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Abstract: This research addresses a variant of the traveling salesman problem in drone-based delivery
systems known as the TSP-D. The TSP-D is a combinatorial optimization problem in which a truck
and a drone collaborate to deliver parcels to customers, with the objective of minimizing the total
delivery time. Determining the optimal solution is NP-hard; thus, the size of the problems that can be
solved optimally is limited. Therefore, metaheuristics are used to solve the problem. Metaheuristics
are adaptive and intelligent algorithms that have proved their success in many similar problems. In
this study, a solution to the TSP-D problem using the greedy, randomized adaptive search procedure
with two local search alternatives and a self-adaptive neighborhood selection scheme is presented.
The proposed approach was tested on 200 instances with different properties from the publicly
available “Instances of TSP with Drone” benchmark. Results were evaluated against state-of-the-art
algorithms. Non-parametric statistical tests concluded that the proposed approach has comparable
performance to the rival algorithms (p = 0.074) in terms of tour duration. The proposed approach has
better or similar performance in instances where the drone and truck have the same speed (α = 1).

Keywords: GRASP; TSP-D; optimization; routing; metaheuristics; drone

1. Introduction

Over the last few years, drones have been adopted in many sectors [1,2], especially
the commercial sector [3,4]. Drones are now deployed to support parcel delivery, an area
that has traditionally been handled by trucks. Moreover, the COVID-19 pandemic has
taken a significant toll on people all over the world [5]. Drones have helped people
to comply with social distancing rules, as they provide contact-free delivery services.
In addition, drones help with transportation logistics in many ways, such as avoiding traffic
congestion, allowing for faster deliveries, and providing lower transportation costs [6].
However, there is an upper limit for the parcel weight, as drones cannot carry heavy
parcels [7]. Additionally, drones are battery-powered, thereby limiting their delivery ranges.
In contrast, truck delivery can work over a longer range, as it is fuel-based, and trucks can
carry heavy and large parcels. Nonetheless, traditional truck delivery is slow and has high
transportation costs [6]. Combining both truck and drone delivery could minimize the
total operational costs and time, thereby enhancing the quality of service. This variant of
the traveling salesman problem (TSP) [8,9] is known as the traveling salesman problem
with drone (TSP-D) [6,10].

1.1. Problem Description

The TSP-D is defined on a graph G = (V, A), where A is a set of arcs, each of which
links two nodes in V. V = {0, . . . , n + 1}, where nodes 0 and n + 1 represent the start point
and the depot, duplicating the start and return points; the nodes 1, . . . , n are customer
locations. The set of customers is represented by N = {1, . . . , n}. The set of customers that
are served by a drone is denoted by Vd ⊆ N (Figure 1) [11].
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Figure 1. TSP vs. TSP-D for a graph of size n = 9: (a) displays an optimal TSP route without the aid
of a drone; and (b) displays a TSP-D route, where the drone is launched from a truck, delivering
parcels to two customers.

If a customer is served by a truck, it is called a truck delivery, whereas if a customer is
served by a drone, it is called a drone delivery. The drone delivery is represented as a tuple
< i, j, k >, in which i is the launch node (i.e., the node where the truck launches the drone,
as in nodes 1 and 6 in Figure 1b), j is the drone node (i.e., the node that the drone delivers
the parcel to, as in nodes 2 and 7 in Figure 1b), and k is the rendezvous node (i.e., where the
truck and drone meet again, as in nodes 3 and 9 in Figure 1b); k can either be a customer
location or the depot. A sortie refers to a sequence of nodes between a launch node and
a rendezvous node. For example, the sequences < 1, 2, 3 > and < 6, 7, 8, 9 > represent
two distinct sorties in Figure 1b. The drone has a constant level of endurance, defined as
the maximum time that the drone can fly without needing to be charged. < i, j, k > is a
feasible solution for a drone delivery when i 6= j, j 6= k, k 6= i, tij + tjk ≤ e , where tij is the
time taken by the drone to move from i to j, tjk is the time taken by the drone to move from
j to k, and e is the drone’s endurance. The drone path follows the road on the network for
safety. The objective of the TSP-D is to find the tour with the shortest delivery time such
that all customer locations are served by either the truck or the drone. The pickup, delivery,
and recharging times of the drone are neglected.

There are additional constraints that need to be considered:

• Both vehicles must start from and return to the depot;
• Customers can only be served once, either by the drone or the truck;
• The drone does not have a rendezvous node before the delivery drone node;
• The drone cannot serve more than one customer between nodes i and j.

A very similar problem to the TSP-D is the flying sidekick traveling salesman problem
(FSTSP) [12]. The FSPSP is also a collaboration between a single truck and a single drone to
deliver parcels to customers. The difference between the TSP-D and FSTSP is that in the
FSTSP, two metrics are used for the distance—one for the truck (Manhattan distance) and
one for the drone (Euclidean distance)—as the drone can fly directly from the launch point
to the destination, thereby ignoring road restrictions. In the TSP-D, however, the drone
must follow the road network.

The TSP-D is considered an NP-hard problem [13]. Exact methods have been used
to solve the TSP-D [13–16]; however, due to computational limitations, these methods are
only feasible on instances of limited sizes. Heuristics and metaheuristics are generally
used to minimize the tour costs. Several taxonomies have been proposed for use in
metaheuristics [17,18], among which solution and population-based approaches are the
most common classifications.

The route-first, partition-second approach has been used in all reviewed studies.
In this approach, the TSP route is constructed first, as if there were no drone. Following
that, the drone nodes are selected and removed from the truck route. The Concorde
TSP solver [19–21] is an exact algorithm which is able to find the optimal solution for
a traditional TSP problem that includes instances with a large number of nodes. Many
studies have used Concorde for the routing step [10,22–24].
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1.2. The Original Solution to the TSP-D

Agatz et al. [10] have proposed several heuristics that are able to provide fast and
acceptable solutions for instances of reasonable sizes. First, they constructed a truck-only
tour using either the Concorde TSP solver or Kruskal’s minimum spanning tree algorithm.
Next, two approaches were proposed to classify some nodes as drone nodes. The first
approach was a fast greedy heuristic, and the second approach was an exact partitioning
algorithm based on dynamic programming. In both approaches, the order in which the
nodes are visited remains unchanged. Both the greedy heuristic and the exact partitioning
algorithm depend on the initial TSP tour. Therefore, the authors decided to start with a
variety of initial tours, in order to determine whether they could obtain a better solution.
They applied several heuristics based on the local search (LS) method, which modified the
initial tour. Then they iteratively sought improvements. Several neighborhood functions
were considered, which yielded several versions. In one of the versions, all neighborhoods
were examined and the best neighbor generated in each iteration was selected.

The authors chose to run their experiments using the most challenging instances,
where there were no limitations on the drone range and all locations could be visited by
both drone and truck [23]. The greedy approach solved all instances with 100 nodes in a
few seconds, but with limited savings in time relative to the original TSP tour. In contrast,
the run time of the exact partitioning heuristics method increased tremendously with the
number of nodes.

1.3. Solution-Based Metaheuristic Approaches to TSP-D

Solution-based metaheuristics have been used in previous studies to solve the TSP-
D [6,11,25] and related FSTSP problems [12,22–24]. An initial tour for the simulated
annealing algorithm [26] was implemented by Ponza [22] using a nearest-neighbor heuristic.
To make a move (i.e., selecting a drone node for a sortie), several neighbors were randomly
generated, and the roulette-wheels selection method [27] was used to choose a neighbor.
De Freitas and Penna [23] first found the optimal solution for the TSP using the Concorde
solver. The initial solution for the FSTSP was then defined, using a heuristic utilizing a
greedy approach. This procedure removes a truck customer and assigns it to a drone,
effectively partitioning the truck route into sub-routes. The initial solution was optimized
using the variable neighborhood search [28]. Seven different neighborhood structures
were used and randomly selected, resulting in a change in the original sequence of node
visits. Similarly, de Freitas and Penna [23,29] used a randomized variable neighborhood
descent heuristic with five different neighborhoods. Ha et al. [11] attempted to solve the
TSP-D using two heuristics, TSP-LS and GRASP. The aim of this paper was to minimize
the total operational cost of the two vehicles. In each iteration, a new giant tour (TSP tour)
was generated using three different heuristics: k-nearest neighbors, k-cheapest insertion,
and random insertion. A split algorithm built the minimum cost (min-cost) TSP-D solution
from the giant tour solution by substituting a truck customer with a drone. After building
the min-cost solution, the LS improved the solution using four move operators. The tests
conducted in this study showed that the k-nearest neighbors generated a better min-cost
TSP, when compared with k-cheapest insertion and random insertion. The quality of
solutions obtained with GRASP outperformed those obtained with TSP-LS. However,
TSP-LS was faster than GRASP. The proposed GRASP method has been modified by
Marinelli et al. [6], such that the drone can launch from and join the truck not only at a
customer node, but also along the route.

1.4. Population-Based Metaheuristic Approaches to TSP-D

Özog̃u et al. [30] proposed a solution to the FSTSP: a hybrid approach combining a
genetic algorithm (GA) [31] and Clarke and Wright’s savings algorithm (CW) [32]. In this
approach, the GA is used to assign the drone and truck to the customers. Following that,
the sequence of the customers is determined using the CW. The aforementioned process
continues until a specified number of iterations is reached. The authors proposed multiple
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specific mathematical assumptions for the problem. The most consequential assumption is
that the drone must launch and return to the truck at the same node, resulting in an increase
in the waiting time of the truck. Ha et al. [33] used another hybrid GA, called the HGA,
to solve the TSP-D with both minimum time (min-time) and minimum cost (min-cost)
objectives. To improve the HGA’s quality, the authors educated their offspring using LS
methods. The authors designed a hill-climbing and first-improvement LS to address the
min-time and min-cost objectives. In addition, the authors developed a restoration method
to “educate” the TSP-D solution. Ferrandez et al. [34] used K-means clustering to help to
find the truck stops, which were also the drone launch points. A GA was used to solve
the truck route as a TSP. Houseknecht [35] implemented an extension of the classical ant
system [36]. Using ant pairs is essential for the TSP-D, as a truck route and a drone route
are needed every time the tour is constructed. When constructing its own path, every ant
in the pair lays down a pheromone which is different from those the others. Every ant type
is attracted to its own pheromone.

1.5. Discussion of Previous Approaches

Solution-based metaheuristic methods can be less destructive than population-based
methods. For instance, genetic operators can drastically change the characteristics of the
current solution. The use of generic genetic operators may lead to infeasible solutions.
Restorative steps can repair the obtained solution, in some cases. Solution-based meth-
ods are more inclined to undergo intensification. Notably, several studies have utilized a
considerable number of neighborhood structures (e.g., seven [23] or five [10,28]). The neigh-
borhood structure for the next move has been chosen randomly or pseudo-randomly.

Population-based methods also work much more slowly than solution-based methods,
as population-based methods process an entire population of solutions in each iteration.
For instance, HGA was found to be 1.5 times slower than GRASP [33]. Notably, population-
based metaheuristic approaches have been applied to this problem less frequently than
single solution-based methods. The aforementioned approaches can achieve good results
and provide the opportunity to further reduce the total route cost, compared with the exact
cost in small to medium instances [10]. We considered GRASP [37,38], as it is a simple LS
heuristic that utilizes a so-called restricted candidate list, which is a convenient way to store
the set of candidate drone nodes. The neighborhood structure, (or equivalently, the next
move to be applied) can be viewed as a search parameter. The optimal parameter choice
largely depends on the problem type or the problem instance [39]. Self-adaptation has been
shown to be beneficial for the selection of a genetic mutation operator for permutation
encoding [40]. The search is guided by self-adaptively selected move operators: e.g., if there
is a larger probability that moves with higher success rates, the instance in consideration
will be identified and exploited, thereby improving the search outcome. This study aims to
apply self-adaptive selection when searching the neighborhood in GRASP.

2. Proposed Greedy Randomized Adaptive Search Procedure for TSP-D

The route-first, partition-second approach was followed. The representative solution
and the required data structures are described in Section 2.1. The details of the algorithm
are presented in Section 2.2. Finally, the objective function is presented in Section 2.3.

2.1. Representative Solution and Supportive Data Structures

The candidate solution, tspd, is represented using an array that contains both truck
and drone deliveries. The first and last indices refer to the depot. The elements in the array
are ordered by the visit sequence. Each element in the array consists of a node id and node
label (t: truck node, d: drone node, and c: combined node, where the location is visited by
both the truck and drone). An example of a solution is shown in Figure 2, where Figure 2a
illustrates the representative solution of the actual graph presented in Figure 2b. As part of
the algorithm’s initialization, the node IDs are initialized with the solution of the TSP tour.
The node labels are initialized to t.
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Figure 2. Representative solution: (a) represents the solution corresponding to the graph presented
in (b).

The locations of the customer and the depot are stored in a location matrix, L. The col-
umn index represents the node id. The first row contains the x-coordinates, and the second
row contains the y-coordinates. The values of the x and y-coordinates are read from the
input data set.

In addition, two cost (adjacency) matrices are used to specify the cost over time
(seconds): a drone cost matrix (CD) and a truck cost matrix (CT). Two cost matrices are used,
as the drone and truck differ in terms of speed (sD and sT , respectively). The drone and
truck speeds are read as inputs from the dataset. First, the Euclidean distance dij between
nodes i and j for each i; j in L is computed using the x and y-coordinates. Following that,

CDij and CTij are respectively computed using the following equations: CDij =
dij
sD

and

CTij =
dij
sT

.

2.2. Algorithm Details

The proposed GRASP approach is presented as Algorithm 1. minTime and bestTour
are initialized to ensure the minimum time and the best attained TSP-D solution found
so far, respectively. In line 3, the optimal TSP tour is obtained using the Concorde TSP
solver. The following steps are repeated maxTrials times. The output of optimalTspTour()
is passed to randomizedInitTspd(), in order to construct an initial TSP-D solution. This is
explained in detail in Section 2.2.1. Following that, localSearch() is used to improve the
acquired TSP-D solution, which is detailed in Section 2.2.2. CompCost() then computes the
cost (objective function) of the current TSP-D solution as currentTime (Section 2.3). If there
are positive savings in cost, with respect to minTime, the current TSP-D solution is saved
as the best solution found thus far, bestTour.

Algorithm 1: The GRASP algorithm

1 minTime = ∞;
2 bestTour = null ;
3 tspTour = optimalTspTour();
4 i = 0;
5 while (i < maxTrials) do
6 tspd = randomizedInitTspd(tspTour);
7 tspd = localSearch(tspd, swapSR, twoOptSR, Pm);
8 currentTime = CompCost(tspd);
9 if (currentTime < minTime) then

10 minTime=currentTime;
11 bestTour=tspd;
12 end
13 i = i + 1;
14 end
15 return bestTour,minTime;

2.2.1. Building the Randomized Initial TSP-D Tour

The main function of the initial TSP-D procedure (Algorithm 2) is to perform the initial
partitioning of the available truck route into a truck route and a drone route, using the
restricted candidate list (RCL).

First, the time saving obtained for all nodes (except the depot) when a node j is
transformed from a truck node to a drone node is computed. The procedure identifies the
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minimum amount of saved time for all nodes cmin, the maximum amount of saved time
among all nodes cmax, and an array savingTime which contains the time saved by each
node. The saved time is computed using Equation (1) and illustrated in Figure 3, where i is
the node ID of the launch node, j is the node ID of the drone node, and k is the node ID of
the rendezvous node. Calculating the time savings obtained for all nodes takes O(n) time.

Algorithm 2: randmizedInitTSPD Algorithm

1 cmin, cmax, savingTime = calcSavings(tspTour);
2 Generate δ value, δ ∈ (0, 1) ;
3 tau = cmax − δ× (cmin + cmax);
4 RCL = buildRCL(tau, savingTime);
5 tspd = tspTour;
6 while (len(RCL) 6= 0) do
7 RCL = buildTspd(tspd, savingTime);
8 end

Figure 3. Transforming node j into a drone node.

saving = CT [i][j] + CT [j][k]−max(CD[i][j] + CD[j][k], CT [i][k]) (1)

The threshold value, tau, is computed using Equation (2) [41], where δ is a randomly
generated value, δ ∈ (0, 1). The RCL is accordingly built by adding the customers that
may be serviced by the drone; that is, all nodes i with savingTime[i] ≥ tau. The buildRCL
procedure requires O(n) time. Next, nodes are iteratively and randomly selected and
removed from the RCL to be transformed into drone nodes, using the BuildTspd algorithm
explained in Algorithm 3.

tau = cmax − δ× (cmin + cmax) (2)

buildTspd was inspired by the greedy partitioning heuristic presented by Agatz et al. [10].
In that method, one of the three moves (MakeFly, which converts a truck node to a drone
node, PushLe f t, and PushRight) is randomly selected in each iteration. The selected move
is applied to an unprocessed node. However, in this implementation, as presented in
Algorithm 3, a candidate node, candidateElement, is chosen randomly and removed from
the RCL, in order to be converted into a drone node. candidateElement can be a drone node
if it has a predecessor and a successor, meaning that it is not a boundary node. In addition,
it must not lie in a sortie. Once this move is successful, the feasibility of the PushLe f t and
PushRight moves for the sortie under consideration is examined. If both moves can be
feasibly implemented while improving the cost, then one of them is greedily selected, such
that the cost saving is maximized. Otherwise, the feasible move is applied if it improves
the cost.

PushLe f t inserts the truck node to the left of the launch node into the sortie, as shown
in Figure 4. The move is only feasible if the node preceding the launch node is a truck
node other than the depot and is not part of a sortie. The time taken by the sortie before
applying PushLe f t, be f oreLe f t, is calculated using Equation (3). Equation (4) computes the
time taken by the sortie after applying PushLe f t, a f terLe f t. The time saved is computed
by taking the difference between be f oreLe f t and a f terLe f t. If the procedure results in time
savings greater than zero, the move is accepted. The PushRight operator is symmetric
with respect to PushLe f t. Converting the candidateElement into a drone node in lines 4–10
of Algorithm 3 requires O(1) time. The complexity of both moves, including the work
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required to compute the savings obtained by the moves, is O(1) time. However, the time
required by the CompCost step at line 1 of the algorithm is O(n) (Section 2.3), resulting in
a time of O(n) for buildTspd. The buildTspd algorithm is called a number of times equal
to the length of the RCL as in line 6 from Algorithm 2. Accordingly, the time complexity
required by the randomizedInitTspd algorithm is O(n2).

Algorithm 3: buildTspd algorithm

1 currentTime = CompCost(tspd);
2 candidateElement =randomly select an element from RCL;
3 Find the position i of candidateElement in tspd;
4 if (candidateElement can be a drone node) then
5 launch = tspd[i− 1];
6 drone = tspd[i];
7 rendezvous = tspd[i + 1];
8 Set labels for nodes tspd[i− 1], tspd[i], and tspd[i + 1] to ′c′, ′d′, and ′c′,

respectively;
9 currentTime = currentTime− savingTime[i]

10 end
11 if (both PushLe f t and PushRight are feasible) then
12 Greedily select and apply the move that maximizes cost savings to tspd;
13 else
14 if (PushLe f t is feasible) then
15 Apply PushLe f t to tspd;
16 else
17 if (PushRight is feasible) then
18 Apply PushRight to tspd;
19 end
20 end
21 end
22 return RCL, tspd

Figure 4. PushLe f t move: (a) displays the current solution before applying PushLe f t; and (b) displays
the solution after applying PushLe f t.

be f oreLe f t = CT [i− 1][i] + max(CD[i][i + 1] + CD[i + 1][i + 2], CT [i][i + 2]) (3)

a f terLe f t = max(CD[i− 1][i + 1] + CD[i + 1][i + 2], CT [i− 1][i] + CT [i][i + 2]) (4)

2.2.2. Optimizing the Obtained Solution with Local Search

The LS procedure helps to improve the initial TSP-D solution by applying two different
moves: Swap and TwoOpt [10]. The LS procedure is explained, followed by a description
of the two moves.

A general structure for the LS procedure is shown in Algorithm 4. After the ini-
tialization step, an iterative process starts. In each iteration, either the Swap or TwoOpt
move is selected in a self-adaptive manner, based on the move probability, pm, as follows
(lines 7–12). A random number, rand ∈ [0, 1], is generated. If the value of rand is less than
pm, the Swap move is selected; otherwise, the TwoOpt move is selected. The selected move
is applied to the current solution, tspd. If the resulting neighbor has a lower cost, the move
is accepted. Otherwise, the acceptance criterion is tested. The success ratio of the chosen
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move is updated. The procedure is repeated until the termination condition or convergence
is reached.

Algorithm 4: localSearch Algorithm

1 j = 0;
2 initialize loop control parameters;
3 while (termination condition not satisfied and j < convergence) do
4 if (windowSize iterations have elapsed) then
5 update pm based on Equation (5);
6 end
7 rand=generate a random number ∈ [0, 1];
8 if (rand < pm) then
9 apply swap move to tspd and update its success ratio;

10 else
11 apply twoOpt move to tspd and update its success ratio;
12 end
13 examine move acceptance criteria and accept move accordingly;
14 if (the move was not successful) then
15 increment j;
16 else
17 reset j;
18 end
19 update iteration control parameters;
20 end

The move selection probability, pm, is updated consistently after a certain number of
iterations, windowSize, based on the success ratio of the Swap and TwoOpt moves: swapSR
and twoOptSR, respectively (lines 4–6 in Algorithm 4). The success ratio is computed as
the number of times that the move is successfully applied, divided by the total number
of times that the move was applied during the past windowSize. If swapSR is better than
twoOptSR, pm is updated such that Swap has a higher probability of being chosen and
vice versa, as shown in Equation (5), where β ∈ (0, 1) is a learning rate parameter.

pm =

{
pm + β× pm, if swapSR ≥ twoOptSR.
pm − β× pm, , otherwise.

(5)

Moreover, in order to control the computational time, the convergence is examined
and the LS procedure is stopped if it fails to improve the solution after a specific number of
iterations (convergence), as shown in lines 1 and 14–18.

Two variants of GRASP were considered, according to the LS procedure used: hill-
climbing local search (HCLS) [42] and LS with simulated annealing (SA) [26]. These
variants differ in terms of the initialization step and the acceptance criteria (lines 2 and 13
in Algorithm 4, respectively). In the HCLS variant, the loop control parameter is a simple
loop counter i, which is initialized to zero. The termination condition is satisfied when i
reaches the maximum number of allowed iterations, maxIter. In this variant, a move is
accepted only if the resulting neighbor has a lower cost than that of the current solution.

In the second variant, SA, the loop is controlled by a temperature parameter, Ti. Ti is
initialized to an initial temperature, T0, and updated using a geometric cooling schedule,
as shown in Equation (6), where γ ∈ (0, 1) [26]. The acceptance criterion in SA differs from
that in the HCLS variant for inferior moves. A sub-optimal move can be accepted, based
on a certain probability P(∆E, T) that it follows the Boltzmann distribution, as shown in
Equation (7), where ∆E represents the difference between the objective function (cost) of the
current solution and that of the resulting neighbor. A random number, randP, is generated.
If the value of randP is less than the probability P(∆E, T), the move is accepted; otherwise,
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the move is not accepted. The termination condition in the SA variant is satisfied when the
temperature Ti exceeds the final temperature Tf .

Ti = γ× Ti (6)

P(∆E, T) = e
∆E
Ti (7)

The Swap Move: In the Swap move, two distinct nodes are randomly selected and
swapped (Figure 5). A swapped node may be a truck node, a drone node, or a combined
node, but it cannot be the depot [22].

Figure 5. Example of the Swap move: (a) displays the TSP-D solution, tspd, before applying Swap;
and (b) displays the tspd after nodes 2 and 5 have been swapped.

The TwoOpt Move: In the TwoOpt move, two edges are removed from the tour and
replaced with another set of edges, in order to obtain a valid tour. The removed edges must
be between truck or combined nodes [22]. The first step in applying TwoOpt is to select the
two origin nodes of the selected edges randomly. In Figure 6a, nodes 4 and 2 are selected.
Two edges are thus removed: (4, 6) and (2, 0). Then, two new edges are created, as shown
in Figure 6b: (4, 2) and (6, 0). As a result, the sortie path is reversed, as shown in Figure 6b.

Figure 6. An example of a Swap move: (a) displays the TSP-D solution, tspd, before applying Swap;
and (b) displays the tspd after nodes 2 and 5 have been swapped.

As twoOpt randomly selects two edges, there are several invalid cases that must be
taken into consideration, as follows:

1. If the selected origin node or its destination node happen to be inside a sortie, as shown
in Figure 7;

Figure 7. An example of an invalid TwoOpt move applied to the graph in (a), where origin node 3 is
a truck node inside a sortie and the origin node 6 is a launch node for a different sortie, resulting in
an invalid tour in (b).

2. If both selected origin nodes are launch nodes and their destinations are rendezvous
nodes, as shown in Figure 8;
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Figure 8. An example of an invalid TwoOpt move applied to the graph in (a), where origin nodes 2
and 5 are launch nodes and their destination nodes 4 and 7 are rendezvous nodes, resulting in an
invalid tour in (b).

3. If the selected origin or its destination node happens to be a common node between
different sorties, as shown in Figure 9.

Figure 9. An example of an invalid TwoOpt move applied to the graph in (a), where destination node
4 is a launch and rendezvous node for different sorties, resulting in an invalid tour in (b).

The complexity of Swap and TwoOpt moves, including the work required to compute
the savings obtained by the moves, is O(n).

2.3. Objective Function

We aimed to minimize the total delivery time required to serve all customers starting
from and returning to the depot, as shown in the objective function (8), where customer i
is where the sub-route starts and customer k is where the sub-route ends. Customer j is
served by the drone [23].

minimize ∑
s∈subroute

max

(
CD[i, j] + CD[j, k],

k−1

∑
i

CT [i, i + 1]

)
(8)

The CompCost procedure, presented in Algorithm 5, computes the cost of the full tspd
tour. Firstly, the currentTime is initialized to 0. Following that, the nodes in the tour are
examined in sequence. If the node is a launch node, the sortie time is computed. A launch
location i and a rendezvous location k are identified. The sortie time is calculated by taking
the maximum time between the droneTime and truckTime. The droneTime is calculated by
adding the time taken by the drone to move from the launch location to the drone location,
to the time taken by the drone to move from the drone location to the rendezvous location.
The truckTime is computed by calculating the time taken by the truck to move from the
launch location to the rendezvous location. In line 16, the value of the counter i is updated
to that of the rendezvous location k, as the entire sortie has been processed. Otherwise,
if the location is not in a sortie, it is visited by the truck and the cost required by the truck
is computed by calculating the time taken by the truck to move from its current location to
the following location.
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Algorithm 5: CompCost algorithm

1 currentTime = 0;
2 i = 0;
3 while (i < len(tspd)) do
4 if (tspd[i] is launch location for drone) then
5 truckTime = 0;
6 launch = tspd[i];
7 drone = tspd[j];
8 rendezvous = tspd[k];
9 droneTime = CD[launch, drone] + CD[drone, rendezvous];

10 t = i;
11 while (t < k− 1) do
12 truckTime = truckTime + CT [t, t + 1];
13 t = t + 1;
14 end
15 sortieTime = max(droneTime, truckTime);
16 currentTime = currentTime + sortieTime;
17 i = k;
18 else
19 truckTime = CT [i, i + 1];
20 currentTime = currentTime + truckTime;
21 i = i + 1
22 end
23 end
24 return currentTime

3. Experimental Setup

The benchmark dataset is described in Section 3.1. The algorithm was implemented in
Python. The algorithm parameters are explained in Section 3.2, and the model evaluation is
presented in Section 3.3. We used an Ubuntu 16.04 LTS desktop powered by a 3.60 GHz × 8
Intel Xeon(R) CPU E5-1620 with 31.3 GiB of RAM and a 427.9 GB SSD.

3.1. Benchmark Dataset

We used the publicly-available dataset “Instances for the TSP with Drone” [43]. This
has been used in several studies [10,23]. The dataset categorizes instances based upon the
distribution type, instance size, and vehicle speed configuration. The categories are as
follows. We used two different distribution types, based on how each instance was gener-
ated in the benchmark dataset. In a uniform distribution, the coordinates are generated
independently and uniformly; in a single-center distribution, the coordinates are generated
using an angle and a distance drawn from a normal distribution. The dataset contains a
wide variety of instance sizes, ranging from 5 to 500 customer locations. The experiments
in this study were applied using instances of sizes 10, 20, 50, 75, and 100. As for the vehicle
speed configuration (α), we utilized two different relative speed configurations for the
vehicles. With (α = 1), the truck and drone have the same speed; with (α = 2), the drone
is two times faster than the truck.

For each (type, size, α) combination, the dataset contains 10 different instances. In each
instance, the vehicle speed configuration (α), the total number of nodes (including the
depot), and for each node, the customer ID and location specified using the x and y-
coordinates are defined.

3.2. Parameter Initialization

Table 1 summarizes the initial values of the parameters used in the proposed GRASP
approach. Several parameters were adaptively set using the instance size, n. For example,
the maximum number of iterations in the GRASP algorithm (maxTrials) and in the HCLS
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variant (maxIter); the window size used to update the move probability parameter in LS,
windowSize; and the convergence used to signal LS convergence. When n was less than
50, maxTrials was set to 50× 10. In addition, pm was initialized to 0.5, in order to allow
for equal chances of Swap and TwoOpt moves occurring at the beginning of the search.
The learning rate, β, was initialized to 0.02, a common default value for standard artificial
neural networks [44].

Table 1. Algorithm parameter initialization.

Parameter Initial Value Description

maxTrials n× 10 Max. number of iterations in GRASP
pm 0.5 Move selection probability in LS
β 0.02 Learning rate for updating pm

windowSize n
2 Window size for updating pm

maxIter n Max. number of iterations in HCLS
convergence n× 0.3 Max. number of iterations without improvement in LS

T0 500 Initial temperature in SA
Tf 0.01 Final temperature in SA
γ 0.95 SA cooling schedule coefficient

3.3. Model Evaluation

The outcomes of the proposed GRASP approach were compared with the results
of two studies. Agatz et al. [10] solved the TSP-D problem by proposing a route-first,
cluster-second heuristic based on the local search (LS) method. On the other hand, de
Freitas et al. [23] first used a mixed-integer linear-programming solver, and then applied a
variable neighborhood search metaheuristic to construct sorties and improve the solution.
The effectiveness of the model was measured using the complete tour duration performance
measure (in seconds, secs). The efficiency of the model was measured using the run-
time performance measure (in secs). As GRASP is a stochastic algorithm, the run for
each instance was repeated ten times, and the average value over each of the obtained
performance measures was reported.

To obtain a solid statistical basis for the model comparisons, non-parametric statistical
tests were used. The Wilcoxon signed-rank test was used to test the median differences
among paired data points (pairwise comparisons) [45]. The Friedman test was used to
compare more than two related data samples [46]. The significance level was set to 5%.
The statistical analysis was conducted using the SPSS version 1.0.0.1012 software.

4. Results

This section reports the results for the two variants proposed: the GRASP HCLS
variant and the GRASP SA variant (Section 4.1). The better-performing GRASP variant
was then compared with two the rival algorithms [10,23]

4.1. Results of the Proposed GRASP Algorithm for TSP-D

The GRASP HCLS variant experiment used 200 test instances, (10, 20, 50, 75, 100) in
size, of uniform and single-center type, and with a relative truck/drone speed of α = 1 or
α = 2. All parameters were initialized to the settings stated in Table 1.

Table 2 summarizes the results obtained using the proposed GRASP approach with
HCLS. The values reported in the table represent average values of the best-known so-
lutions obtained over the ten runs for each of the ten different instances for each of the
(type, size, α) combinations. The table is divided according to the distributions; that is,
uniform followed by single-center. In each distribution, the results are sectioned by the
relative drone/truck speed (α). In the table, the column Size represents the instance size,
the column Cost represents the average trip duration of the obtained TSP-D solution
(in secs), the column Runtime represents the average running time (in secs), the column



Appl. Sci. 2021, 11, 6443 13 of 20

Swap represents the average number of times in which a Swap move was applied, the col-
umn TwoOpt represents the average number of times that a TwoOpt move was applied,
the column Swap Success represents the average number of times that a Swap move was
successful (i.e., it improved the TSP-D solution and decreased its cost), and finally, the col-
umn TwoOpt Success represents the average number of times that a TwoOpt move was
successful. Moreover, instances of size 100 were run on different machines; hence, the run
time is not reported (NA).

Table 2. Results obtained with the proposed GRASP approach, HCLS variant.

Size Cost Runtime Swap TwoOpt Swap TwoOpt
Success Success

Uniform Distribution

α = 1

10 281.46 ± 1.38 4.05 5107.89 4709.60 338.84 0.02
20 363.83 ± 1.64 11.13 4141.19 4058.06 89.94 0.13
50 554.10 ± 0.57 57.01 3848.66 3847.08 23.01 0.07
75 647.18 ± 1.12 121.85 3804.58 3784.04 9.60 0.13

100 731.32 ± 0.78 NA 12,867.77 12,851.60 13.75 0.17
Avg. 516.99 ± 1.10 48.51 5954.02 5850.07 95.03 0.10

α = 2

10 224.74 ± 3.67 2.32 4246.95 4010.12 105.2 0.00
20 306.39 ± 4.55 4.98 3963.70 3888.41 43.81 0.04
50 472.88 ± 2.90 18.89 3807.67 3806.22 11.17 1.43
75 551.92 ± 3.12 32.69 3795.46 3791.46 7.98 1.42

100 632.30 ± 2.41 NA 15,166.70 15,204.00 19.08 3.36
Avg. 437.65 ± 3.33 14.72 6196.10 6140.04 37.45 1.25

Single Center

α = 1

10 385.49 ± 8.14 4.235 5500.51 5027.52 484.10 1.00
20 546.13 ± 3.91 11.19 4172.03 4085.86 101.39 0.44
50 776.97 ± 1.28 56.69 3838.70 3835.01 21.20 0.11
75 1039.74 ± 1.47 121.95 3789.25 3812.06 11.97 0.10

100 1238.28 ± 1.60 NA 15,177.63 15,201.60 23.89 0.10
Avg. 797.32 ± 3.28 48.52 6495.62 6392.45 128.51 0.35

α = 2

10 277.00 ± 6.17 2.39 4406.14 4143.45 158.16 5.07
20 402.92 ± 7.09 4.53 3920.74 3856.99 33.13 2.35
50 604.79 ± 6.22 13.22 3787.35 3792.57 7.09 1.19
75 851.01 ± 7.03 23.03 3774.44 3775.38 3.83 0.83

100 995.72 ± 9.10 NA 15,145.04 15,128.24 10.71 5.29
Avg. 626.29 ± 7.12 10.80 6206.74 6139.33 42.58 2.95

Table 2 shows that the Swap move was used more successfully in smaller-sized
instances than in larger-sized instances, while the TwoOpt move was more successful
in larger-sized instances. Nonetheless, the Swap move was more successful than the
TwoOpt move overall. The standard deviation of the solution cost in instances with a
uniform distribution tended to be lower than that observed in instances with a single-
center distribution. In addition, the standard deviation of the solution cost in instances
in which α = 1 tended to be lower than instances in which α = 2. Concerning the
computational time, when α = 1, the algorithm ran for longer. The run time did not differ
between uniform and single-center instances.

Notably, the moves were often not accepted in the GRASP HCLS variant, which
suggests that it became stuck in a local optimum. To address this problem, the GRASP
SA variant for LS, in which sub-optimal moves can be accepted, was examined. In this
experiment, 160 test instances of sizes (10, 20, 50, 75), with both uniform and single-center
types and vehicle speed configurations of α = 1 and α = 2 were utilized. All parameters
were initialized to the settings stated in Table 1.
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Table 3 summarizes the results obtained using the proposed GRASP approach with
the SA variant. The values reported in the table represent the average values of the best
known solutions obtained over the ten runs for each of the ten different instances in each
of the (type, size, α) combinations. The column definitions are the same as those used in
Table 2.

Table 3. Results obtained with the proposed GRASP approach, SA variant.

Size Cost Runtime Swap TwoOpt Swap TwoOpt
Success Success

Uniform Distribution

α = 1

10 283.71 ± 1.91 3.37 3185.49 2948.50 1173.77 21.21
20 366.08 ± 0.74 15.94 12,194.30 10,935.50 4031.44 140.95
50 561.93 ± 58.04 87.76 25,107.27 23,404.50 4050.01 221.54
75 656.76 ± 94.22 282.62 42,641.81 40,542.60 4415.07 269.36

Avg. 467.12 ± 38.73 97.42 20,782.23 19,457.80 3417.57 163.27

α = 2

10 242.09 ± 9.60 2.54 4597.52 4152.01 1590.50 349.87
20 321.88 ± 5.34 12.25 15,570.18 13,879.04 4604.19 711.19
50 568.37 ± 94.31 60.01 30,890.69 26,462.18 7064.08 2919.46
75 648.30 ± 113.28 164.62 54,327.14 52,851.94 5357.96 4451.74

Avg. 445.16 ± 55.58 59.86 26,346.38 24,336.29 4654.18 2108.07

Single Center

α = 1

10 380.46 ± 7.74 3.29 3557.43 3272.93 1174.02 269.90
20 556.99 ± 3.09 16.33 11,851.55 10,657.87 3878.31 137.46
50 787.78 ± 64.34 85.13 25,643.55 23,858.43 4372.77 219.97
75 1058.13 ± 89.51 244.23 42,661.80 40,628.15 4396.45 262.65

Avg. 695.84 ± 41.17 87.24 20,928.58 19,604.30 3455.39 222.50

α = 2

10 295.49 ± 9.24 2.51 4231.81 3831.19 1437.96 293.26
20 428.09 ± 12.55 12.33 15,760.87 14,192.32 4427.88 2114.55
50 723.88 ± 107.93 58.21 32,542.07 31,949.98 4799.59 4409.37
75 1030.92 ± 104.36 154.65 55,666.13 57,962.20 5123.6 6297.56

Avg. 619.60 ± 58.52 56.92 27,050.22 26,983.92 3947.26 3278.69

Table 3 shows that, as the instance size increased, the success ratios of both moves
also increased. Nonetheless, the Swap move was still more successful than the TwoOpt
move in all cases, except for the case (type = single-center, size = 75, α = 2). The standard
deviation of the solution cost in uniform instances tended to be slightly lower than that
for single-centered instances. We also observed that the standard deviation of the solution
cost in instances in which α = 1 tended to be lower, compared to that for instances having
α = 2.

As can be seen in Figure 10, overall, the GRASP SA variant performed worse than or
approximately equal to the GRASP HCLS variant. The overall average solution cost for the
models obtained using the GRASP HCLS variant was 517.79 secs, compared to 556.90 secs
for the models generated using the GRASP SA variant. The standard deviation of the
solution cost obtained with the GRASP SA models was higher than that of the GRASP
HCLS model. A possible explanation for the large gap between runs of instances of the
same size in the former is that the LS with SA accepts sub-optimal moves.

The Wilcoxon signed-rank test was used to compare the models obtained with the
two GRASP variants. For a valid comparison, 160 instances were used for each model.
A statistically significant difference was detected between the means of the two models
(p < 0.001). Based on this, the HCLS variant was considered to perform better than the
SA variant.
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(a) Uniform, α = 1. (b) Uniform, α = 2.

(c) Single-center, α = 1. (d) Single-center, α = 2.

Figure 10. Comparison of the average solution cost obtained with the two GRASP variants–GRASP
with HCLS vs. GRASP with SA: (a) Uniform distribution, α = 1. (b) Uniform distribution, α = 2.
(c) Single-centered distribution, α = 1. (d) Single-centered distribution, α = 2.

4.2. Evaluation against Rival Algorithms

Based on the conclusion presented in Section 4.1, the GRASP HCLS variant outper-
formed the SA variant. The better performing GRASP variant was compared with the rival
algorithms, LS [10] and HGVNS [23], for the TSP-D problem, where the endurance of the
drone was set to infinity and the service time for the drone launch and return was set to
zero. The parameter settings for both rival algorithms can be found in the study of de
Freitas and Penna [23].

The experiment used 200 instances, as described in Section 3.1. Table 4 reports the
average values (in secs) for the best-known solutions for the ten instances for each (type,
size, α) combination. The column definitions are the same as those used in Table 2, and are
sectioned according to the algorithm addressed. Figure 11 compares the average solution
cost results. Similarly to the findings presented by de Freitas and Penna [23], the algorithms
generally performed better for instances with a uniform distribution, compared to instances
with a single-center distribution, for all values of α. The proposed GRASP approach
performed better in instances where α = 1; however, in instances where α = 2, that size
was found to play a role. Accordingly, the proposed GRASP approach had a better or
approximately equal performance in instances with small size (i.e., 10 and 20). Conversely,
in instances with large size (i.e., 50 and 75), our approach had a worse or approximately
equal performance.
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Table 4. Performance comparison of the models obtained by the LS [10], a TSP-D version of the
HGVNS [23], and the proposed GRASP HCLS variant, showing the average solution cost in secs.

Size
Cost

LS [10] HGVNS [23] GRASP

Uniform Distribution

α = 1

10 286.82 289.82 285.69
20 365.38 368.5 364.54
50 550.38 559.20 554.94
75 645.55 624.32 647.18

100 729.40 698.42 731.10
Avg. 515.51 508.05 515.16

α = 2

10 231.29 233.20 230.75
20 293.59 293.60 312.82
50 428.63 420.80 478.31
75 495.90 490.40 557.15

100 572.53 553.43 632.30
Avg. 404.39 398.29 437.65

Single Center

α = 1

10 379.29 364.90 399.55
20 529.15 553.53 553.79
50 763.28 784.32 779.33
75 1017.04 978.32 1042.00

100 1203.42 1193.95 1238.28
Avg. 778.44 775.00 797.32

α = 2

10 278.22 291.36 287.13
20 384.87 364.00 416.47
50 554.58 593.50 617.43
75 741.38 754.40 861.21

100 891.28 900.10 995.72
Avg. 570.07 580.67 626.29

The average solution costs over all instances (in secs) were as follows: The HGVNS
scored 565.52, closely followed by the LS (567.10) and GRASP (594.11). The Friedman
test applied under the null hypothesis of equal performance of all algorithms obtained
a p-value of (p = 0.074). Since the p-value was larger than the significance level (0.05),
the null hypothesis is accepted, indicating that no statistically significant differences were
detected among all the means of solution costs obtained from the three algorithms on
multiple datasets.

Considering the efficiency of the three algorithms under consideration, all three
algorithms start by constructing the initial TSP tour using the Concorde TSP solver. Both of
the rival algorithms, LS and HGVNS, adapt the best-improvement search strategy, which
exhaustively explores the neighborhoods and returns the solution having the minimum
cost. The proposed GRASP algorithm, on the other hand, employs the first-improvement
strategy, accepting the first neighbor having a cost that is lower than that of the current
solution. Excluding the time required for obtaining the initial TSP tour, a single iteration
of the LS procedure requires O(n3 log n) [10]. A single iteration of the HGVNS algorithm
runs in Θ(n2|N 2|) [23], where |N | is the number of neighborhoods considered. On the
contrary, and considering the value of maxIter in HCLS to be equal to n, a single iteration of
GRASP requiresO(n2) time. Accordingly, the proposed algorithm has lower computational
requirements than the two rival algorithms, LS and HGVNS.
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(a) Uniform, α = 1. (b) Uniform, α = 2.

(c) Single-center, α = 1. (d) Single-center, α = 2.

Figure 11. Comparison of the average solution cost (in secs) obtained with the HCLS variant of the
proposed GRASP, HGVNS [23], and LS [10] for instances of size 10, 20, 50, 75, and 100: (a) Uniform
distribution, α = 1. (b) Uniform distribution, α = 2. (c) Single-centered distribution. α = 1
(d) Single-centered distribution, α = 2.

5. Discussion

The GRASP HCLS variant focuses on improving the obtained TSP-D solution using
relatively optimal moves only, whereas in the SA variant, sub-optimal moves with a given
probability can be accepted. Overall, the GRASP SA variant was shown to have a worse or
approximately equal performance to the HCLS variant. Setting the initial temperature to a
high value may have played a role. Furthermore, setting γ to 0.95 and using the geometric
schedule to update the temperature may have resulted in the temperature decreasing faster
than needed. It is possible that changing the values of the SA parameters could result in
better performance.

Comparing the performance of the proposed GRASP HCLS variant with the two rival
algorithms, LS and HGVNS, the proposed approach performed better in instances where
α = 1 and instances of smaller sizes where α = 2. Overall, the Friedman test showed
that the proposed GRASP was comparable with the two state-of-the-art rival algorithms
specified earlier in terms of solution cost. It is possible that the number of iterations in
the LS procedure was not sufficient to effectively improve the solution. Furthermore,
the random δ value heavily affects the size of the RCL. Thus, a small δ value may result in
a small and inadequate RCL. However, the proposed algorithm had lesser computational
complexity than the other two.

6. Conclusions

In this study, we addressed the TSP-D problem and its variants. Various algorithms,
including population-based metaheuristic algorithms and solution-based metaheuristic
algorithms, have been proposed for TSP-D and its variants, such as the FSTSP. We used
GRASP as a single-solution metaheuristic algorithm. The proposed algorithm starts by
constructing the entire truck route as a classical TSP. The obtained route is then partitioned
into truck nodes and drone nodes, yielding an initial TSP-D solution. Following that,
the proposed GRASP algorithm is applied to minimize the total delivery time for the initial
TSP-D solution. Two versions of the LS procedure in GRASP were used: HCLS and LS with
SA. Both versions use a self-adaptive neighborhood. The proposed approach was tested
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on the “Instances of TSP with Drone” benchmark dataset. Generally, the HCLS variant
outperformed the SA variant of GRASP. Subsequently, the performance of the proposed
GRASP HCLS variant was compared with two state-of-the-art algorithms: LS [10] and
HGVNS [23]. Overall, the proposed approach was found to have a performance comparable
to those of the two rival algorithms. Nonetheless, under some (type, size, α) combinations,
our approach outperformed the rival algorithms.

The main contribution of this study is the self-adaptive selection of the search neigh-
borhood, which was implemented for two neighborhoods (associated with Swap and
TwoOpt moves), but which could be easily extended to a larger number of neighborhoods.
The self-adaptive selection of the search neighborhood for the TSP-D problem may also
inspire other methods, which in turn may significantly outperform existing ones. We
recommend that the proposed GRASP approach be further improved by increasing the
number of iterations in the LS procedure and tuning the δ value. Moreover, it would
be interesting to investigate different parameters for the SA variant and to add more
neighborhood alternatives into the search.
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