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Abstract: Diseases in apple orchards (rot, scab, and blotch) worldwide cause a substantial loss
in the agricultural industry. Traditional hand picking methods are subjective to human efforts.
Conventional machine learning methods for apple disease classification depend on hand-crafted
features that are not robust and are complex. Advanced artificial methods such as Convolutional
Neural Networks (CNN’s) have become a promising way for achieving higher accuracy although they
need a high volume of samples. This work investigates different Deep CNN (DCNN) applications
to apple disease classification using deep generative images to obtain higher accuracy. In order
to achieve this, our work progressively modifies a baseline model by using an end-to-end trained
DCNN model that has fewer parameters, better recognition accuracy than existing models (i.e.,
ResNet, SqeezeNet, and MiniVGGNet). We have performed a comparative study with state-of-the-art
CNN as well as conventional methods proposed in the literature, and comparative results confirm
the superiority of our proposed model.

Keywords: apple diseases; blotch; scab; rot; classification; deep learning

1. Introduction

The apple is known as one of the most important tree fruits, due to its second place in
world fruit production [1,2]. In the year 2017, the annual production of apples worldwide
reached 83.1 million tons and consumed heavily around the world [1,3]. The high consump-
tion of apples is due to their low cost and numerous healthy properties i.e., high content of
fiber, minerals, vitamins, and antioxidants. In addition, its flavor offers the possibility of
consuming them naturally or using them for innumerable derived products. It is estimated
that approximately 33% of apples produced worldwide are processed to make juices, ciders,
applesauce, alcoholic beverages, and dried apples, among other products [4].

In recent years, the production of the apple industry is facing significant loss due to
diseases that cause poor quality of the product. Minimal observation through a naked eye
can distinguish and identify the diseased apple from the rest. However, human analysis
is highly subjective and prone to error. Therefore, an accurate and timely diagnosis of
diseases is a fundamental and extremely critical process to avoid future losses. There are
many apple diseases according to a phytopathology datasheet [5,6], but the most common
diseases are Blotch, Rot, and Scab.
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Several studies suggest that visual exploration through hand-picked methods are
the most used methods in fruit disease diagnosis. However, it is a slow and problematic
process [7,8]. Conventional methods such as Polymerase Chain Reaction (PCR) require
detailed molecular sampling, resulting in a non-cost-effective technique [9]. In recent
years, Artificial Intelligence (AI) has been used to help experts in the automatic diagnosis
of diseases that affect plants and trees. The methods performed with AI are faster, less
expensive, and more efficient [10–12].

Machine learning (ML) is defined as a branch of AI that automates the construction of
analytical models so that systems can learn from large amounts of data, identify patterns,
and make decisions [13–15]. Nevertheless, in most cases, traditional ML approaches
applied to complex images have non-automatic feature extraction steps [16,17], reducing
the effectiveness and making the process more time-consuming, and accuracy may not be
satisfactory [18–20]. Whereas, Deep Learning (DL) is an advanced form of ML modeling
that allows systems to train themselves and improve classification accuracy through a
series of calculations based on multiple layers of non-linear processing units [21–23]. The
advantage of DL is the ability to exploit raw data without using hand-crafted features, and
without prior knowledge, to extract relevant features [24–27].

Enormous studies have been carried out to identify and classify apple diseases. For
instance, Goel et al. [28] proposed a method to classify healthy apples and three types of
diseases (Blotch, Rot, and Scab). The authors hybridized three metaheuristic algorithms to
segment apple images using the maximization function between groups for clustering and
segmentation. Local Binary Pattern (LBP)-based features are extracted from segmented
images for classification using Multiclass Support Vector Machine (MSVM). Li et al. [29]
introduced an apple disease classification technique using a back-propagation-based Ar-
tificial Neural Network (ANN). The model is trained using healthy and fungal-infected
apple images, to which the methods of eliminating the background, segmentation of apple
defects, and identification of the calyx and stem are applied to obtain the features for the
network. In 2012, Dubey et al. [7] presented a solution to detect Blotch, Rot, and Scab apple
diseases using an MSVM classification technique. The apple images are segmented using
the K-means clustering technique followed by feature extraction using the Global Color
Histogram (GCH), Color Coherence Vector (CVC), LBP, and Complete Local Binary Pattern
(CLBP). These features are fed to MSVM to classify among the different apple diseases.

Later in 2016, Dubey et al. [30] used another method to investigate the same set of
apple images by using a combined unique feature descriptor instead of separate feature
descriptors. First, the images are segmented using the K-means grouping technique
to obtain the features of color, texture, and shape of the apples. Then, apple diseases
are classified using MSVM with an average accuracy of 95.6%. In 2019, Ayyub et al. [31]
obtained an accuracy of 96.29% by classifying the same apple images. Ayyub et al. proposed
a method that consists of the extraction of features using the Improved Summation and
Difference Histogram (ISADH), Complete Local Binary Patterns (CLBP), and Zernike
Moments (ZM).

In addition to the works discussed above (i.e., classical/conventional ML), many
researchers tend to work on DL such as Convolutional Neural Networks (CNN), a popular
technique for image recognition, which has demonstrated outstanding ability in image
processing and classification [24,32]. Wang et al. [33] evaluated the performance of transfer
learning using pre-trained DL models to classify images of healthy apple leaves and apple
leaf black Rot in three stages (i.e., early stage, middle stage, and final stage). According to
experimental results, the highest performance obtained is 90.4% with the VGG16 model.
Furthermore, Alharbi and Arif [25] collected 800 images for each of the four diseases (i.e.,
blotch, rot, scab, and healthy). They further augment the dataset using basic operations
such as flips, scale, crop, illumination to generate 3200 images for each disease.

Several other similar studies (similar to the ones discussed above) have been conducted
by different researchers, for instance, Nachtigall et al. [34] proposed a method to detect and
classify the nutritional deficiencies and herbicide damage in apple trees, using leaf images
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and AlexNet. Liu et al. [35] worked in the identification of four types of apple leaf diseases
(i.e., Mosaic, Rust, Brown spot, and Alternaria leaf spot) based on AlexNet. Al-Shawwa
and Abu-Naser [36] implemented a method for the classification of 13 different apple
species using Deep Convolutional Neural Network (DCNN). Turkoglu et al. [37] applied a
hybrid method between Long Short-Term Memory (LSTM) architecture with pre-trained
DCNN models. The features are extracted with transfer learning and fed to the LSTM
to detect pests and diseases with an average accuracy of 99.2%. The higher accuracies
are obtained using DL approaches for the classification of apple leaf diseases. One of the
most prominent advantages of DCNN is its ability to execute non-linear features [38,39].
DCNN automatically detects the essential features without any human supervision [40,41].
DCNN is computationally efficient since it uses a particular convolution, special pooling
operations, and performs parameter sharing. Additionally, DCNN can solve difficult
applications such as classification, image segmentation and location inspection [42–49].

To the best of our knowledge, there are very limited existing approaches that directly
handle apple disease classification problems similar to the one addressed in this article.
Therefore, this paper proposes an approach to classify the apple diseases based on Deep
Convolutional Generative Adversarial Network (DCGAN) data and DCNN-based on two
different architectures. DCGAN model is used to overcome the limitations of the limited
availability and validation of apple disease images. Thus, DCGAN generates new (to some
extent, similar to the original) images, which helps to train a DCNN model to obtain higher
accuracy in apple disease classification.

The rest of the paper is structured as; Section 2 explains the material and methods
used in this study. Section 3 contains information regarding the experimental results and
discussion. Finally, Section 4 concludes the paper with possible future research directions.

2. Materials and Methods

This section explains the dataset used in this study and the generation of synthetic
images using deep convolutions. Furthermore, this section also discusses the deep learning
architecture used for the classification of apple diseases.

2.1. Dataset Description

The original dataset used in this work contains 319 (i.e., 80 images for healthy, Blotch,
and Rot Apple images, respectively, and 79 for Scab) images of apples in which some are
healthy, and others are from apples with any of the three, Blotch, Rot, and Scab diseases.
These images are obtained from a set of the dataset used in works [7,9,30,31], which is
publically available at the Kaggle repository. This small dataset is further used to create
4000 synthetic images through the Deep Convolutional Generative Adversarial Network
(DCGAN) architecture, from which 1000 images are for each of the four categories are
generated to construct an optimal DL solution.

2.2. Deep Convolutional Generative Adversarial Network (DCGAN)

As explained in Section 2.1, DCGAN architecture is used to generate synthetic images
to train a DL model. DCGAN implicitly learns from the distribution of data contained in a
set of sample images to create new images extracted from the learned distribution. DCGAN
is faster than traditional GAN architecture because DCNN is modified instead of ANN
to increase stability and convergence [50]. The model used in this study consists of two
DCNNs that are trained simultaneously. The first model is the generator, and the second
is the discriminator; these models work with only convolutional layers to learn up and
down spatial samples independently. The main aim of the generator is to construct fake
noise data into an image that fools the discriminator to classify it as a fake image. While
the discriminator aims to identify if the image is fake or real, at the end of the training, the
generator can produce the image that is indistinguishable from real data, recreating the
original data distribution [51].
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The discriminator model is a convolutional process that eliminates the fully connected
layer and uses the LeakyReLu as an activation function to compress an image into a feature
vector. The generator model is a deconvolution process in which all activation functions
use LeakyReLu, except the output layer that uses tanh. The overall network works through
the Equation (1) [52].

V(D, G) = EX∼Pdata(X)[logD(x)] + Ez∼PZ(Z)[log(1− D(G(Z)))] (1)

where D and G represent generator and discriminator, whereas X represents a sample
that is transformed by the generator through noise vector Z. D defines the training target
for G to distinguish between real sample pdata(X) and generated one Pz(Z). Therefore,
the generator will confuse the discriminator to predict that the generated data is true
or real. Figure 1 shows the DCGAN structure used in this work to increase the size of
the dataset. The generative network consists of three deconvolution layers of 128, 64,
and 3 filters, respectively, with a 5× 5 kernel. The first two layers used the LeakyReLu
activation function and the Batch Normalization (BN). The BN is used to normalize the
input layer by adjusting and scaling the activation, while the last layer used tanh as an
activation function. The discriminative network consists of two convolutional layers of
64 and 128 filters with a 5× 5 kernel. The LeakyReLu activation function is used for both
layers. Further information regarding the layer-wise settings can be found in Table 1.

Table 1. The summary of the proposed models.

DCNN DCGAN-based DCNN

Layers Size # of
Param Layers Size # of

Param

Input Layer 350× 350× 3 — Input Layer 32× 32× 3 —

Conv_1 348× 348× 128 3584 Conv_1 30× 30× 128 3584

Maxpooling 174× 174× 128 — Conv_2 28× 28× 64 73,792

Conv_2 172× 172× 64 73,792 Dropout_1 28× 28× 64 —

Maxpooling 86× 86× 64 — Conv_3 26× 26× 64 36,928

Conv_3 86× 86× 64 36,928 Conv_4 24× 24× 32 18,464

Maxpooling 42× 42× 64 — Maxpooling 12× 12× 32 —

Conv_4 40× 40× 32 18,464 Dropout_2 12× 12× 32 —

MaxPooling 20× 20× 32 — Conv_5 10× 10× 32 9248

Conv_5 18× 18× 32 9248 Maxpooling 5× 5× 32 —

MaxPooling 9× 9× 32 — Dropout_3 5× 5× 32 —

Flatten 2592 — Flatten 800 —

Dropout_1 2592 — Dense_1 256 205,056

Dense_1 256 663,808 Dropout_4 256 —

Dropout_2 256 — Dense_2 128 32,896

Dense_2 # of Classes 1028 Dense_3 # of Classes 516

Total Parameters = 806,852 Total Parameters = 380,484
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Figure 1. Deep Convolutional Generative Adversarial Network (DCGAN) structure with data flow.

2.3. Deep Convolutional Neural Network

Nowadays, Deep Convolutional Neural Network (DCNN) has been explored for series
of 2D and 3D datasets [26]. AlexNet [53], ResNet, Mini-VGGNet, and SqueezeNet are
considered as state-of-the-art DL networks for medical imaging, food processing, and fruit
disease detection tasks. Therefore, in this work, AlexNet architecture is used a based model,
which uses minimal convolutional operations to the input data using 2D kernels (presented
in Equation (2)) to extract the feature maps (i.e., output maps) [54].

Axy
nm = f

( Cm−1

∑
c=o

Rm−1

∑
r=0

Kcr
nm A(x+c)(y+r)

(n−1) + bnm

)
, (2)

where Axy
nm is the output feature at [x, y], n indicates the layers, m represents the number of

feature maps, b is the bias, Kcr
nm gives the value at (c, r) of the kernel connected to the mth

feature map, with C and R being the entire height and width of the kernel. Finally, f (.)
represents the activation function (ReLu in our case) respectively. Normally, the disease
region is usually smaller than the rest of the apple percentage, as shown in Figure 2 and
Table 1. Given this, we first automatically focused on the feature extraction of the disease
region and confined a fully connected feature map at the FC-layer(fully connected) for
classification. Further information regarding the layer-wise settings can be found in Table 1.

Figure 2. Deep Convolutional Neural Network (DCNN) structure for actual data.
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2.4. Optimizer and Loss Function

In DL, step size also refers to the learning rate is the most concerning issue and
causes redundancies. For example, a large step may diverge instead of converging, or
a small size may make take longer for a network to converge. Thus, for the aforesaid
reasons, several optimization algorithms are considered during the training of the dataset,
which includes Adam, AdaGrad, Adamax, and Nadam, among others. In this study, for
multi-class classification, categorical cross-entropy is employed as a loss function. The
comparison within the class can be predicted through the Equation (3) [55], where P and p
represent the expected and the target values of the function N respectively.

N(p, P) = −
H

∑
a=0

W

∑
b=0

(pab ∗ log(Pab)) (3)

2.5. Evaluation Metrics

Overall (OA) accuracy is rigorously used for comparative analysis. As in the literature,
this work also used the same metric to analyze the generalization performance of our
proposed model. The OA can be computed as follows:

OA =
1
C

C

∑
i=1

TPi (4)

where TP is a true positive and C is the total number of classes. In addition to the OA, we
have also performed a statistical test called the z-test. In this test, the confidence interval
is a type of statistical estimation in which the intervals are associated with confidence
concerning the true parameters of the proposed model. The confidence interval λ is
then obtained by the given observations, i.e., a valid probability of containing the true
underlying parameters. There are many possibilities to choose a level of confidence,
such as a 90% confidence interval that defines the hypothetical indefinite data collection;
furthermore, it estimates the population parameter. Therefore, it is required to choose an
appropriate confidence level before examining the data. In a nutshell, in this work, a 95%
confidence level is used. However, the values of the confidence level of 99% or 90% are
also often used for several applications. The confidence interval is then computed as in the
following steps.

1. Compute sample mean i.e., µ = x̄.
2. Identify the standard deviation σ is known otherwise compute the standard deviation

i.e., δ.

• If the standard deviation is known then z∗ = Φ−1(1− α
2 ) = Φ−1( α

2 ), where
C = 100(1− α)% is confidence level and Φ is the cumulative density function of
the standard normal distribution used as a critical value.

• If the standard deviation is unknown then the t distribution is used as a critical
value point which depends on the confidence level C for the degrees of freedom
(DoF). The DoF can be found by subtracting one of the number of observations
i.e., (n− 1). The critical values are as follows: C = 99%, z∗ = 2.576, C = 98%,
z∗ = 2.326, C = 95%, z∗ = 1.96 and C = 90%, z∗ = 1.645. Thus, the critical value
can be expressed as t∗ − tα(r) where r be the degree of freedom and α = 1−C

2 .

3. Thus, by plugging the values into the appropriate equations:

• For a known standard deviation:(
x̄− z∗

σ√
n

, x̄ + z∗
σ√
n

)
(5)
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• For an unknown standard deviation:(
x̄− t∗

δ√
n

, x̄ + t∗
δ√
n

)
(6)

where µ = x̄ = 1
n ∑N

i=1 xi is sample mean. δ =
√

1
n−1 ∑N

i=1(xi − µ)2.

3. Results and Discussion

The dataset was divided into 70% for training and 30% for blind testing. The 70%
training dataset is further divided into 90/10% for training and validation sets using
a 10-fold cross-validation process. Therefore DCGAN-DCNN is originally trained and
validated on 3023 images and tested on the remaining 1295 images with a spatial size of
32× 32× 3 per image.

This section further illustrates the experimental evaluation of apple disease classifica-
tion through several experiments along with a statistical test. All the listed experiments
are performed on the online platform Google Colab using the Jupyter environment as
back-end [56]. The run-time of the environment is a GPU with a python 3 notebook, with
25 GB of Random Access Memory (RAM) and 358.27 GB of cloud storage for data compu-
tation. Initially, the experiments are done on original data (without including the synthetic
images) with a size of 350× 350 and then further analyzed on the DCGAN-dataset with
the size of 32× 32. Some examples of the generated images are shown in Figure 3. There
are similar features between the generated images and the original images. However, it is
important to highlight that the generated images are of comparatively low resolution due
to the filter sizes, which is due to the availability of a limited resource. Higher filter sizes
may produce more accurate images with higher resolution, however, as earlier explained,
it requires to have more powerful computational resources.

(a) Healthy (b) Blotch (c) Rot (d) Scab
Figure 3. Examples of synthesized images.

The structure of the DCNN model used in this study consists of a sequential model
since it has equivalent dimensions for each input and output. A 2D kernel of size (3× 3)
is used that will pass the filters throughout the image for the convolution operation for
each convolution layer. To stride down and reduce the noisy features from the segmented
images, a max-pooling layer is used with the ReLu. Further information regarding the
layer-wise settings can be found in Table 1. After the convolutional operators, the flatten
layer is used with 205,056 features and a dropout of 0.25 to cope with the over-fitting issues.
These FC layers features are then dense to give four class labeled classification for apple
disease detection with softmax using several optimizers (i.e., Adam, Adamax, Nadam,
and Adadelta).

For DL models, the learning rate is sensitive; therefore, in this work, for each opti-
mizer, we set a standard step size as Adam = 0.001, Adadelta = 1.0, Nadam = 0.002, and
Adamax = 0.002 for training. Beta1 and Beta2 parameters are observed to be close to 1 for
Adam, Nadam, and Adamax; similarly, the ρ parameter for Adadelta is greater than 0 with
no delay parameter. Moreover, for the DCNN model, the loss function is compiled to be
“categorical-correspondence” to separate the diseases into four classes. DCGAN model
works on the small spatial size of each class, i.e., 32× 32× 3 and thus converge on lesser
iterations, i.e., 10 epochs for each optimizer, and requires some tuning in its structure as
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shown in Figure 4. Whereas, for a larger size, data are compiled and trained on using
35 epochs for the original dataset.

(a) Loss (b) Accuracy

Figure 4. Model performance with a 95% confidence interval using a 10-fold cross-validation process. The blue points show
the validation loss and accuracy whereas the red points represent the training loss and accuracy, respectively.

Compared with the conventional methods that mostly rely on hand-crafted features,
the DCNN model achieved higher statistical significance and accuracy. This is because the
deep models provide non-linear features as shown in Figure 5 that preserve the significant
spatial information about the object for Rotten Apple image (Figure 5a) is used as a visual
example. Figure 5b–f represents the feature maps learned by applying 128, 64, 64, 32 and
32 filters respectively.

(a) Rotten (b) 128 Filters

(c) 64 Filter

(d) 64 Filter
(e) 32 Filter (f) 32 Filter

Figure 5. Feature extraction from convolutional filters. (a) Rotten apple, (b) 128 filters, (c) 64 filters, (d) 64 filters, (e) 32 filters,
(f) 32 filters.

As mentioned above, DL extract features in more depth such as edges, color, corner,
and shape rather than conventional segmentation and clustering-based methods. For in-
stance, Figures 6a, 7a and 8a present the input image, whereas Figures 6b, 7b and 8b showed
the results obtained using a binary segmentation process. Meanwhile, Figures 6c, 7c and 8c
present the output obtained through the multilevel segmentation. For all these experiments,
Otsu’s global thresholding method is used for binary segmentation, whereas multilevel
segmentation is obtained through three-points K-means clustering for each RGB color
sequence. Multilevel segmentation is commonly used to highlight the defects by parti-
tioning the images in different clusters [7,30]. All these results are compared with the
DCNN model as shown in Figures 6d, 7d and 8d. From these results, one can conclude that
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the proposed model obtained significantly higher results as compared to the binary and
multilevel segmentation as well as several other hand-crafted feature-based classification.

(a) Scab Disease (b) Binary Seg. (c) Multilevel Seg. (d) DCNN
Figure 6. Scab apple process through binary thresholding, clustering and DCNN.

(a) Rot Disease (b) Binary Seg. (c) Multilevel Seg. (d) DCNN
Figure 7. Rot apple process through binary thresholding, clustering and DCNN.

(a) Blotch Disease (b) Binary Seg. (c) Multilevel Seg. (d) DCNN
Figure 8. Blotch apple process through binary thresholding, clustering and DCNN.

In previous studies, the accuracy of the apple disease classification is examined along
with multiple techniques. These techniques extract features to form a feature descriptor
in order to achieve an accuracy rate of 93% to 95.6%. Furthermore, the classification
techniques have also been analyzed through color, texture, and shape-based features. All of
these studies used an MSVM as a baseline classifier to classify different diseases in apples.
The comparative study is shown in Table 2 explains the accuracy achieved by DCNN with
several optimizers. Adam’s optimizer learning rate converges effectively for this work than
other optimizers and produces remarkable results compared to the several conventional
hand-crafted features-based classification techniques.

Moreover, the state of art deep learning models such as ResNet (https://www.kaggle.
com/yadavsarthak/residual-networks-and-mnist (accessed on 25 February 2021)) , SqeezeNet
(https://www.kaggle.com/somshubramajumdar/squeezenet-for-mnist (accessed on 26 Febru-
ary 2021)) and MiniVGGNet (https://www.pyimagesearch.com/2019/02/11/fashion-mnist-
with-keras-and-deep-learning (accessed on 11 February 2019)) have been analyzed in com-
parison with the proposed DCGAN-DCNN model. All of these models have several
numbers of convolutional operations and require keen observations in setting up a number
of kernels and filters. The layer-wise settings for these models, along with the proposed
model are presented in Table 3. All the competing methods are analyzed with different
optimizers through a 10-fold cross-validation process. From experimental results, one can

https://www.kaggle.com/yadavsarthak/residual-networks-and-mnist
https://www.kaggle.com/yadavsarthak/residual-networks-and-mnist
https://www.kaggle.com/somshubramajumdar/squeezenet-for-mnist
https://www.pyimagesearch.com/2019/02/11/fashion-mnist-with-keras-and-deep-learning
https://www.pyimagesearch.com/2019/02/11/fashion-mnist-with-keras-and-deep-learning
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conclude that the proposed DCGAN-DCNN model outperformed with an overall accu-
racy of 99.99% in comparison with other state-of-the-art models. The complete pipeline
comparison with the abovementioned methods can be seen in Table 2.

Table 2. Experimental evaluation with and without synthetic examples as compared to the state-of-
the-art as well as conventional methods. The higher accuracies are in bold face.

Model Blotch Scab Rot Healthy OA(%)

State-of-the-art and Conventional Methods

2D CNN 99.00% 99.99% 91.00% 99.99% 99.17%
ResNet50 99.99% 99.00% 76.00% 99.99% 96.00%

MiniVggNet 99.99% 60.90% 20.00% 84.42% 69.00%
SqueezeNet 99.99% 99.99% 91.00% 99.99% 99.00%

ISADH+GLCM+MSVM 99.99% 98.57% 99.90% 95.71% 96.00%
GCH+LBP+MSVM 88.46% 85% 89.72% 86.66% 90.80%

CCV+CLBP+ZM+MSVM 97.50% 93.75% 92.50% 99.90% 95.60%
HSV+CLBP+MSVM 89.88% 90.71% 96.66% 99.33% 93.00%

Proposed Method without synthetic examples

DCNN-Adam 99.99% 99.99% 99.99% 99.99% 99.99%
DCNN-Adamax 93.00% 93.00% 99.99% 99.99% 96.66%
DCNN-Nadam 99.99% 86.66% 86.66% 99.99% 93.00%

DCNN-Adadalta 99.9% 99.99% 73.33% 86.66% 88.00%

Proposed Method with synthetic examples

DCGAN-DCNN-Adam 99.99% 99.99% 99.99% 99.99% 99.99%
DCGAN-DCNN-Adamax 99.00% 99.00% 99.99% 99.99% 99.66%
DCGAN-DCNN-Adadalta 99.99% 99.00% 99.00% 99.99% 99.00%
DCGAN-DCNN-Nadam 99.99% 98.00% 99.99% 99.99% 98.00%

Table 3. Layer-wise settings of all comparative models.

— ResNet SqueezeNet MiniVGGNet Proposed

Kernels 32, 64, 32, 64, 32, 64, 32 128, 128, 128, 64, 64, 64, 32, 32, 32 128, 128, 64, 64 128, 64, 64, 32, 32

Batch size 55 55 55 55

Filters size (3× 3), (3× 3) (1× 1), (1× 1), (3× 3) (3× 3) (3× 3)

Activation Function relu relu relu relu

Optimizer Adam Adam Adam Adam

4. Conclusions

This study proposed a DCGAN-DCNN model for apple disease, i.e., Blotch, Rot, and
Scab classification. The DCNN structure consists of five convolutional, two dense, and
one decision vector layer to classify the apple disease. Experimental results reveal that
the proposed model outperformed several conventional and state-of-the-art deep models.
However, the learning rate and optimizer have a strong influence; therefore, an appropriate
selection of these two essential hyper-parameters is critical to get better results. Future
research entails incorporating the soft and hard attentional mechanism in deep models for
apple disease classification.
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