the classification of metaheuristics is a fuzzy and debat-
able topic [3,12,19,57,60–62]. Because of this, it is common to find several different ways
to classify metaheuristics in the literature [91]. Additionally, researchers tend to choose
the most appropriate classification criteria according to their point of view [12,19] or their
subfield. Moreover, some researchers have mixed up some concepts and definitions, and it
is common to see contradictory classifications in the literature.

These divergent perspectives are one of the challenges for the organization and
progress of the metaheuristics field. Many researchers point that the root cause of this
phenomenon lies in the absence of a consistent definition and guidelines to organize the
field [3,12,15,19,57]. Considering all mentioned issues—and many others not covered in
this study—we emphasize the necessity for an in-depth review to develop guidelines to
classify and organize the metaheuristics.

Nevertheless, we also understand that the definition of a classification system requires
consensus and community adoption. Consequently, we argue that it is an open question
that requires a study with this purpose. Therefore, we believe it is a promising line of
research for future work.

Furthermore, a system of classification could be supported by a database to classify
metaheuristics and organize their metadata. Consequently, this database could consider
all the orthogonal dimensions to register metaheuristics. It also could be extended to an
open-source pool of metaheuristics supported by a framework.

3.2. Focus in Developing New Algorithms Versus “No Focus in Consolidation”

Due to the large number of algorithms, it gradually became clear that part of these
algorithms does not necessarily lead to suitable optimization methods [15]. Thereby,
some researchers have started to criticize the excess of new metaheuristics algorithm
publications [12,13,15,19,57]. The main argument lies in the overvaluation of the source of
inspiration. Some researchers tend to be more concerned with the algorithm’s metaphor
and novelty than with their quality as optimization methods.

Sörensen [15,57] called this phenomenon of “metaphor fallacy” he expects that this
mindset turns quickly. He argued that most “novel” metaheuristics based on a new metaphor
take the field of metaheuristics a step backward rather than forward. Therefore, the community
must be more concerned about developing more efficient methods and avoid the “metaphor
fallacy” trap.

Many researchers also argue that the metaheuristics’ behaviors are more important
than the source of inspiration [12,19,92]. Generally, the metaphor is more ludic and gener-
ally does not explain the real functioning of the algorithm. Because of this, the metaphor
used may be difficult to understand the algorithm’s proposal because it can overshadow
the actual functioning.

Furthermore, these new algorithms (the novelty) are often an extension of existing
algorithms with little functional alterations [16,91,92]; they can be seen as variants, and
the metaphors are highlighted as the novelty. Molina et al., 2020 [12], also analyzed
the most influential algorithms in their review, and they state that five algorithms (their
standard implementations) influenced the majority of other algorithms. According to
them, the algorithms most influential are (1) Genetic Algorithms (GA), (2) Particle Swarm
Optimization (PSO), (3) Ant Colony Optimization (ACO), (4) Differential Evolution (DE),
and (5) Artificial Bee Colony (ABC).

This issue must highlight two aspects. Firstly, this research production trend may be
related to the existing publication mindset, where the chances to publish a new algorithm
are high. Weinand et al., 2021 [91], pointed out that the intensity of Combinatorial Opti-
mization grew exponentially since 1989. Secondly, obviously, the new algorithms were
crucial to the development of the metaheuristics field. All the proposed metaphors helped
to bring different ways to explore the search space, such as anarchy societies, ants, bees,
black holes, cats, cuckoos, consultants, clouds, dolphins, fishes, flower pollination, gravity,

Appl. Sci. 2021, 11, 6449 17 of 39

water drops, and so on so forth. The critic is related to the overestimation of the source of
inspiration as a primary driver with few concerns whether it effectively presents novelty
for optimization methods (innovation in search strategy perspective).

This issue is an open question in the past few years, at least since 2013 when Sörensen
published “Metaheuristic—the metaphor exposed” [57] and the attention for this has
increased. It is a research mindset that requires change because, in some sense, the progress
and consolidation of the metaheuristics field are difficult. The answer for this challenge
may demand a methodology to define COP and MH and provide a fair way to compare
metaheuristics features, strategies, and their performance.

3.3. Experiments and Performance Evaluation Issues

Conventionally, the field of optimization problems has focused on metaheuristic per-
formance, where an algorithm is considered good if it has a good performance compared to
some benchmark [15,47]. Additionally, the studies that proved superiority through a com-
parison have higher chances of being published (also known as the “up-the-wall game”).

Nevertheless, in recent years, some researchers have perceived issues in some studies
that focus on evaluating the performance of new metaheuristics [6,18,92,93]. The main
cause lies in the fact that some experiments may induce inaccurate analysis because they
do not promote fair performance comparisons among metaheuristics. This may lead to
biased analysis. For example, the set of problems used as benchmarking could be selected
because the new algorithm performs well in these cases. Another example is that standard
versions of successful algorithms, such as genetic algorithms, are used in the comparison,
but the field has evolved since its creation, and there are many variations of GA that added
new features that improved the canonical version of the algorithm.

Another aspect of the performance issues is related to the fact that experiments
generally only use dispersion statistics measures (e.g., mean, median, standard deviation,
and outliers’ analysis) or use basic statistical tests. Some researchers such as Boussaïd and
Hussain [2,6] have pointed out the necessity to add other statistical analyses to promote
more sophisticated comparisons and evaluate other aspects of metaheuristic performance.

3.4. Absence of Formalism to Design and Develop COP and Metaheuristics

In the literature review, no evidence was found that a standardization or formalism to
design and implement COP and metaheuristics exists. There are some clues or definitions
of how to implement them, but there is no standard that could be used as a reference
and followed to build COP, metaheuristics, or subordinated heuristics in an integrated
way. This absence of standardization leads to different ways to represent COPs and makes
difficult its reuse. Generally, researchers understand the basic functioning of the algorithm
and implement their own version and adds the problem definition.

Although metaheuristics are problem-agnostic, they often have some level of attach-
ment to the problem in practice (code). Additionally, they are also attached to subordinated
heuristics, and vice versa. In other words, in most implementations, it is not easy to
separate the code of the subordinated heuristics, metaheuristics, and problems. Therefore,
in practical terms, several efforts are necessary to prepare the algorithms for the needs of a
specific problem before starting any search for a solution.

Consequently, this absence of standardization leads researchers to start “almost” from
scratch by creating their own version of the algorithm and adjusting the metaheuristics to
deal with the specific problem or developing the required subordinated heuristics (related
to the solutions encoding manipulation). After this, several tests are necessary to check
if they return the expected result and avoid errors and bugs. Moreover, these tasks are
time-consuming because they demand preparation, which reduces the time spent on the
analysis and tuning the results [4,6,15,20].

To complete the view of this issue, it requires an analogy with other more mature
methods of machine learning (e.g., neural network, clustering, decision trees, etc.) For
instance, a decision tree is an algorithm that resolves classification tasks; they classify data

Appl. Sci. 2021, 11, 6449 18 of 39

in classes. In informal terms, they receive as input (1) data, (2) a set of features to analyze,
and (3) parameter settings, and as a result, they return (4) a solution (classification model).
Evaluation functions evaluate the returned solution and determine its quality as a classifier.
All these steps occur without any change in the structure of the algorithm. In other words,
it does not demand any code changes, and only new data were provided (analogous to
problem instance).

Therefore, the idea is not to eliminate the flexibility that enables the metaheuristic and
COP extensibility. The goal is to define a standard behavior to eliminate the dependency
and links of metaheuristics and COP building blocks and increase the reuse and reducing
or eliminating the necessity of code changes. While you just need to provide a problem
instance and analyze the solutions, keeping the possibility to add new components every
time it is necessary. Consequently, a standard to design and develop COP and MH is vital
to avoid starting from scratch and it is the basis for the next issue.

3.5. Support Structure to Not Start from Scratch

This issue highlights the necessity of a software framework to solve COP by using
metaheuristics without building algorithms from scratch [9,20] and reusing a set of built-in
components and functions [4,15,20]. Because of this, a software framework must also
provide facilities that support its functioning and help its users achieve their objectives.

Generally speaking, the foundational premise to support a software framework is
defined by the common behavior of its components and their API (Application Interface
Programming). These elements define how the components can communicate with each
other and keep their independence and generalization aspects to potentialize their reuse.

Considering a COP and MH framework, the definition of two levels of standards is
required. The first level is related to the core components, which define the standard to
design and implement COP and MH (a necessity explained in the previous section). The
second level is concerned with defining the standard of the auxiliary components that
supports MH in the search activities and other required supplemental tasks. The challenge
is to identify these auxiliary components and implement them as stand-alone software
structures which can be reused by any other components. The other challenge is to keep
the framework capacity for extensibility of existing algorithms or add new ones.

Again, to complete the view of this issue, an analogy also needs to be provided. In
this case, a comparison with a more mature machine learning framework is necessary. For
instance, Scikit Learn provides several machine learning algorithms and many auxiliary
functions required to build and evaluate the machine learning models. Additionally, it
does not require any changes in the structure of the algorithms. Only the data and the
algorithm configuration must be provided. Furthermore, Scikit Learn is open source and is
widely used by academics and industry. Therefore, we argue that the same maturity level
should be required of a metaheuristic framework.

Therefore, this issue aims to emphasize the necessity of a COP and MH Method-
ological and Software Framework to consolidate and promote the progress of this field.
A framework with these characteristics must be an open-source project supported by
the community. Moreover, it also should promote more cooperation of different meta-
heuristics approaches than only in competition or hybridization. It also opens space for
metaheuristics ensembles, for instance.

4. Results: Standardization, Methodology, and Framework for COP
and Metaheuristics

This section, supported by the answers of RQ-1 and RQ-2, aims to present a proposal
for combinatorial optimization problems (COP) and metaheuristics standards. It covers
a formalism to design and implement COP and metaheuristics, a methodology to design
problems, and a conceptual framework. Moreover, this section will address the answers
for RQ-3, RQ-4, and RQ-5.

Appl. Sci. 2021, 11, 6449 19 of 39

4.1. Framework Structure

This section aims to provide an answer for RQ-3: What are the features of COP and
metaheuristics that could be developed as independent methods in a framework structure? It leads
us to investigate and identify which are the vital elements that can make part of a software
framework and support COP and MH experiments. By identifying these elements, the
objective is to avoid rework and spend time developing components that should already
be available; in other words, “not reinvent the wheel” all the time. Additionally, it also
reduces the possibility of bugs and errors because these general components were already
tested and checked before. Therefore, the idea is to take advantage of these components by
reusing them (without code changes) and focusing on the problem definition or developing
a new metaheuristic (or subordinated heuristics), increasing productivity and efficiency.

The following sections provide a brief description of these essential components
arranged by this study. In Figure 5 is the high-level view of the proposed architecture with
these important support components.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 39

structure or core code of the framework. We are talking specifically about the possibility

of adding problem templates—since they are also “programs”—and metaheuristics or

subordinated heuristics methods, extending the framework. Consequently, it would

ultimately increase the framework’s capabilities in solving combinatorial problems. It

requires a core level of components and a software standard definition that should be

followed by the new pieces of software, and supports the extensibility capacity.

Extensibility, accompanied by the flexibility to change components’ behavior, is

essential to make algorithms more effective in searching. An algorithm behavior can be

modified by configuration or by exchanging its software pieces (subcomponents).

Additionally, the ideal behavior change should be possible both in the design time and in

the run-time without code changes in the basic structure. It also should not consider

hierarchical inheritance where a class inherits from a master class because it is hard to

maintain. Moreover, a few changes in the base class can easily break the other subclasses

that reuse the master class. It should consider a software design pattern that avoids this

condition and prioritize the change in subcomponents to incorporate or modify behaviors.

Moreover, this flexibility capacity must consider at least two levels, (1) operational

and (2) strategical. The operation must provide the functionality of exchange behaviors.

In other words, make possible the concrete exchanges of parameters or subcomponents

no matter the moment. It also requires a well-designed API and a software design pattern

and standards. The strategical level must follow the search, recognize situations (e.g.,

when the MH is trapped in a local optimum), recommend changes when needed, and

comprehend the results and feedback of its recommendations.

A componentization-driven framework comes with superpowers because it enables

the possibility of writing and deploying new software pieces independently. They take

advantage of framework existing services, and they are developed only focused on their

objectives. Therefore, these new “pieces of software” (e.g., COP templates and instances,

metaheuristics, or subordinated heuristics) can run above the existing framework

environment. To increase their reusability potential, a repository is required, where the

authors could share and keep these “pieces of software” and the community can easily

use them. The cooperation among metaheuristics is also a crucial high-level feature. A

well-designed API and a software design pattern can provide an environment where

metaheuristics could cooperate to resolve a particular problem simultaneously or

asynchronously.

Figure 5. Proposed framework architecture—high-level view of the main components.

Nevertheless, before proceeding to the explanation of the components, we would like
to highlight the main higher-level features expected of a framework for COP and MH, and
they are the following:

1. Extensibility of software components;
2. Flexibility to exchange behavior of the components;
3. Componentization driven (component-based development); and
4. Cooperation among algorithms.

By considering the infinitude of problems and metaheuristics algorithms, a frame-
work for COP and MH needs to be conceived with the ability of extensibility. In other
words, it must be able to add “pieces of software” (POS) without affecting the structure
or core code of the framework. We are talking specifically about the possibility of adding
problem templates—since they are also “programs”—and metaheuristics or subordinated
heuristics methods, extending the framework. Consequently, it would ultimately increase
the framework’s capabilities in solving combinatorial problems. It requires a core level of
components and a software standard definition that should be followed by the new pieces
of software, and supports the extensibility capacity.

Appl. Sci. 2021, 11, 6449 20 of 39

Extensibility, accompanied by the flexibility to change components’ behavior, is essen-
tial to make algorithms more effective in searching. An algorithm behavior can be modified
by configuration or by exchanging its software pieces (subcomponents). Additionally, the
ideal behavior change should be possible both in the design time and in the run-time with-
out code changes in the basic structure. It also should not consider hierarchical inheritance
where a class inherits from a master class because it is hard to maintain. Moreover, a few
changes in the base class can easily break the other subclasses that reuse the master class.
It should consider a software design pattern that avoids this condition and prioritize the
change in subcomponents to incorporate or modify behaviors.

Moreover, this flexibility capacity must consider at least two levels, (1) operational
and (2) strategical. The operation must provide the functionality of exchange behaviors. In
other words, make possible the concrete exchanges of parameters or subcomponents no
matter the moment. It also requires a well-designed API and a software design pattern and
standards. The strategical level must follow the search, recognize situations (e.g., when the
MH is trapped in a local optimum), recommend changes when needed, and comprehend
the results and feedback of its recommendations.

A componentization-driven framework comes with superpowers because it enables
the possibility of writing and deploying new software pieces independently. They take
advantage of framework existing services, and they are developed only focused on their
objectives. Therefore, these new “pieces of software” (e.g., COP templates and instances,
metaheuristics, or subordinated heuristics) can run above the existing framework environ-
ment. To increase their reusability potential, a repository is required, where the authors
could share and keep these “pieces of software” and the community can easily use them.
The cooperation among metaheuristics is also a crucial high-level feature. A well-designed
API and a software design pattern can provide an environment where metaheuristics could
cooperate to resolve a particular problem simultaneously or asynchronously.

4.1.1. Repository (Local and Global)

The repository is designed to maintain custom components, widgets, and templates
developed to take advantage of framework preexisting services. These components must
follow the software design pattern (standards) defined by the framework. By way of
illustration, these components can be (1) combinatorial optimization problem templates,
(2) metaheuristics, (3) subordinated heuristic, (4) external environment, (5) benchmark test
(problem instances and a particular search configuration), etc.

The repository was designed into two levels, (1) global and (2) local. Global repo
is accessible to everyone, and the community sustains it; they can download or upload
components. The local repo represents local storage, where a person who works in a COP
experiment downloaded components from the global repo or kept his/her developed new
“pieces of software”.

Furthermore, the repository must be supported by a database that maintains informa-
tion about the components. The concrete component in the repository must have metadata
to describe them, and it should be stored in the database. Additionally, COP or metaheuris-
tics could consider the preliminary classification system presented in Sections 2.3 and 2.6
as a primary reference to form their metadata. Consequently, each type of component
should be split into categories, and each type of component defines its own metadata. It
should also consider the component author/owner (code), algorithm creator, paper that
proposed the metaheuristics (if it is sharable—copyright), etc. Therefore, these components
can be tagged properly according to their type. This metadata system also can support a
search engine, enabling the filtering of the components by some criteria. Additionally, this
database could also supply the main concepts of metaheuristics and COP (analogous to
a wiki).

Moreover, the repository must provide a benchmarking process to compare meta-
heuristic performance. Thus, the database also should keep benchmarks of metaheuristic
performance. This section of the database, in a summarized way, needs to keep two types

Appl. Sci. 2021, 11, 6449 21 of 39

of information. The first type of information is the benchmark test, and they can be seen as
templates that the community will reuse. A benchmark test template comprises several
problem instances (data) designed to evaluate metaheuristic performance in investigating
these search spaces (data). The second category of information results from metaheuristic
performance after performing a specific benchmark test (template). These tests must fol-
low an experimental design and provide statistical information about their performances.
Figure 6 shows the basic relationship between metaheuristics and benchmark tests.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 39

Figure 5. Proposed framework architecture—high-level view of the main components.

4.1.1. Repository (Local and Global)

The repository is designed to maintain custom components, widgets, and templates

developed to take advantage of framework preexisting services. These components must

follow the software design pattern (standards) defined by the framework. By way of

illustration, these components can be (1) combinatorial optimization problem templates,

(2) metaheuristics, (3) subordinated heuristic, (4) external environment, (5) benchmark test

(problem instances and a particular search configuration), etc.

The repository was designed into two levels, (1) global and (2) local. Global repo is

accessible to everyone, and the community sustains it; they can download or upload

components. The local repo represents local storage, where a person who works in a COP

experiment downloaded components from the global repo or kept his/her developed new

“pieces of software”.

Furthermore, the repository must be supported by a database that maintains

information about the components. The concrete component in the repository must have

metadata to describe them, and it should be stored in the database. Additionally, COP or

metaheuristics could consider the preliminary classification system presented in Sections

2.3 and 2.6 as a primary reference to form their metadata. Consequently, each type of

component should be split into categories, and each type of component defines its own

metadata. It should also consider the component author/owner (code), algorithm creator,

paper that proposed the metaheuristics (if it is sharable—copyright), etc. Therefore, these

components can be tagged properly according to their type. This metadata system also

can support a search engine, enabling the filtering of the components by some criteria.

Additionally, this database could also supply the main concepts of metaheuristics and

COP (analogous to a wiki).

Moreover, the repository must provide a benchmarking process to compare

metaheuristic performance. Thus, the database also should keep benchmarks of

metaheuristic performance. This section of the database, in a summarized way, needs to

keep two types of information. The first type of information is the benchmark test, and

they can be seen as templates that the community will reuse. A benchmark test template

comprises several problem instances (data) designed to evaluate metaheuristic

performance in investigating these search spaces (data). The second category of

information results from metaheuristic performance after performing a specific

benchmark test (template). These tests must follow an experimental design and provide

statistical information about their performances. Figure 6 shows the basic relationship

between metaheuristics and benchmark tests.

Figure 6. Basic relationship between metaheuristic and benchmark test.

The critical success factor is to develop wide and challenging tests by covering several

aspects to defy the metaheuristics capacity. Consequently, a good test could consider

different levels of difficulty and search space landscapes. These tests also could consider

different types of problems such as routing, planning, scheduling, etc. Additionally, they

can consider problems with a huge number of dimensions and so on so forth. The objective

behind this is to generate reference tests that can be used as scientific standards to appraise

and certify metaheuristics’ performance.

Figure 6. Basic relationship between metaheuristic and benchmark test.

The critical success factor is to develop wide and challenging tests by covering several
aspects to defy the metaheuristics capacity. Consequently, a good test could consider
different levels of difficulty and search space landscapes. These tests also could consider
different types of problems such as routing, planning, scheduling, etc. Additionally, they
can consider problems with a huge number of dimensions and so on so forth. The objective
behind this is to generate reference tests that can be used as scientific standards to appraise
and certify metaheuristics’ performance.

Therefore, from a community perspective, it demands proposals of challenging bench-
mark tests by covering several aspects to defy the metaheuristics capacity. We believe it
is an open question, and it could be a good research line to develop the field. Research
questions such as the following could be addressed. (1) What tests are capable of evaluating
the capacity of a metaheuristic as a searcher method? Or still, (2) what are the dimensions
that should be explored and considered in these tests?

Thus, several metaheuristics can be subjected to the same batch of tests and their
performance can be compared. Additionally, the tests already performed do not need to be
executed again because they are already stored in the database. Furthermore, considering
a new metaheuristic, only this algorithm should perform the same batch of tests and after
this, its results can be compared with the entire database.

Furthermore, a new metaheuristic to be added in the global repository should provide
the metadata information and must be checked by some standard tests that evaluate and
keep this information in the database. Consequently, any person who is interested in
using the algorithm can know several characteristics and the general performance of the
algorithm. The database could also provide a benchmarking view, where it is possible to
compare all tested metaheuristics by test or still considering all available tests.

As much the community feeds this database, more complete will be the knowledge,
and more conclusions can be found about metaheuristics. For example, for a new meta-
heuristic, it is possible to understand in advance its general performance. If it is not
performing well, the researcher can try other things and test again. It is also possible
to assume in which scenarios (kind of problems) a metaheuristic may work well. Other
more general guesses also can be made, such as which behaviors are more suitable for a
determined class of problems, and so on.

4.1.2. Search Process Management

The Search Process Management (SPM) component aims to encapsulate and orches-
trate the search process in a standard way. It acts like a “wrapper” and “adapter”, and
it is responsible for preparing and automatizing the search process by interpreting all
specifications and instantiating all the objects that are necessary to perform a specific search
process (e.g., concrete versions of COP and MH). No matter the metaheuristic used, it also

Appl. Sci. 2021, 11, 6449 22 of 39

will provide the same functioning mechanism, in other words, the same API. Consequently,
it will interact directly with the concrete metaheuristics, and it must be transparent for
the author of the experiment. He/she only needs to pass some parameters to SPM such
as (1) problem (template and instance), (2) metaheuristic (or metaheuristics list), (3) meta-
heuristics settings, and (4) search settings. The only mutable spec is the metaheuristics
settings (3) because they depend on their parameters’ definition.

Moreover, the SPM should provide several searching modes; the most common
identified by this study are described as follows. (1) Single-mode is performed by only one
metaheuristic. In contrast, (2) multiple-mode is accomplished by a list of metaheuristics.
However, they do not share information. (3) The cooperative mode also is realized by
several metaheuristics but cooperatively. Therefore, they must be able to share results.
(4) The experiment mode is where a configuration manages a set of possible executions
and keeps all the data. As a result, an experiment report by comparing all performances
tested should be provided (depending on the experiment management component). It
is also possible to perform the search in a (5) meta or automatic-mode, where a search is
performed in a meta-level, where a metaheuristic orchestrates a target metaheuristic and
operates hyper-parametrization tuning automatically.

Furthermore, the modes that consider more than one algorithm or multi-population
search also can activate a parallel processing feature. It enables several processes to
run simultaneously.

The SPM has a configuration component that is responsible for keeping and interpret-
ing a framework configuration. The local environment has a master configuration that
defines the default behavior of the framework and its core components. However, it also
must permit custom configurations. If a custom configuration is passed as a parameter for
a search process instance, it will override the standard behavior. Still, if it is necessary, the
master configuration can be modified, directly changing some behaviors used by default.

4.1.3. Problem Representation System

The Problem Representation System (PRS) aims to organize problem definitions and
all required mechanisms to create and manipulate solutions in a generic way. It is based on
a state machine that interprets this encoding to manipulate solutions. In this case, the state
is defined by an arrangement of elements that compose a solution instance. For instance, by
receiving a solution’s encoding, a solution factory component (SFC) should be able to create
any solution for a determined problem. In the same way, a manipulation engine component
(MEC), by receiving this encoding, should be able to recommend transformations that are
requested by subordinated heuristics. For example, considering that one position of the
solution must be changed, the MEC can return a proper alternative to replace the current
element. It is a generic method that knows how to generate valid elements randomly
according to the encoding and without code changes.

Furthermore, the PRS also is supported by a Problem Syntax, a set of rules that defines
and evaluates if a problem is well-defined. It should have a component responsible to test
and check if the problem defined is working properly, independently of the metaheuristic
that will be used. It is also based on defining how problem templates and instances should
be coded.

Moreover, since the solution factory can create any solution for a determined prob-
lem is only based on the encoding, the framework needs to take advantage of this and
provide a built-in subordinate heuristic for random initialization. In other words, by
interpreting the solutions’ encoding, they can initialize any metaheuristic randomly. It
enables the experiment’s author(s) to focus on the problem definition because the frame-
work already provides a standard way to deal with problems’ definitions. This system
supports all subordinated heuristics by providing knowledge of the problem to enable
proper transformations in the solutions.

Appl. Sci. 2021, 11, 6449 23 of 39

However, the framework should provide the possibility to the authors to use a custom
“build solution function” as well as an alternative “initialization SH”. In fact, it is a
fundamental assumption for the framework design.

4.1.4. Problem and Solution Evaluation

The Problem and Solution Evaluation Component (PSEC) is designed to generalize
the way solutions will be evaluated. They were primarily conceived to evaluate the
performance (quality) and feasibility of solutions. However, they also must be extended to
consider other solution metrics such as population diversity. It should also be considered
as an extensible feature, where new metrics can be added to the repository and configured
to be evaluated in a specific search. The primary input is the problem because it has the
objective function(s) and the feasibility function (it calculates if a solution is admissible if
the problem has constraints). Multi-objective problems can also pass a parameter to choose
an existing multi-objective analysis method. Alternatively, a new method that performs
multi-objective analysis can be passed as a parameter.

The PSEC also should provide a report module to present the analysis and results.
This component is supported by the Memory and Persistence and Experiment Runner.
The reports can be implemented as templates that can be reused and present results in the
same format.

Moreover, this evaluation system also should consider metrics to assess exploitation
and exploration behaviors. It also demands a way to recognize the landscape coverage and
a way to simplify high-multidimensional combinatorial optimization model.

4.1.5. External Environment (Simulation)

Since some problems need simulation or feedback from other entities, the framework
must provide a way to develop and communicate with an external environment (EE). In
fact, the objective functions will interact directly with these environments. However, the
framework also should control the status of these environments. Therefore, the framework
could test, register, start, or stop when necessary and inform the environment’s status (e.g.,
active or inactive).

To increase the power of the usage of EE, a software design pattern should be consid-
ered to guide the development of external environment compatible framework standards.
The external environment must follow a protocol and API of the framework. It tends to
facilitate the process. However, if an environment that does not follow the standards that
need to be used, it is necessary to know this environment interface to create the objective
function, such as how to send information and interpret feedback from the environment.
Moreover, the status of the environment may not be recognized by the framework directly.

4.1.6. Search Process Intelligence

This component was conceived to recommend behavior changes to a metaheuristic
during a search. This component works by analyzing the search progress, making some
conclusions, and recommending a change. These changes can be the adjustment of a
parameter value or the exchange of a subordinated heuristic. It is intrinsically a trial-and-
error task to improve the metaheuristics capacity to navigate the search space. The core
mechanism can be based on a built-in method or can be implemented by a custom method.
It can use the data history of many runs. Additionally, it opens a space for the use of
machine learning methods to recommend the changes. It also can be implemented as
a model-based method analogous to the reinforcement learning model-based approach.
Therefore, there are several ways to implement and use the search process intelligently.

4.1.7. Memory and Persistence

The Memory and Persistence Component (M&PC) was designed to offer memory and
persistence to the search process. Therefore, no matter whether an MH has an internal
memory resource, the search process may provide a memory, and this information can

Appl. Sci. 2021, 11, 6449 24 of 39

be stored to be accessed after. It also can consider that a metaheuristic can continue from
a point where they stopped, enabling continuous navigation (analogous to continuous
learning). Still, this saved memory also could be used by other metaheuristics as an
initialization that loads what other MHs examined.

Moreover, it ensures that during a cooperative search process, metaheuristics can
share the same memory (collective memory) or exchange their own memories with each
other. It also requires mechanisms to evaluate the exchanging of knowledge among them,
and many metrics could be used (e.g., keep diversity). Additionally, a shared memory
can keep numerous good solutions discovered by several searches performed by distinct
metaheuristics. It can keep everything, no matter the method used, about the problem
instance landscape.

4.1.8. Experiment Runner

The Experiment Runner Component (ERC) aims to provide a standard and reusable
way to perform experiments. It should provide all the structure to run, interpret, and save
experiments (all data gathered and formulated conclusions should be kept). It should be
designed to receive an experiment specification that defines the experimental design. This
experimental design (or specification), in a summarized way, is composed of:

• A set of metaheuristics (their SH variations);
• Metaheuristics’ parametrization settings strategies;
• Set of problem instances; and
• Statistical tests that must be performed.

The ERC is supported by Problem and Solution Evaluation Component and Memory
and Persistence Component. As result, an experiment must return a report with all
dimension analysis and select the main visualization to lead and support the conclusions.

Furthermore, the ERC also can be used to perform benchmark tests. Therefore, the
benchmark analysis is executed by the ERC. A benchmark test is an experiment design
(template) with a set of problem instances and the chosen statistical tests. As input, it will
receive a metaheuristic and its parametrization settings strategies. The results are saved
as benchmarking in the database (local) and uploaded to the global repository. It also
can compare its performance with other metaheuristic performances (benchmarks already
executed) stored in the database.

4.2. Problem Representation: Formulation and Standards

To understand, design, and implement a combinatorial optimization problem is a
challenging activity because it requires knowledge of the problem and technical skills
related to optimization problems and coding. This section aims to answer RQ-4: How can
we develop a body of knowledge to formulate combinatorial optimization problems in a standard
way? By answering this question, we expect to identify the vital elements that should be
part of a COP and arrange them in a general and independent software unit. Additionally,
the answer to this question is a foundational premise that sustains the entire framework
definition because it is the core knowledge item that will be manipulated by the algorithms.
This is the reason and purpose of the framework’s existence.

Moreover, to answer this question properly, we need to take into consideration the
following four assumptions. The first is related to the COP composition and structure. We
also need to answer the question: What are the building blocks necessary to accommodate several
categories (or all) problems in a standard design? The second must concern conceiving COP as a
self-contained unit (single unit) that provides a common behavior that can be manipulated
(used or reused) by any method that knows its functioning standards. The third assumption
lies in the fact that problems must be defined by a specification. A problem specification is
a higher-level definition of the problem that defines the behavior of the problem class. The
fourth must consider that problem specifications cannot affect or demand code changes
from any algorithm of the framework (e.g., metaheuristics, subordinated heuristics, even
in problem core components).

Appl. Sci. 2021, 11, 6449 25 of 39

Before proceeding to the COP building blocks explanations, an essential distinction
must be provided.

From a practical point of view, optimization problems have two levels of abstraction
considering their specification: (1) abstract level, also known as problem template (PT),
and (2) concrete level, also known as a problem instance (PI). A problem template is a
conceptual model of the problem that specifies a class of problems with a specific objective.
Thus, a PT encompasses the general definitions of the problem that can be followed (or
reused) by several problem instances. On the other hand, a PI is based on a PT and since
the template gives the conceptual level, an instance must provide the specific data that
instantiate a particular case of the abstract problem. Consequently, a problem template P
can have an infinite number of instances P = {p1, p2, . . . , pn}.

Therefore, a PT provides the upper-level building blocks representing the high-level
problem definition and can be reused by any instance of this problem (e.g., objective(s),
objective function(s), constraints requirements, solution encoding rules, decision variables
design, etc.) In contrast, a PI must provide the data of the concrete problem (e.g., decision
variable values and constraints values).

4.2.1. Problem Template (PT) Definitions

Definition 4. In practical terms, since the problem template defines the higher-level building blocks,
it can be defined in the following way:

P = (O, S, E, Ω|φ|A) → {p1, p2, . . . , pn, . . .} (4)

where:

• P represents the problem template and if it is followed, it may originate an infinite number of
problem instances {p1, p2, . . . , pn, . . .};

• O corresponds to a nonempty set of objectives O = {o1, o2, . . . , on};
• S is the search space design or decision variables design S = {s1, s2, . . . , sn};
• E defines a nonempty set of solution encoding rules E = {ε1, ε2, . . . , εn};
• Ω (optional) represents set of constraint design Ω = {ω1, ω2, . . . , ωn};
• φ (optional) is the admissibility function; and
• A (optional) represents a set of additional algorithms A = {α1, α2, . . . , αn} that can be used

by instances of P.

Definition 5. Any objective oi of O = {o1, o2, . . . , on} defines the objective direction and has
function to determine the quality of a solution, and it can be expressed by:

O = {o1, o2, . . . , on} , ∀ o ∈ O, o = (µ, F) → R (5)

where:

• µ represents the objective direction (minimization or maximization); and
• F corresponds to a set of the objective functions for an objective.

A PT was envisioned to enable the possibility of a problem to have multiple objective
functions. The idea is to provide the possibility of a PT to deal with more than one
solution’s encoding. It is vital to enable other classes of metaheuristics—based on a
different encoding—that can also manipulate this problem. Therefore, potentially, it can
make the problem resolvable by any metaheuristics without any code changes from both
sides. The challenge will be to make these encodings equivalent. It also demands additional
objective function and admissibility function.

Appl. Sci. 2021, 11, 6449 26 of 39

Definition 6. F corresponds to a set of the pairs defined by the objective function and the solution’s
encoding it is linked to; therefore, F can be defined as:

F = {(f1, ε1), (f2, ε2) . . . , (fn, εn)} (6)

S represents the search space design (SSD), and it is a conceptual view of the search
space. From a practical perspective, it shapes the decision variables’ scheme by spec-
ifying their roles in the search and data types. As a result, it specifies how problem
instances must supply the concrete decision variables to work properly and designed by
the problem template.

Definition 7. Therefore, a decision variable design is synthesized as:

S = {s1, s2, . . . , sn}, ∀ s ∈ S, s = (r, d) (7)

where:

• r represents the decision variable role in search; and
• d corresponds to the data type of the decision variable (the terminology for d is defined by

the framework).

Remark 4. The SSD is not merely a convention. These specifications must be followed by the
objective function, actual decision variables, etc. They are interconnected, and the “roles” link them
and guarantee that they will perform adequately in a standard way.

The solution encoding rules E is a set of higher-level definitions used to form a solution
instance (representation) for a determined class of problems. This definition is the basis of
the “solution factory” provided by the framework. In summary, it is a state machine that
receives a solution encoding as input and can produce random solutions.

Definition 8. A solution encoding is defined by:

∀ ε ∈ E, ε = (S , T ,X |B) → {x1, x2, . . . , xn} (8)

where:

• ε describes a solution encoding definition and it may originate a finite number of solutions
{x1, x2, . . . , xn};

• S defines the shape of the solution representation (model’s format or data structure);
• T represents the syntax type used as basis to form;
• X defines the syntax (rules) form a valid solution; and
• B symbolizes the additional software that can be added to a problem instance.

The framework must define the syntax types, and it must be designed as an extensible
list of classes of syntaxes that are supported by the framework. Therefore, it enables the
evolution of the framework capacities according to future needs. Moreover, each syntax
type is defined by a particular syntax (rules) that embraces all the points necessary to
guide the construction of the solutions, such as tokens (elements), and how they can be
arranged (analogous to lexical and grammatical levels of a computer language). Again,
these solution syntaxes definitions must be supported by the framework. Furthermore, the
framework also needs to provide test tools to certify that a solution representation is well
designed, and facilitate this definition. It also may consider a COP design tool to create a
level of abstraction to guide and support this process.

Ω, the constraint’s design, and φ, the admissibility function, are optional. Therefore,
a problem must be operational without them. Their presence will depend on the charac-
teristics and needs of the problem. Ω and φ are only in a problem template definition if

Appl. Sci. 2021, 11, 6449 27 of 39

it is a constrained optimization problem and it also requires an admissibility function to
determine if a problem is feasible or not.

Definition 9. A constraint design is defined by:

Ω = {ω1, ω2, . . . , ωn}, ∀ ω ∈ Ω, ω = (c, w, t) (9)

where:

• c defines the variable (or concept) subjected to a constraint;
• w defines the comparison operator to apply the constraint rule; and
• t defines the constraint data type.

Remark 6. Generally, an admissibility function can evaluate all constraints. Thus, in our analysis,
it is not necessary to implement one admissibility function per constraint. If it is necessary by a prob-
lem not perceived in our review, the constraint design also could consider an admissibility function.

The A, set of additional algorithms A = {α1, α2, . . . , αn}, opens the possibility of
adding “pieces of software” to the problems, generally using a heuristic of the problem or
guessing some aspects of search space characteristics. Therefore, it is a way to add problem
knowledge to COP in a standard way. For example, it can provide alternative “initialization
subordinated heuristics” that can attempt to apply a problem-specific heuristic to initialize
the metaheuristics taking advantage of this assumption.

Definition 10. The additional algorithm α is expressed by:

A = {α1, α2, . . . , αn}, ∀ α ∈ A , α = (a, g) (10)

where:

• a corresponds to the additional algorithm itself; and
• g indicates the class of the algorithm (group).

Remark 6. The class of the algorithm must be defined by the framework terminology to classify
the stand-alone algorithms (self-contained pieces) of the framework according to their class. For
example: “subordinated heuristic initialization”, “build solution function”, “subordinated heuristic
for selection”, etc.

4.2.2. Problem Instance (PI) Definitions

As a complementary part, a problem instance provides the concrete elements that
fulfill a problem template’s definitions. Therefore, a PI must follow the PI definition to
work properly. The framework is not designed to create a hierarchy of COP. Thus, a new
problem template is not a subclass of a problem template superclass. The framework was
envisioned to have only one problem class that is fed by PT and PI specifications. This
feature is supported by a helper class named “problem decorator” that instantiates the
problem by interpreting these definitions.

Definition 11. Therefore, a problem instance is defined as follows:

∀ p ∈ P, p = (P, S, Ω,
∣∣B) → {x1, x2, . . . , xn} (11)

based on P = (O, S, E, Ω|φ|A)→ {p1, p2, . . . , pn}

where:

• p is a problem instance that follows a P problem template), and it may originate a finite number
of solutions {x1, x2, . . . , xn};

Appl. Sci. 2021, 11, 6449 28 of 39

• P is the problem template definition followed by the problem instance (therefore, the problem
instance is self-contained unit of software);

• S represents the concrete search space (data) that is composed of decision variable instances
S = {s1, s2, . . . , sn};

• R defines the roles by linking which decision variable;
• Ω, corresponds to the actual values of the constraint Ω = {ω1, ω2, . . . , ωn} and it is only

relevant for the instance of the problem; and
• B is a list of additional algorithms B = {β1, β2, . . . , βn} that can be provided by an instance

of the problem.

Definition 12. Therefore, a decision variable instance is defined as follows:

S = {s1, s2, . . . , sn}, ∀ s ∈ S, s =
(

r, d
)

(12)

where:

• r represents the decision variable role in search; and
• d corresponds to the data of the decision variable.

The search space template S = {s1, s2, . . . , sn} defines how the search space instance
must be provided S = {s1, s2, . . . , sn}. In other words, each decision variable design
s = (r, d) requests a variable instance s =

(
r, d
)

when a problem is built (PI).

Definition 13. A constraint value is defined by:

Ω = {ω1, ω2, . . . , ωn}, ∀ ω ∈ Ω, ω = (c, v) (13)

where:

• c defines the variable (or concept) subjected to a constraint; and
• v defines the constraint value.

The constraint’s design Ω = {ω1, ω2, . . . , ωn} defines how the constraint values
must be provided Ω = {ω1, ω2, . . . , ωn}. Unless otherwise stated, each constraint design
ω = (c, w, t) requires a constraint value ω = (c, v) when the problem is created (PI).

The B, a set of additional algorithms B = {β1, β2, . . . , βn}, enables the possibility
to add “pieces of software” in a problem instance. The mechanism is similar to the set
A provided in the problem template. However, it is only applicable to the instance and
cannot be reused by other instances. If the additional algorithm needs to be shared by other
instances, it needs to be added in A. It is conceived to make a problem instance flexible
permitting the addition of problem heuristics.

Definition 14. The additional algorithm β is expressed similarly to A, and therefore is defined in
the following way:

B = {β1, β2, . . . , βn}, ∀ β ∈ B , β = (a, g) (14)

where:

• a correspond to additional algorithm itself; and
• g indicates the class of the algorithm (group).

These combinatorial optimization problem definitions are synthesized in Figure 7,
which provides a higher-level representation of the COP building blocks in a class diagram.
This diagram summarizes the crucial relationships of the building blocks to design and
implement a general COP that can be manipulated by any metaheuristics that follow these
framework standards.

Appl. Sci. 2021, 11, 6449 29 of 39

Appl. Sci. 2021, 11, x FOR PEER REVIEW 29 of 39

The constraint’s design 𝛺 = {𝜔1, 𝜔2, … , 𝜔𝑛} defines how the constraint values must

be provided 𝛺̅ = {𝜔̅1, 𝜔̅2, … , 𝜔̅𝑛} . Unless otherwise stated, each constraint design 𝜔 =
(𝑐, 𝑤, 𝑡) requires a constraint value 𝜔̅ = (𝑐,𝑣) when the problem is created (PI).

The B, a set of additional algorithms 𝐵 = {𝛽
1
, 𝛽
2
, … , 𝛽

𝑛
}, enables the possibility to

add “pieces of software” in a problem instance. The mechanism is similar to the set A

provided in the problem template. However, it is only applicable to the instance and

cannot be reused by other instances. If the additional algorithm needs to be shared by

other instances, it needs to be added in A. It is conceived to make a problem instance

flexible permitting the addition of problem heuristics.

Definition 14. The additional algorithm 𝛽 is expressed similarly to A , and therefore is defined

in the following way:

𝐵 = {𝛽
1
, 𝛽
2
, … , 𝛽

𝑛
},∀ 𝛽 ∈ 𝐵 ,𝛽 = (𝑎, 𝑔) (14)

where:

• 𝑎 correspond to additional algorithm itself; and

• 𝑔 indicates the class of the algorithm (group).

These combinatorial optimization problem definitions are synthesized in Figure 7,

which provides a higher-level representation of the COP building blocks in a class

diagram. This diagram summarizes the crucial relationships of the building blocks to

design and implement a general COP that can be manipulated by any metaheuristics that

follow these framework standards.

Figure 7. Problem building blocks and their relationships. Figure 7. Problem building blocks and their relationships.

4.3. Metaheuristics General Specification

Defining a software design pattern is crucial to develop more robust metaheuristics
in a standard way. A software standard permits that a metaheuristic can be more easily
implement and reused. It also opens a new page to enable a top-notch system of coopera-
tion among metaheuristics. Consequently, this section aims to answer RQ-5: How can we
define a standard design for metaheuristics and completely without coding links with the problems?
The answer to this question must be accompanied by a foundational pillar, a COP stan-
dard. Therefore, the proposal of this metaheuristic software design pattern follows all the
definitions supplied in Section 4.2, Problem Representation: Formulation and Standards.

It is considered that metaheuristics can be seen as a master heuristic that orchestrates
a set of subordinated heuristics in an iterative cycle until certain conditions are achieved.
Suppose the “content” of subordinated heuristics is removed. In that case, a metaheuristic
is just a higher-level cycle that calls subordinated heuristics in a specific order according
to their “roles” in the search process. A “role” can be seen as an activity that must be
performed and contribute to the metaheuristic’s strategy to navigate the search space.

Therefore, this higher-level cycle determines what a metaheuristic algorithm is. Addi-
tionally, the same metaheuristic algorithm can present a vast number of variations, and it
will depend on the SH variation that will be used in each role. Each variation of a subor-
dinated heuristic can change the behavior of metaheuristics by implementing a different
mechanism of navigation in the search space. Additionally, the metaheuristic behavior can
be changed by its parametrization that regulates some decisions during the search.

Moreover, by considering these variation necessities, a metaheuristic design pattern
must also provide a system that enables an interoperability software structure with the
capacity to exchange subordinated heuristics (algorithms)—in other words, the ability to

Appl. Sci. 2021, 11, 6449 30 of 39

replace SHs transparently in design and run time. Consequently, to make this possible,
metaheuristics also must be defined as two levels of abstraction: (1) a conceptual level and
(2) a concrete level. The conceptual level defines an abstract metaheuristic algorithm by
specifying a higher-level cycle (meta-algorithm), the roles required by SHs in the strategy,
MH parameters needs, and metadata behaviors.

Definition 15. Therefore, an abstract metaheuristic can be defined in the following way:

M = (σ, C, ∆, K)→ {m1, m2, . . . , mn} (15)

where:

• M represents an abstract metaheuristic algorithm and it can originate several possible varia-
tions of this metaheuristic algorithm {m1, m2, . . . , mn};

• σ represents the metadata that describe some aspects of the metaheuristic behaviors that can be
interpreted by the framework (e.g., solution encoding rules);

• C defines the higher-level cycles that arranges the SH calls;
• ∆ is a list of “search role requested” {δ1, δ2, . . . , δ1n} by higher-level cycle and it will be

performed by SHs; and
• K defines the set of parameters’ specifications K = {k1, k2, . . . , kn} necessary to regulate the

metaheuristics’ decisions during the search.

After an intensive review and analyzing various subordinated heuristics, we con-
cluded that they can be organized into categories according to their functioning in the search
process. The types considered by this framework proposal (version 1) are the following:

• Initialization—concerns to create the initial set of solutions;
• Selection—selects solution(s) according to some criteria;
• Navigation—responsible for performing the moves in the search space;
• Replacement—aims to make decisions of how to perform the replacement of a current

set of solutions by a new set of solutions which is obtained in each iteration;
• Calculation—responsible for providing calculations to support decisions; and
• Termination—used to finalize the search process and return the best solution.

The set of “search role requests” defined by ∆ = {δ1, δ2, . . . , δ1n} can also been seen
as “placeholders” that must be occupied by a subordinated heuristic. Since the SH may
have variants, they can be replaced by an SH that performs a similar role. Additionally,
an SH must belong to the demanded by “search role requests”. Moreover, a “role” is a
semantic function defined by a metaheuristic algorithm and it represents a vital aspect of
its search metaphor. For example, a Genetic Algorithm requires an SH that will perform
the “mutation role” that belongs to the type “navigation” SH.

Definition 16. Therefore, a “search role request” δ is defined in the following way:

∆ = {δ1, δ2, . . . , δ1n}, ∀ δ ∈ ∆ , δ = (Θ, γ) (16)

where:

• Θ represents a search role requested by the metaheuristic cycle; and
• γ defines the type of subordinated heuristic required.

Definition 17. The γ is defined by the framework as Γ, a finite set of SH types Γ. Thus, it is defined
in the following way:

Γ = {initialization, selection, navigation, replacement, calculation, termination} (17)

Appl. Sci. 2021, 11, 6449 31 of 39

In this context, a subordinated heuristic is a self-contained piece of software that
performs a determined function. Consequently, an SH must work by receiving inputs and
returning a result in a defined format, independently of who is calling it. Therefore, SH
must follow an API definition and each type must specify the same signature. It is the base
feature to enable the SH exchange. Moreover, SHs also must have metadata to inform their
behaviors, classifying their abilities.

For example, to inform solution encoding that the SH knows how to manipulate.
Additionally, the metadata is essential to register the SH in a pool (it also applies to
MH metadata). It is crucial to support the replacement of SH during the search process
and enable the “search process manager” to replace SH properly because it knows their
behaviors and can select an equivalent.

Definition 18. Therefore, a subordinated heuristic is expressed as:

H = {h1, h2, . . . , hn}, ∀ h ∈ H , h = (σ, γ, a) (18)

where:

• h is an SH of a set of all SH implemented in the framework H = {h1, h2, . . . , hn};
• σ represents the metadata that describe some aspects of SH behaviors; and
• γ defines the type of subordinated heuristic; and
• a symbolizes the algorithm implementation, the SH itself.

Definition 19. A parameter k is stated in the following way:

K = {k1, k2, . . . , kn}, ∀ k ∈ K , k = (c, t) (19)

where:

• k is a parameter of a set defined by the metaheuristic K = {k1, k2, . . . , kn};
• c defines the parameter name; and
• t is the parameter data type.

Again, as defined in the problem, there is no metaheuristic superclass that subclasses
can follow or extend. In fact, for each metaheuristic algorithm, there must exist only one
class that receives a specification that determines its behavior. This class in design time is
abstract and only implements the higher-level cycle. It will only have an actual function in
run-time when the SHs received as input are linked to their roles. This behavior is based
on Strategy Design Pattern. Consequently, the framework must provide a helper class that
parses the specification, and instantiate the metaheuristic variation properly.

Definition 20. Therefore, metaheuristic specification can be defined in the following way:

m =
(
∆, K, p

)
→ x”best” (20)

where:

• m is a metaheuristic variation of the metaheuristic algorithm M that after a search running
return an optimal-solution and return the best-found solution x”best”;

• ∆ represents the “search roles decisions” ∆ =
{

δ1, δ2, . . . , δn
}

; and

• K defines the parameters values K =
{

k1, k2, . . . , kn

}
; and

• p represents the problem instance that will be resolved by the metaheuristic.

Definition 21. A “search role decision” δ is expressed as:

∆ =
{

δ1, δ2, . . . , δn
}

, ∀ δ ∈ ∆ , δ = (Θ, h) (21)

Appl. Sci. 2021, 11, 6449 32 of 39

where:

• Θ represents a role defined by the metaheuristic cycle; and
• h represents a subordinated heuristic that will perform a determined role in the search process.

The “search roles requests” ∆ = {δ1, δ2, . . . , δ1n} defines how a metaheuristic specifi-
cation must provide the subordinated metaheuristic in each required role ∆ =

{
δ1, δ2, . . . , δn

}
(search roles decisions). Consequently, each search role requested k = (c, t) requires a
search role decision δ = (Θ, h) when a metaheuristic is created.

Definition 22. A parameter value k is defined as:

K =
{

k1, k2, . . . , kn

}
, ∀ k ∈ K , k = (c, v) (22)

where:

• c defines the parameter name; and
• v defines the parameter value.

The parameters’ specification K = {k1, k2, . . . , kn} defines how a metaheuristic
specification must provide the parameters values K =

{
k1, k2, . . . , kn

}
. In other words,

each parameter specification k = (c, t) requires a parameter value k = (c, v) when a
metaheuristic is created.

Figure 8 below synthetizes all metaheuristics definitions and their relationships. It is
expressed in a higher-level class diagram.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 33 of 39

Figure 8. Metaheuristic definitions.

5. Research Gaps and Future Work

In this study, we explored, from various perspectives, concepts related to

combinatorial optimization problems and metaheuristics, with the aim of highlighting the

main challenges and issues that do not permit real progress in the field. Consequently, this

study highlights several potential future studies that can contribute to the actual

development of the area.

The main challenges and open question that represent interesting research avenues

are summarized as follows:

• Guidelines to organize the field are essential to avoid misinterpretation of concepts

and to compare metaheuristics characteristics and behaviors more efficiently and

standardly. Furthermore, a classification system is essential to promote effective

knowledge management and discussions of algorithms. However, a classification

system must be developed, recognized, and adopted by the community in the first

place. It is a clear, open question that must be answered soon.

• There is an absence of rigor and baseline tests to compare the performance of

metaheuristics. As a result, the studies commonly present a biased or poor/unfair

performance analysis. Thus, it demands a research line to develop standard

benchmarking tests that can be reused as a reference by studies that compare

metaheuristic performance. Moreover, the existence of a benchmarking database can

facilitate and improve the process of performance comparison. For example, a new

metaheuristic could be compared with all tested metaheuristics across several

benchmarking tests.

• There is a necessity to add more statistical analyses—beyond dispersion statistics

measures (e.g., mean, median, standard deviation, and outliers’ analysis)—to promote

more sophisticated comparisons and evaluate other aspects of metaheuristics’

performance.

Figure 8. Metaheuristic definitions.

Appl. Sci. 2021, 11, 6449 33 of 39

5. Research Gaps and Future Work

In this study, we explored, from various perspectives, concepts related to combina-
torial optimization problems and metaheuristics, with the aim of highlighting the main
challenges and issues that do not permit real progress in the field. Consequently, this study
highlights several potential future studies that can contribute to the actual development of
the area.

The main challenges and open question that represent interesting research avenues
are summarized as follows:

• Guidelines to organize the field are essential to avoid misinterpretation of concepts
and to compare metaheuristics characteristics and behaviors more efficiently and
standardly. Furthermore, a classification system is essential to promote effective
knowledge management and discussions of algorithms. However, a classification
system must be developed, recognized, and adopted by the community in the first
place. It is a clear, open question that must be answered soon.

• There is an absence of rigor and baseline tests to compare the performance of meta-
heuristics. As a result, the studies commonly present a biased or poor/unfair perfor-
mance analysis. Thus, it demands a research line to develop standard benchmarking
tests that can be reused as a reference by studies that compare metaheuristic perfor-
mance. Moreover, the existence of a benchmarking database can facilitate and improve
the process of performance comparison. For example, a new metaheuristic could be
compared with all tested metaheuristics across several benchmarking tests.

• There is a necessity to add more statistical analyses—beyond dispersion statistics mea-
sures (e.g., mean, median, standard deviation, and outliers’ analysis)—to promote more
sophisticated comparisons and evaluate other aspects of metaheuristics’ performance.

• It is necessary to remedy the absence of formalism to design and develop COP and
metaheuristics in a standard way to enable their scalability, extensibility, and reusabil-
ity. It is also an important aspect to avoid creating algorithms from scratch or develop-
ing algorithms that work only with one COP or are hard to adapt to a new situation.

• The demand for mathematical methods to evaluate other aspects of the metaheuristics
building blocks such as metrics and parameters for balance ratio of exploitation
and exploration, search space coverage, and solutions characteristics is essential.
These needs are important to support a dynamic (or more intelligent) behavior in a
metaheuristic during the search.

Nevertheless, we understand that many other research lines are also required, and,
unfortunately, we could not cover them due to some limitations and research decisions.
Consequently, we also strongly reinforce the necessity of research to evaluate other aspects
that could unleash the metaheuristic potential and promote the field’s evolution.

As future work, we are focused on the development of this framework, named ToGO
(Towards Global Optimal). In fact, it has already started and soon it will be shared with
the community. ToGO is an extensible open-box and open-source framework to solve
COP by using metaheuristics. ToGO also was conceived to enable the sharing of COP and
metaheuristics experiments; for example, by sharing their performance in a global database
that can be used by other studies.

Therefore, to evolve this framework, the research community must be involved. In
fact, it must be maintained by the community, as it is a fundamental assumption and critical
factor of success for this project. This is vital, especially considering the wide variety of
metaheuristics algorithms and support components that can be shared to improve the
quality of problems’ solutions. Thus, community cooperation can occur on three levels:
(1) the framework core components (version of distribution), (2) extensible components
that run above the structure, and (3) sharing data and metrics.

6. Discussion and Conclusions

The success of metaheuristics to solve the COP was demonstrated by the past 30 years
of intensive publications. They have proven their worth as efficient methods for solving

Appl. Sci. 2021, 11, 6449 34 of 39

challenging problems. In this period, numerous metaheuristics were created by exploring
several different approaches to investigate the search space. The research focus on novelty
was essential to the progress of the field.

Nevertheless, in the past decade, many new algorithms may not have necessarily
led to innovation. Since around 2017, some studies have started to criticize this excessive
focus on novelty (a factor proven in many studies since then). The research community
also has begun to highlight the lack of focus on field consolidation due to this strong focus
on new algorithm research. Additionally, they have pointed out the lack of standards for
organizing the field and guiding the design and development of COP and metaheuristics.

These points clearly show that we are living in a transition time in the field of COP and
metaheuristics. We are moving from a mindset focused on new algorithms—responsible
for past success—to a mindset more focused on increasing metaheuristics’ maturity as a
scientific field. Moreover, the COP and metaheuristics field also must follow the same
path that other machine learning algorithms take, such as deep learning, which evolved
considerably in past years.

This evidence, in a certain way, was already addressed by other studies. However,
even so, this page looks hard to be turned because the chances of publishing a new
algorithm are still high. Therefore, we argue that a new mindset for the future of COP and
metaheuristics must guide the research community to intensify the studies to put this field
at a higher maturity level.

In this study, we researched different aspects to feed this new required mindset,
focusing on the matureness of metaheuristics as a scientific field. The main challenges
that do not permit real progress of the field were highlighted. Moreover, the framework
proposed several potential solutions or paths to overcome these issues and contribute to
the progress of the field. The proposed framework aims to contribute to two perspectives
by providing (1) conceptual and (2) concrete drivers.

The conceptual level arranges all the framework definitions and the references to
develop and extend components of the framework (which defines the software pieces’
structure and function signatures). It also defines the ecosystem of components, their roles
and relationships, and the framework’s architecture. These conceptual definitions can also
be used as a basis to develop another framework for COP and MH. The concrete level is
the framework code itself and it will be delivered soon to the community.

A standard formalism tends to provide several benefits such as reusability, scalability,
extensibility, productivity, etc. Nevertheless, despite the advantages, a software framework
and a standard formalism may produce some side effects. These issues can be translated
into several questions that may lead to insights and improvements for the framework
development, such as:

• How can we reduce the learning curve to use and develop components for the framework?
• How can we guarantee the proper level of freedom to create new algorithms with-

out compromising the framework services and without compromising innovation
and creativity?

• How can we provide the required understanding and visibility of the built-in compo-
nents (black box to white box)?

• How can we enable changes in “core” components’ behaviors or permit the exchange
of “core” components with customized ones?

• How can we mitigate the possibility of reducing the performance of the algorithms?
(Since a software framework also may add some overhead and multi-purpose tends
to be slower than single-purpose algorithms.)

• How can we guarantee the quality of all contributions during the development of
the framework?

As a consequence, by recognizing the existence of potential issues, the ToGO frame-
work was envisioned by thinking on strategies necessary to mitigate or eliminate these
side effects. However, the questions above are only a small fraction of vital points and

Appl. Sci. 2021, 11, 6449 35 of 39

challenges that must be considered. Thus, it is necessary to evaluate more potential issues
and find suitable solutions for the framework development.

By way of illustration, the learning curve issue can be mitigated by good framework
documentation, examples of implementations, and a forum of discussions. In addition, a
simple software structure and a well-defined API can facilitate its usage and adoption—in
other words, create a software framework prepared and designed to facilitate its use and
extensibility (user-centered).

In addition, it is noteworthy that the ToGO was conceived as an open-source, white-
box, and extensible framework. Thus, it provides standard built-in modules that can
be reused when needed. Furthermore, it was designed as an effective interchangeable
software mechanism, where any “software piece” (core or not) can be replaced by another
“customized software piece” since it follows the framework API definitions. Therefore, the
ToGO was envisioned to maintain the possibility to develop algorithms from scratch and
replace any core components if it is necessary. The idea is to keep the framework flexible by
providing a proper level of freedom to create new algorithms and, at the same time, offer a
layer of several services. The nature and diversity of metaheuristics and COP demand this
feature from the framework to be a wide-range and robust software solution. For instance,
the lists of additional algorithms A = {α1, α2, . . . , αn} and B = {β1, β2, . . . , βn} were
conceived with this idea in mind, passing customized algorithms, problem knowledge, or
heuristics to the search process.

Moreover, the framework development will see several advantages of Python pro-
gramming language by using code injection and features of functional, object-oriented
programming paradigms. Additionally, the ecosystem of components is based on various
design patterns (i.e., strategy, decorator, template, builder, factory, etc.). Over and above
that, all software pieces are merely conceptual (placeholders) in design-time. These place-
holders are roles to be played that concrete software pieces offered in run-time will fulfill.

Furthermore, the framework does not use inheritance to reduce overhead. Thus,
the behavior changes occur by using interchangeable software mechanisms or by config-
uration management. Therefore, a search process, COP, or MH is assembled, function
by function, in run-time. Consequently, we believe this approach will take advantage
of the multi-purpose algorithms, but at the same time, the algorithms will behave like
specialist algorithms. However, this hypothesis must be tested and evaluated during the
development to mitigate the possible performance effects.

Nevertheless, we recognize that many other implications exist that must be considered
in the framework development. Consequently, dealing with these side effects is a critical
success factor in developing the framework properly. We also understand that the first
version will not resolve all implications. Therefore, the issues must be identified and
prioritized, and a roadmap of versions must cover these points. Again, we expect that
the community can perform a crucial role by raising issues and developing solutions to
strengthen the framework. Because of this, the active cooperation of the community is vital
for the progress of the field.

The framework can originate excellent software for educational and academic usage
initially. However, after its adoption and evolution as a tool, we also hope it could be used in
the business context, while keeping its open-source nature. As a final thought, this research
started based on the hypothesis that COP and MH can act as a “front-end” of any artificial
intelligence technique by considering that any technique configuration can be translated
into a combinatorial optimization problem. Consequently, the framework empowers the
metaheuristic approach by enabling them to act in a higher level of abstraction. Therefore,
after the consolidation of the ToGO, it may lead to a universal AI tool (front-end) with
low code and humanless automated features without compromising the interference
(customization) and understanding (white-box) of the user.

Appl. Sci. 2021, 11, 6449 36 of 39

Author Contributions: Conceptualization, F.P. and M.C.; methodology, F.P.; validation, F.P., M.C.;
investigation, F.P.; resources, M.C.; writing—original draft preparation, F.P.; writing—review and
editing, M.C.; visualization, F.P.; supervision, M.C.; project administration, F.P. and M.C.; funding
acquisition, M.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by national funds through the FCT (Fundação para a Ciência e a
Tecnologia) by the projects GADgET (DSAIPA/DS/0022/2018).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jahwar, A.F.; Abdulazeez, A.M. Meta-Heuristic Algorithms for K-Means Clustering: A Review. PalArch’s J. Archaeol. Egypt 2021,

17, 20.
2. Boussaïd, I.; Lepagnot, J.; Siarry, P. A Survey on Optimization Metaheuristics. Inf. Sci. 2013, 237, 82–117. [CrossRef]
3. Fister, I., Jr.; Yang, X.-S.; Fister, I.; Brest, J.; Fister, D. A Brief Review of Nature-Inspired Algorithms for Optimization. arXiv 2013,

arXiv:1307.4186.
4. Parejo, J.A.; Ruiz-Cortés, A.; Lozano, S.; Fernandez, P. Metaheuristic Optimization Frameworks: A Survey and Benchmarking.

Soft Comput. 2012, 16, 527–561. [CrossRef]
5. Eshtay, M.; Faris, H.; Obeid, N. Metaheuristic-Based Extreme Learning Machines: A Review of Design Formulations and

Applications. Int. J. Mach. Learn. Cybern. 2019, 10, 1543–1561. [CrossRef]
6. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. Metaheuristic Research: A Comprehensive Survey. Artif. Intell. Rev. 2019,

52, 2191–2233. [CrossRef]
7. Gogna, A.; Tayal, A. Metaheuristics: Review and Application. J. Exp. Theor. Artif. Intell. 2013, 25, 503–526. [CrossRef]
8. Abdmouleh, Z.; Gastli, A.; Ben-Brahim, L.; Haouari, M.; Al-Emadi, N.A. Review of Optimization Techniques Applied for the

Integration of Distributed Generation from Renewable Energy Sources. Renew. Energy 2017, 113, 266–280. [CrossRef]
9. Brownlee, A.E.I.; Woodward, J.R.; Swan, J. Metaheuristic Design Pattern: Surrogate Fitness Functions. In Proceedings of the

Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July
2015; pp. 1261–1264.

10. Juan, A.A.; Faulin, J.; Grasman, S.E.; Rabe, M.; Figueira, G. A Review of Simheuristics: Extending Metaheuristics to Deal with
Stochastic Combinatorial Optimization Problems. Oper. Res. Perspect. 2015, 2, 62–72. [CrossRef]

11. Juan, A.A.; Kelton, W.D.; Currie, C.S.M.; Faulin, J. Simheuristics Applications: Dealing with Uncertainty in Logistics, Transporta-
tion, and Other Supply Chain Areas. In Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden,
9–12 December 2018; pp. 3048–3059.

12. Molina, D.; Poyatos, J.; Del Ser, J.; García, S.; Hussain, A.; Herrera, F. Comprehensive Taxonomies of Nature- and Bio-Inspired
Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations. Cogn. Comput. 2020, 12, 897–939.
[CrossRef]

13. Del Ser, J.; Osaba, E.; Molina, D.; Yang, X.-S.; Salcedo-Sanz, S.; Camacho, D.; Das, S.; Suganthan, P.N.; Coello Coello, C.A.;
Herrera, F. Bio-Inspired Computation: Where We Stand and What’s Next. Swarm Evol. Comput. 2019, 48, 220–250. [CrossRef]

14. Glover, F.; Kochenberger, G.A. Handbook of Metaheuristics; Springer: New York, NY, USA, 2003.
15. Sorensen, K.; Sevaux, M.; Glover, F. A History of Metaheuristics. arXiv 2017, arXiv:1704.00853v1.
16. Nesmachnow, S. An Overview of Metaheuristics: Accurate and Efficient Methods for Optimisation. Int. J. Metaheuristics 2014,

3, 320. [CrossRef]
17. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
18. Piotrowski, A.P. Regarding the Rankings of Optimization Heuristics Based on Artificially-Constructed Benchmark Functions. Inf.

Sci. 2015, 297, 191–201. [CrossRef]
19. Stegherr, H.; Heider, M.; Hähner, J. Classifying Metaheuristics: Towards a Unified Multi-Level Classification System. Nat. Comput.

2020, 1–17. [CrossRef]
20. Swan, J.; Adriaensen, S.; Brownlee, A.E.I.; Hammond, K.; Johnson, C.G.; Kheiri, A.; Krawiec, F.; Merelo, J.J.; Minku, L.L.;

Özcan, E.; et al. Metaheuristics “In the Large”. arXiv 2021, arXiv:2011.09821Cs.
21. Mitchell, T.M. Machine Learning; McGraw-Hill Series in Computer Science; McGraw-Hill: New York, NY, USA, 1997;

ISBN 9780070428072.
22. Antoniou, A.; Murray, W.; Wright, M.H. Practical Optimization: Algorithms and Engineering Applications; Springer: New York, NY,

USA, 2007; ISBN 9780387711065.
23. Ponce-Ortega, J.M.; Hernández-Pérez, L.G. Optimization of Process Flowsheets through Metaheuristic Techniques; Springer Interna-

tional Publishing: Cham, Switzerland, 2019; ISBN 9783319917214.
24. Tang, K.S. (Ed.) Multiobjective Optimization Methodology: A Jumping Gene Approach; Industrial Electronics Series; CRC Press:

Boca Raton, FL, USA, 2012; ISBN 9781439899199.

http://doi.org/10.1016/j.ins.2013.02.041
http://doi.org/10.1007/s00500-011-0754-8
http://doi.org/10.1007/s13042-018-0833-6
http://doi.org/10.1007/s10462-017-9605-z
http://doi.org/10.1080/0952813X.2013.782347
http://doi.org/10.1016/j.renene.2017.05.087
http://doi.org/10.1016/j.orp.2015.03.001
http://doi.org/10.1007/s12559-020-09730-8
http://doi.org/10.1016/j.swevo.2019.04.008
http://doi.org/10.1504/IJMHEUR.2014.068914
http://doi.org/10.1109/4235.585893
http://doi.org/10.1016/j.ins.2014.11.023
http://doi.org/10.1007/s11047-020-09824-0

Appl. Sci. 2021, 11, 6449 37 of 39

25. Yang, X.-S. Metaheuristic Optimization. Scholarpedia 2011, 6, 11472. [CrossRef]
26. Yang, X.-S. Nature-Inspired Optimization Algorithms, 1st ed.; Elsevier: Amsterdam, The Netherland; Boston, MA, USA, 2014;

ISBN 9780124167438.
27. Bianchi, L.; Dorigo, M.; Gambardella, L.M.; Gutjahr, W.J. A Survey on Metaheuristics for Stochastic Combinatorial Optimization.

Nat. Comput. 2009, 8, 239–287. [CrossRef]
28. Stork, J.; Eiben, A.E.; Bartz-Beielstein, T. A New Taxonomy of Continuous Global Optimization Algorithms. Nat. Comput.

2020, 1–24. [CrossRef]
29. Gendreau, M.; Potvin, J.-Y. (Eds.) Handbook of Metaheuristics; International Series in Operations Research & Management Science;

Springer International Publishing: Cham, Switzerland, 2019; Volume 272, ISBN 9783319910857.
30. Korte, B.; Vygen, J. Combinatorial Optimization; Algorithms and Combinatorics; Springer: Berlin/Heidelberg, Germany, 2012;

Volume 21, ISBN 9783642244872.
31. KumarBhati, R.; Rasool, A. Quadratic Assignment Problem and Its Relevance to the Real World: A Survey. Int. J. Comput. Appl.

2014, 96, 42–47. [CrossRef]
32. Dostál, J. Theory of Problem Solving. Procedia Soc. Behav. Sci. 2015, 174, 2798–2805. [CrossRef]
33. Bandaru, S.; Deb, K. Metaheuristic Techniques. In Decision Sciences; Sengupta, R., Gupta, A., Dutta, J., Eds.; CRC Press: Boca

Raton, FL, USA, 2016; pp. 693–750. ISBN 9781466564305.
34. Blum, C.; Roli, A. Hybrid Metaheuristics: An Introduction. In Hybrid Metaheuristics; Blum, C., Aguilera, M.J.B., Roli, A.,

Sampels, M., Eds.; Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2008; Volume 114, pp. 1–30.
ISBN 9783540782940.

35. Papadimitriou, C.; Steiglitz, K. Combinatorial Optimization:Algorithms and Complexity. IEEE Trans. Acoust. Speech Signal Process.
1984, 32, 1258–1259. [CrossRef]

36. Blum, C. Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Comput. Surv. 2003, 35, 41.
[CrossRef]

37. Woon, S.F.; Rehbock, V. A Critical Review of Discrete Filled Function Methods in Solving Nonlinear Discrete Optimization
Problems. Appl. Math. Comput. 2010, 217, 25–41. [CrossRef]

38. Liu, Q.; Li, X.; Liu, H.; Guo, Z. Multi-Objective Metaheuristics for Discrete Optimization Problems: A Review of the State-of-the-
Art. Appl. Soft Comput. 2020, 93, 106382. [CrossRef]

39. Sergienko, I.V.; Shylo, V.P. Problems of Discrete Optimization: Challenges and Main Approaches to Solve Them. Cybern. Syst.
Anal. 2006, 42, 465–482. [CrossRef]

40. Xin, B.; Chen, L.; Chen, J.; Ishibuchi, H.; Hirota, K.; Liu, B. Interactive Multiobjective Optimization: A Review of the State-of-the-
Art. IEEE Access 2018, 6, 41256–41279. [CrossRef]

41. Sawaragi, Y.; Nakayama, H.; Tanino, T. Theory of Multiobjective Optimization; Acadamic Press: Orlando, FL, USA, 1985; p. 311.
42. Peitz, S.; Dellnitz, M. A Survey of Recent Trends in Multiobjective Optimal Control—Surrogate Models, Feedback Control and

Objective Reduction. Math. Comput. Appl. 2018, 23, 30. [CrossRef]
43. Boissier, M.; Schlosser, R.; Uflacker, M. Hybrid Data Layouts for Tiered HTAP Databases with Pareto-Optimal Data Place-

ments. In Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, France, 16–19 April
2018; pp. 209–220.

44. Chinchuluun, A.; Pardalos, P.M.; Migdalas, A.; Pitsoulis, L. (Eds.) Pareto Optimality, Game Theory and Equilibria; Springer
Optimization and Its Applications; Springer: New York, NY, USA, 2008; Volume 17, ISBN 9780387772462.

45. Li, M.; Yang, S.; Liu, X. Pareto or Non-Pareto: Bi-Criterion Evolution in Multiobjective Optimization. IEEE Trans. Evol. Comput.
2016, 20, 645–665. [CrossRef]

46. Baños, R.; Gil, C.; Paechter, B.; Ortega, J. A Hybrid Meta-Heuristic for Multi-Objective Optimization: MOSATS. J. Math. Model.
Algorithms 2007, 6, 213–230. [CrossRef]

47. Doerner, K.F.; Maniezzo, V. Metaheuristic Search Techniques for Multi-Objective and Stochastic Problems: A History of the
Inventions of Walter J. Gutjahr in the Past 22 Years. Cent. Eur. J. Oper. Res. 2018, 26, 331–356. [CrossRef]

48. Bonyadi, M.R.; Michalewicz, Z.; Przybylek, M.R.; Wierzbicki, A. Socially Inspired Algorithms for the Travelling Thief Problem. In
Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 July 2014;
pp. 421–428.

49. Przybylek, M.R.; Wierzbicki, A.; Michalewicz, Z. Multi-Hard Problems in Uncertain Environment. In Proceedings of the Genetic
and Evolutionary Computation Conference 2016, Denver, CO, USA, 20–24 July 2016; pp. 381–388.

50. Przybylek, M.R.; Wierzbicki, A.; Michalewicz, Z. Decomposition Algorithms for a Multi-Hard Problem. Evol. Comput. 2018,
26, 507–533. [CrossRef] [PubMed]

51. Oliva, D.; Copado, P.; Hinojosa, S.; Panadero, J.; Riera, D.; Juan, A.A. Fuzzy Simheuristics: Solving Optimization Problems under
Stochastic and Uncertainty Scenarios. Mathematics 2020, 8, 2240. [CrossRef]

52. Neumann, F.; Witt, C. Combinatorial Optimization and Computational Complexity; Springer: Berlin/Heidelberg, Germany, 2010.
53. Fister, I.; Fister, I., Jr.; Yang, X.-S.; Brest, J. A Comprehensive Review of Firefly Algorithms. Swarm Evol. Comput. 2013, 13, 34–46.

[CrossRef]
54. Nordin, N.N.; Lee, L.-S. Heuristics and Metaheuristics Approaches for Facility Layout Problems: A Survey. Pertanika J. Sch. Res.

Rev. 2016, 2, 15.

http://doi.org/10.4249/scholarpedia.11472
http://doi.org/10.1007/s11047-008-9098-4
http://doi.org/10.1007/s11047-020-09820-4
http://doi.org/10.5120/16825-6584
http://doi.org/10.1016/j.sbspro.2015.01.970
http://doi.org/10.1109/TASSP.1984.1164450
http://doi.org/10.1145/937503.937505
http://doi.org/10.1016/j.amc.2010.05.009
http://doi.org/10.1016/j.asoc.2020.106382
http://doi.org/10.1007/s10559-006-0086-3
http://doi.org/10.1109/ACCESS.2018.2856832
http://doi.org/10.3390/mca23020030
http://doi.org/10.1109/TEVC.2015.2504730
http://doi.org/10.1007/s10852-006-9041-6
http://doi.org/10.1007/s10100-018-0522-2
http://doi.org/10.1162/evco_a_00211
http://www.ncbi.nlm.nih.gov/pubmed/28632397
http://doi.org/10.3390/math8122240
http://doi.org/10.1016/j.swevo.2013.06.001

Appl. Sci. 2021, 11, 6449 38 of 39

55. Adetunji, K.E.; Hofsajer, I.W.; Abu-Mahfouz, A.M.; Cheng, L. A Review of Metaheuristic Techniques for Optimal Integration of
Electrical Units in Distribution Networks. IEEE Access 2021, 9, 5046–5068. [CrossRef]

56. Almonacid, B. AutoMH: Automatically Create Evolutionary Metaheuristic Algorithms Using Reinforced Learning. Math. Comput.
Sci. 2021. [CrossRef]

57. Sörensen, K. Metaheuristics-the Metaphor Exposed. Int. Trans. Oper. Res. 2015, 22, 3–18. [CrossRef]
58. Črepinšek, M.; Liu, S.-H.; Mernik, M. Exploration and Exploitation in Evolutionary Algorithms: A Survey. ACM Comput. Surv.

2013, 45, 1–33. [CrossRef]
59. Xu, J.; Zhang, J. Exploration-Exploitation Tradeoffs in Metaheuristics: Survey and Analysis. In Proceedings of the 33rd Chinese

Control Conference, Nanjing, China, 28–30 July 2014; pp. 8633–8638.
60. Tzanetos, A.; Fister, I.; Dounias, G. A Comprehensive Database of Nature-Inspired Algorithms. Data Brief 2020, 31, 105792.

[CrossRef] [PubMed]
61. Lones, M.A. Metaheuristics in Nature-Inspired Algorithms. In Proceedings of the Companion Publication of the 2014 Annual

Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 July 2014; pp. 1419–1422.
62. Lones, M.A. Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms. SN Comput. Sci. 2020, 1, 49.

[CrossRef]
63. Akhtar, A. Evolution of Ant Colony Optimization Algorithm—A Brief Literature Review. arXiv 2019, arXiv:1908.08007.
64. Moles, C.G. Parameter Estimation in Biochemical Pathways: A Comparison of Global Optimization Methods. Genome Res. 2003,

13, 2467–2474. [CrossRef] [PubMed]
65. Shi, J.; Zhang, Q. A New Cooperative Framework for Parallel Trajectory-Based Metaheuristics. Appl. Soft Comput. 2018,

65, 374–386. [CrossRef]
66. Talbi, E.-G. A Taxonomy of Hybrid Metaheuristics. J. Heuristics 2002, 8, 541–564. [CrossRef]
67. Talbi, E.-G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 9780470278581.
68. Li, Z.; Tam, V.; Yeung, L.K. An Adaptive Multi-Population Optimization Algorithm for Global Continuous Optimization. IEEE

Access 2021, 9, 19960–19989. [CrossRef]
69. Toczé, K.; Nadjm-Tehrani, S. A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing. Wirel.

Commun. Mob. Comput. 2018, 2018, 1–23. [CrossRef]
70. Anantharaj, B.; Balaji, N.; Basha, M.S.S.; Vengattaraman, T. A Survey of Nature Inspired Algorithms. Int. J. Appl. Eng. Res. 2015,

10, 13.
71. Chakraborty, A.; Kar, A.K. Swarm Intelligence: A Review of Algorithms. In Nature-Inspired Computing and Optimization; Patnaik, S.,

Yang, X.-S., Nakamatsu, K., Eds.; Modeling and Optimization in Science and Technologies; Springer International Publishing:
Cham, Switzerland, 2017; Volume 10, pp. 475–494. ISBN 9783319509198.

72. Rajakumar, R.; Dhavachelvan, P.; Vengattaraman, T. A Survey on Nature Inspired Meta-Heuristic Algorithms with Its Domain
Specifications. In Proceedings of the 2016 International Conference on Communication and Electronics Systems (ICCES),
Coimbatore, India, 21–22 October 2016; pp. 1–6.

73. Crespo-Cano, R.; Cuenca-Asensi, S.; Fernández, E.; Martínez-Álvarez, A. Metaheuristic Optimisation Algorithms for Tuning a
Bioinspired Retinal Model. Sensors 2019, 19, 4834. [CrossRef]

74. Kamath, S.S.; Ananthanarayana, V.S. A Bio-Inspired, Incremental Clustering Algorithm for Semantics-Based Web Service
Discovery. Int. J. Reason. Based Intell. Syst. 2015, 7, 261. [CrossRef]

75. Li, G.; Jin, Y.; Akram, M.W.; Chen, X.; Ji, J. Application of Bio-Inspired Algorithms in Maximum Power Point Tracking for PV
Systems under Partial Shading Conditions—A Review. Renew. Sustain. Energy Rev. 2018, 81, 840–873. [CrossRef]

76. Martarelli, N.J.; Nagano, M.S. Unsupervised Feature Selection Based on Bio-Inspired Approaches. Swarm Evol. Comput. 2020,
52, 100618. [CrossRef]

77. Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A Survey on New Generation Metaheuristic Algorithms. Comput. Ind. Eng.
2019, 137, 106040. [CrossRef]

78. Baghel, M.; Agrawal, S.; Silakari, S. Survey of Metaheuristic Algorithms for Combinatorial Optimization. Int. J. Comput. Appl.
2012, 58, 21–31. [CrossRef]

79. Bhattacharyya, S. (Ed.) Hybrid Metaheuristics for Image Analysis; Springer International Publishing: Cham, Switzerland, 2018;
ISBN 9783319776248.

80. Blum, C.; Puchinger, J.; Raidl, G.; Roli, A. Hybrid Metaheuristics. In Hybrid Optimization; Van Hentenryck, P., Milano, M., Eds.;
Springer Optimization and Its Applications; Springer: New York, NY, USA, 2011; Volume 45, pp. 305–335. ISBN 9781441916433.

81. Muthuraman, S.; Venkatesan, V.P. A Comprehensive Study on Hybrid Meta-Heuristic Approaches Used for Solving Combinatorial
Optimization Problems. In Proceedings of the 2017 World Congress on Computing and Communication Technologies (WCCCT),
Tiruchirappalli, India, 2–4 February 2017; pp. 185–190.

82. Urli, T. Hybrid Meta-Heuristics for Combinatorial Optimization. Constraints 2015, 20, 473. [CrossRef]
83. Pellerin, R.; Perrier, N.; Berthaut, F. A Survey of Hybrid Metaheuristics for the Resource-Constrained Project Scheduling Problem.

Eur. J. Oper. Res. 2020, 280, 395–416. [CrossRef]
84. Birattari, M.; Paquete, L.; Stützle, T. Classification of Metaheuristics and Design of Experiments for the Analysis of Components;

Darmstadt University of Technology: Darmstadt, Germany, November 2001.

http://doi.org/10.1109/ACCESS.2020.3048438
http://doi.org/10.20944/preprints202101.0048.v1
http://doi.org/10.1111/itor.12001
http://doi.org/10.1145/2480741.2480752
http://doi.org/10.1016/j.dib.2020.105792
http://www.ncbi.nlm.nih.gov/pubmed/32577446
http://doi.org/10.1007/s42979-019-0050-8
http://doi.org/10.1101/gr.1262503
http://www.ncbi.nlm.nih.gov/pubmed/14559783
http://doi.org/10.1016/j.asoc.2018.01.022
http://doi.org/10.1023/A:1016540724870
http://doi.org/10.1109/ACCESS.2021.3054636
http://doi.org/10.1155/2018/7476201
http://doi.org/10.3390/s19224834
http://doi.org/10.1504/IJRIS.2015.072953
http://doi.org/10.1016/j.rser.2017.08.034
http://doi.org/10.1016/j.swevo.2019.100618
http://doi.org/10.1016/j.cie.2019.106040
http://doi.org/10.5120/9391-3813
http://doi.org/10.1007/s10601-015-9209-7
http://doi.org/10.1016/j.ejor.2019.01.063

Appl. Sci. 2021, 11, 6449 39 of 39

85. Barr, R.S.; Golden, B.L.; Kelly, J.P.; Resende, M.G.C.; Stewart, W.R. Designing and Reporting on Computational Experiments with
Heuristic Methods. J. Heuristics 1995, 1, 9–32. [CrossRef]

86. McGeoch, C.C.; Moret, B.M.E. How to Present a Paper on Experimental Work with Algorithms. ACM SIGACT News 1999,
30, 85–90. [CrossRef]

87. Huang, C.; Li, Y.; Yao, X. A Survey of Automatic Parameter Tuning Methods for Metaheuristics. IEEE Trans. Evol. Comput. 2020,
24, 201–216. [CrossRef]

88. Weinand, J.M.; Sörensen, K.; Segundo, P.S.; Kleinebrahm, M.; McKenna, R. Research Trends in Combinatorial Optimization. Int.
Trans. Oper. Res. 2021. [CrossRef]

89. Fong, S.; Wang, X.; Xu, Q.; Wong, R.; Fiaidhi, J.; Mohammed, S. Recent Advances in Metaheuristic Algorithms: Does the Makara
Dragon Exist? J. Supercomput. 2016, 72, 3764–3786. [CrossRef]

90. García-Martínez, C.; Gutiérrez, P.D.; Molina, D.; Lozano, M.; Herrera, F. Since CEC 2005 Competition on Real-Parameter
Optimisation: A Decade of Research, Progress and Comparative Analysis’s Weakness. Soft Comput. 2017, 21, 5573–5583.
[CrossRef]

91. Črepinšek, M.; Liu, S.-H.; Mernik, L.; Mernik, M. Is a Comparison of Results Meaningful from the Inexact Replications of
Computational Experiments? Soft Comput. 2016, 20, 223–235. [CrossRef]

92. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Naseem, R. Common Benchmark Functions for Metaheuristic Evaluation: A Review. Int.
J. Inf. Vis. 2017, 1, 218. [CrossRef]

93. Swan, J.; De Causmaecker, P.; Martin, S.; Özcan, E. A Re-characterization of Hyper-Heuristics. In Recent Developments in
Metaheuristics; Amodeo, L., Talbi, E.-G., Yalaoui, F., Eds.; Operations Research/Computer Science Interfaces Series; Springer
International Publishing: Cham, Switzerland, 2018; Volume 62, pp. 75–89. ISBN 9783319582528.

http://doi.org/10.1007/BF02430363
http://doi.org/10.1145/337885.337899
http://doi.org/10.1109/TEVC.2019.2921598
http://doi.org/10.1111/itor.12996
http://doi.org/10.1007/s11227-015-1592-8
http://doi.org/10.1007/s00500-016-2471-9
http://doi.org/10.1007/s00500-014-1493-4
http://doi.org/10.30630/joiv.1.4-2.65

	Introduction
	Research Objective and Questions
	Out of Scope (Delimitations)

	Materials and Methods
	Optimization
	Optimization Problem
	Combinatorial Optimization Problem Classification System
	Number of Objectives: Single Objective Versus Multi-Objective
	Optimization Objective Direction
	Subproblems (Single-Problem Versus Multi-Problem)
	Unconstrained Versus Constrained
	Artificial Versus Real-World Problem
	Solution Encoding
	Problem Data Environment
	Problem’s Computational Complexity

	Heuristics
	Metaheuristics
	Metaheuristic System of Classifications
	Optimization Method
	Navigation Scope Strategy
	Solution Search Strategy
	Solution Creation Strategy
	Source of Inspiration
	Memory Strategy
	Purebred Versus Hybrid
	Data Environment
	Solution’s Encoding
	Parallel Processing
	Capacity to Alter the Fitness Function

	Metaheuristics Require Experiments to Evaluate Algorithms’ Performance

	Challenges, Research Gaps, and Issues
	Lack of Guidelines to Organize the Field
	Focus in Developing New Algorithms Versus “No Focus in Consolidation”
	Experiments and Performance Evaluation Issues
	Absence of Formalism to Design and Develop COP and Metaheuristics
	Support Structure to Not Start from Scratch

	Results: Standardization, Methodology, and Framework for COP and Metaheuristics
	Framework Structure
	Repository (Local and Global)
	Search Process Management
	Problem Representation System
	Problem and Solution Evaluation
	External Environment (Simulation)
	Search Process Intelligence
	Memory and Persistence
	Experiment Runner

	Problem Representation: Formulation and Standards
	Problem Template (PT) Definitions
	Problem Instance (PI) Definitions

	Metaheuristics General Specification

	Research Gaps and Future Work
	Discussion and Conclusions
	References

