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Abstract: Currently, the development of automated quality inspection is drawing attention as a
major component of the smart factory. However, injection molding processes have not received
much attention in this area of research because of product diversity, difficulty in obtaining uniform
quality product images, and short cycle times. In this study, we proposed a defect inspection system
for injection molding in edge intelligence. Using data augmentation, we solved the data shortage
and imbalance problem of small and medium-sized enterprises (SMEs), introduced the actual smart
factory method of the injection process, and measured the performance of the developed artificial
intelligence model. The accuracy of the proposed model was more than 90%, proving that the system
can be applied in the field.
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1. Introduction

Injection molding has been widely used in the manufacturing industry, from small
companies to major companies. The production of the injection begins with mold design
and continues with raw material injection, injection molding, product emissions, visual
inspection and quantification, packaging, and delivery. Defect inspection is very important
in these injection molding processes, because it can reduce the risk and cost of providing
defective products to customers. The manufacturer does a final defect inspection before
delivery to the consumer. Many small and medium-sized enterprises often do quality
checks manually. Such manual inspection is prone to human errors. In addition, continuous
training of field professionals in reproducibility verification to bring each person to the
same level is essential. Repeating this process is so costly that the risk of financial losses
throughout the industry has increased the urgency of automating surface defect detection
and expanding it to manufacturing. Worker fatigue is caused by repetitive work. To address
these issues, many studies have been conducted on automation and defect detection [1-4].

Among these studies, research on building a smart factory using the Internet of Things
(IoT) is actively under way. Its purpose is to make smart factories, factory equipment,
and sensors (IoT) collect and analyze data in real time, and see (observability) all situations
of factories at a glance. A smart factory refers to a factory that can control itself. IoT-
based machines extend the boundaries of smart factories to demonstrate new possibilities
for manufacturing.

Edge computing is defined as long-term cloud computing (CC) where data are cal-
culated near the edge of the network where data are generated. Applying the latest
computational approach, DL (Deep Learning) has been widely used for intelligence in
various fields such as image classification [5], semantic segmentation [6], and image com-
pression [7]. DL’s self-learning and compression capabilities allow it to automatically learn
the characteristics of the input data hierarchically, emphasizing hidden and anomalous pat-
terns. As a result, DL can be the most widely used quality inspection technology at present.
The development of deep learning technology has made great achievements, especially in
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the field of image detection. In particular, convolutional neural networks (CNN) model
achieved higher accuracy than humans perceived in the ImageNet Challenge [8].

However, automatic visual inspection has several problems when applied to the
injection process. First, problems occur when inspecting large quantities of products at
high speed. Because several products are released at once in mass production, we need
an inspection model that can be processed simultaneously and quickly. Second, data
imbalance is a problem. 99% of the data of products produced in the injection molding
process are normal data, and only 1% are abnormal data. Abnormal data are insufficient
compared to normal data, so we need to find a way to solve it. Finally, defect detection
is carried out in a plane. Since the defect inspection is done on only one side, the quality
inspection must be done on the parts that are not photographed.

Therefore, in this paper, we present a novel method called a defect inspection frame-
work based on deep neural networks for injection molding in IoT Systems with Edge
Computing. In the training process, data augmentation techniques are initially used to im-
prove the stability and performance of deep learning. Various data augmentation methods
have been studied and applied to solve the problem of lack of data in the field. A typical
example is the medical field. Data augmentation is used to construct big data in the medical
imaging field [9,10], where it is difficult to obtain enough data with personal information,
such as synthesis using generative adversarial networks (GANSs) [11], as well as methods
such as rotation and flip. Various studies are underway, including ones on finding a method
to increase data. Data augmentation does not significantly undermine the information
contained in the original data, and improves learning performance with only a little of the
original data by increasing data with the same contextual characteristics. When the object
produced by the sub-motor rotates, it is shot through the vision camera and to the edge
box, which presents a quality check automation model that detects faults in the Edge Box
and transfers the index of product-fault data to the programmable logic controller (PLC).

The paper is organized as follows. Section 2 describes related work about CNN
and edge computing. Section 3 details the overall defect detection system and model for
molding injection industry. Section 4 describes the evaluation indicators and results from
the experiment. Finally, Section 5 presents the conclusion.

2. Background and Related Work
2.1. Defect Detection for the Injection Molding Process

Various studies have been implemented to understand shrinkage and to control the
dimensions of injection molding. Kramschuster et al. [12,13] applied an experimental
design to conduct quantitative studies of the shrinkage and warping of fine-porosity and
existing injection molds. Kwon et al. [14] studied anisotropic contraction in injection
molding of amorphous polymers considering the pressure-volume-temperature equation
of state, molecular orientation, and elastic recovery. Kurt et al. [15] investigated the effect of
packing pressure, melting temperature, and cooling time on shrinkage of injection molds.
Santis et al. [16] explored the effects of suppression, time, and geometric constraints on the
contraction of semi-crystalline polymers with strain gauges. Chen SC et al. [17,18] applied
gas backpressure to reduce the shrinkage of parts during injection molding. Qi et al. [19]
found that mixing of polypropylene copolymers can effectively reduce the molding shrink-
age of isletic polypropylene. Lucyshyn et al. [20] identified the transition temperature used
in injection molding simulations (i.e., moldflow) to calculate contractions. Wang et al. [21]
used artificial neural network (ANN) simulations to evaluate the effectiveness of molding
parameters on molding shrinkage. Abdul et al. [22] developed a shrinkage prediction
of injection molded dense polyethylene parts using the Taguchi approach and ANN.
Sidet et al. [23] and Guoet et al. [24] studied the tensile strength and shrinkage of ther-
moplastic complexes in injection molding. Kc et al. [25] applied the Taguchi approach to
reduce shrinkage of injection-molded hybrid biocomposites. Mohan et al. [26] conducted
a comprehensive review of the effects of molding parameters on the strength, shrinkage,
and bending of plastic parts. All of these studies are very useful for improving the under-
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standing of molding shrinkage and optimizing machine parameter settings. Furthermore,
Mirjavadi et al. [27-30] investigated the vibration and thermal behavior of functional class
materials considering vibration and material distribution in the study.

2.2. CNN

Deep-learning techniques, which learn by building deep neural network layers, have
evolved rapidly because of the massive number of data and amount of computation
associated with GPU performance development. Let us look at deep neural networks to
understand the behavior of deep learning. The input layer that accepts input data in this
network predicts the value of the end result. The output layer extracts features consisting
of hidden layers with layer stacks of different depths between the input layer and the
output layer. The data learning process is a cost function that feeds input data to the input
layer and the hidden layer, showing the difference between the output values predicted
by the final output layer and the target label of the input data. Reverse propagation
is done on differences in the cost function (Gradient), and the weights of all layers are
gradually updated.

CNN is a type of artificial neural network that can be easily applied to video and image.
When input images are given to the input layer, convolutions are executed sequentially
for overlapping parts by small filters. One filter has weights of that size and does weight
learning to extract features of the image. The filter moves horizontally and vertically
in the input image, doing convolution and activation function operations, extracting
features, and displaying Feature Map Yield. This computational method is similar to image
convolutional computation in the field of computer vision. Deep neural networks of these
structures are called CNNs.

Since Lecun et al. [31] developed CNNs, several defect detection models have been
developed for industrial products. CNN models have made breakthroughs in computer
vision and are widely used for various applications such as image classification [32], image
segmentation [33], and object tracking [34]. Surface-defect detection [34-36] identifies
cosmetic defects in fabrics, metals, woods, and plastic products by using image-processing
technology. Targets may differ, but surface-defect detection is a feature extraction pro-
cess used to identify anomalies that can be distinguished from textures. Algorithms that
extract features from textures to detect surface defects can be defined according to four
categories [37]: statistical, structural, filter-based, and model-based approaches. Statistical
and filter-based approaches have been widely used. For example, histogram properties
classified by statistical approaches have been applied to various studies [38,39] and have
worked well at low cost and effort. Among the co-space/space frequency methods classi-
fied as a filter-based approach, the Gabor transformation [40] (using modified Gaussian
filters) is widely used, because it is similar to the human visual system. After CNN was
developed, filter kernel-based neural networks were proposed, and CNN-based feature ex-
traction techniques were quickly developed in the fields of image processing and machine
learning research. Ren et al. [41] applied a general deep learning approach based on CNN
models for automatic surface examination. Star et al. [42] used the modified CNN model
triplet network to teach Deep Matrix to do anomaly detection for industrial surface exami-
nation. Wang et al. [43] proposed a CNN-inspired dual joint detection model to classify
industrial surface inspections. Tao et al. [44] proposed a cascaded autoencoder architecture
based on CNNs to segment and localize multiple defects in industrial product data. Fur-
thermore, many researchers have proposed various robust CNN-based models [45,46] to
address image classification problems or defect location problems for various industrial
surface defects. Recently, concrete crack detection research using CNN-based models has
been actively conducted. Deng et al. [47] applied a temporary fast region-based CNN
(Faster RCNN) to distinguish between handwritten scripts and cracks in concrete surfaces.
Chun et al. [48] detected cracks in concrete surfaces using a light gradient boosting machine
(LightGBM) considering pixel values and geometric shapes. You Only Look Once (YOLO),
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VGG Net, Inception Net, and Mask R-CNN have been frequently applied to detect concrete
cracks in civil and infrastructure engineering studies [49].

2.3. Edge Computing

Because data are increasingly generated at the edge of the network, it is more efficient
to process data there. Previous work has been introduced to the community, such as micro
data centers [50,51], cloudlet [52], and fog computing [53]. This is why cloud computing is
not always efficient in processing data when it is generated at the network edge. This section
lists some of the reasons why edge computing is more efficient than cloud computing in
some computing services and then provides definitions and an understanding of edge
computing. Edge computing can do computations at the edges of a network on downstream
data that replace cloud services and upstream data that replace IoT services. Here we
define “edge” as all computing and network resources along the path between the data
source and the cloud data center. For example, a smartphone is the edge between a body
object and a cloud, a gateway to a smart home is the edge between a home object and a
cloud, and a micro data center and a cloudlet are the edge between a mobile device and the
cloud. The rationale for edge computing is that computing should occur near a data source.
From our perspective, edge computing is interchangeable with fog computing, but edge
computing is more focused on the object side, whereas fog computing is more focused on
the infrastructure side. Edge computing can have as much an effect on our society as does
cloud computing.

2.4. Industrial IoT Systems

IoT, an emerging technology sector, has drawn keen attention from governments,
research institutes, and businesses. The term IoT was coined in 1999 by Kevin Ashton, who
aimed to connect different objects over a network. Currently, “things” can be RFID (Radio
Frequency Identification) tags, sensors, actuators, mobile phones, lightweight wearables,
and even uniquely identifiable virtual entities [54]. Although the definition of “things” has
changed as technology advances, the essential attributes of interacting with each other and
working with neighbors to achieve common goals remain intact without human interven-
tion. The expected interaction between the huge number of interconnected objects, objects
and high-performance computing, storage centers, and increasingly intelligent IoT devices
opens up new opportunities for creating smarter environments [55]. Industrial IoT uses
IoT technology to collect real-time data, control manufacturing environments, and monitor
environmental metrics such as hazardous gases, temperatures, and humidity and fire
alarms and can significantly improve manufacturing efficiency and reduce enterprise costs.
Therefore, interest in using IoT technology in various industries is increasing. Numerous
industrial IoT projects have been undertaken in areas such as agriculture, manufacturing
and processing industries, environmental monitoring, and mining safety monitoring. In-
dustrial IoT devices are sensors, controllers, and special equipment that range from small
environmental sensors to complex industrial robots and can accommodate primarily harsh
and complex industries [56,57]. IoT applications focus on collecting and processing sensing
and decision data in industrial environments and providing many notifications [58]. IoT
used in a Smart Factory (or Industry 4.0) by integrating new technologies in production
processes could improve working conditions (an example could be the support of a robot
to the human operator) as well as safety and productivity in an industry [59-62].

3. CNN-Based Defect Inspection for Injection Molding
3.1. System Architecture

The proposed model of overall architecture is composed as shown in Figure 1. Image
data are acquired by means of a vision camera that scans the photographing unit and sends
it to the edge box. The defect inspection is done in the edge box. If a defect is detected,
the number of the defective cell is transmitted to the PLC, which plays the role of removing
defective products from the PLC.
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Figure 1. System Architecture.

Image data are acquired using lighting and a GigE vision camera. Lighting minimizes
how much the difference between day and night affects quality inspection. It is configured
in the form of a conveyor belt that connects the rails in a cylinder. The advantage of these
rails is that the product to be inspected is rotated while the product is being inspected
so that one can inspect the quality of all surfaces of the object rather than one. In system
design, the product is inspected twice, improving the existing deep learning inspection
method by means of CNN. Figure 2 is a picture of the product taken by the vision sensor
on the rails.

Figure 2. Products on the Rail photographed with a Vision Sensor.

The algorithms done in the edge box are summarized in Table 1. First, when a raw
image comes by means of the vision sensor, it is cropped as an image of a product for
defect detection. Then, it does defect detection and finds out how many times the product
in the cell was defective. These data would be transferred to the database via the cloud.
Finally, it communicates with the PLC. If the time from the n-th cell to the discharge port
is calculated and transmitted to the PLC, the defective product is discharged in the final
quality inspection. We designed the automated system.
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Table 1. Algorithms performed in Edge Box.

Input Output
Algorithm 1 Raw image Cropped image
Algorithm 2 Cropped image The number of cell that is defect

Algorithm 3~ The number of cell that is defect ~ Time from n-th cell to discharge

3.2. Defect Detection

Deep learning builds up many concealed layers to increase the parameters to increase
the model’s expressiveness. Training many parameters properly requires a huge number of
training data. However, extracting enough data from the actual working conditions is not
easy. In addition, data should be diverse enough to maintain high quality and reflect reality.
Using deep-learning models that do not have sufficient training data to train parameters
usually results in underfitting problems. Therefore, data augmentation [47,48] allows us
to increase the absolute number of data even in small data set regions, thereby applying
artificial changes to the data to obtain new data. Data augmentation can handle unexplored
inputs and improve the generalization of deep-learning models. An important point
about data augmentation is meeting domain knowledge to maintain existing labels when
creating new data. It also does not change the data label because of minor changes. Data
augmentation is often used in images, but data augmentation is applied to time-series data.

In this paper, we have used three data augmentation techniques, all of which were
based on the fact that a slight change in the action point can keep the label. First, a Resize
and Rescaling technique changes the size of the image. Second, we propose a system
that can inspect all product sides, not flat-image product inspection. Some frameworks
do not provide a function for vertical flips, but a vertical flip is equivalent to rotating an
image by 180 degrees and then doing a horizontal flip. Finally, image dimensions may not
be preserved after rotation. Rotating the image by finer angles will also change the final
image size.

For the detection of defects on molding products, we propose a novel CNN architec-
ture. The data extracted by means of the vision sensor arrives as input to the inspection
model in two dimensions. Image data are processed in grayscale. The architecture of
the proposed CNN architecture for defect detection is shown in Figure 3. Data that were
rescaled were of size 300 x 300. The input data were fed into a layer with three differently
sized convolution kernels. The first convolutional layer had a 7 x 7 convolutional kernel.
The second and third convolutional layers each had a 3 x 3 convolutional kernel. The max-
pooling layer is behind each convolutional layer and is 2 x 2. After passing through the
three convolutional layers and the maxpooling layer, data enter the flattened layer. They
are then compressed by means of the Dense Layer. To avoid overfitting, we applied the
dropout technique and set the dropout rate to 0.2. After that, the architecture would be
completed with a softmax layer at the end for defect detection. Table 2 summarizes the
architecture of the CNN model used in the paper.

softmax

flatten

Figure 3. Proposed Architecture for Defect Detection.
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Table 2. Summary of Proposed Architecture.

Layer Name Output Size Network Connected to
Input Layer (300 x 300) Conv2D
Conv Layerl (150 x 150 x 16) ~ Conv2D, kernel size =7 x 7 Input Layer
Pool Layer1 (75 x 75 x 16) Maxpooling2D, size = 2 x 2 Conv Layerl
Conv Layer2 (75 x 75 x 32) Conv2D, kernel size =3 x 3 Pool Layerl
Pool Layer2 (37 x 37 x 32) Maxpooling2D, size = 2 x 2 Conv Layer2
Conv Layer3 (37 x 37 x 64) Conv2D, kernel size =3 x 3 Pool Layer2
Pool Layer3 (18 x 18 x 64) Maxpooling2D, size = 2 x 2 Conv Layer3
Flatten Layer (20,376) Flatten Pool Layer3
Dense Layer (64) Dense Flatten Layer
Dropout Layer (64) Dropout, rate = 0.2 Dense Layer
Softmax (1) Dense Dropout Layer

4. Experiment and Result Analysis

In this section, we describe the selection of an indicator to evaluate the proposed
system and to conduct the experiment and then discuss the results.

4.1. Experiment Environment

The hardware used in this study consisted of a computer with an Intel Core i7-8700
K processor, GTX 1080 Ti, and 12 GB RAM. Therefore, it was possible to reduce the
training time and improve the performance, unlike the capabilities of previous equipment.
The result of the algorithm may vary depending on the environment of the experiment.
The system specifications used for the experiments are listed in Table 3.

Table 3. System Specifications.

Hardware Environment Software Environment

CPU: Intel Core i7-8700 K, 3.7 GHz,
Six-core twelve threads, 16 GB
GPU: Geforce GTX 1080 Ti

Windows TensorFlow 2.0 framework
Python 3.7

During the experiment, we collaborated with a company called Telstar-Hommel.
Furthermore, we used software tools called LINK5. Telstar-Hommel has 30 years experience
of building assembly lines, measurement machines, and quality control systems for the
automotive industry. LINKS is Telstar-Hommel’s independent Smart Factory platform
created based on years of experience in building automation lines in various industries
and the know-how of IT professionals. It is a solution for quality improvement and
productivity enhancement by monitoring the situation occurring in the production line and
managing/analyzing all generated information to improve the productivity and quality of
the customer production line. It collects information that occurs throughout the plant’s
facilities and production in real time and provides each function in a modular fashion.
As a specialized company in automation equipment for 30 years, it is possible to build a
more accurate and efficient production and quality management system with knowledge
of equipment and IT convergence. Using this software tool, PLC and edge box were
connected, and vision sensor and edge box were connected. Furthermore, the algorithm
performed in Edgebox is implemented in Python.

The vision sensor used in the above experiment is shown in the Figure 4. These vision
sensors were used to collect data. Two vision sensors collected image data.
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Model: TRIOS0S Model: MI620-MPW2 Vision Model
Figure 4. Vision Sensors used in Proposed System.

Figure 5 shows the rail to be inspected by the vision sensor. Products enter the rail
one by one, and the rail rotates through a sub-motor. Since this structure is photographed
while the tampon applicator is rotated on the rail by a sub-motor, the system can inspect
all sides of the product.

Figure 5. Product on rail.

4.2. Evaluation Metrics

We calculated the receiver operating characteristic (ROC) curve, Matthews correlation
coefficient (MCC), accuracy, and Fl-score to evaluate the performance of the classifier for
bearing defects in noisy situations. The MCC is used in machine learning as a measure
of the quality of binary and multiclass classifications. It takes into account true and false
positives and negatives and it is generally regarded as a balanced measure, which can be
used even if the classes are of very different sizes. The MCC equation is:

|TP| % |TN| — [FP| * |[EN]|
MCC = 1)
v/ (ITP| + [EP[)(|TP[ + [ENJ)([TN] + [EP[) (JTN] + [FN])

The ROC curve is a widely used method of evaluating the effectiveness of a diag-
nostic method. It represents the relationship between sensitivity and specificity on a
two-dimensional plane. The larger the area under the ROC curve, the better the model.
Sensitivity and specificity can be expressed by the following equation.

¢  Confusion Matrix: A matrix that shows the predicted class result compared to the
actual class at once;

e  Positive (=Normal Status): Normal situation that the quality manager wants to main-
tain (OK);
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*  Negative (=Anomaly): Unusual situation in which the quality manager needs to be
involved (NG);

¢  False Positive (=Type I Error = Missing Error): A situation where Al misses when a
failure occurs (FPR);

e  False Negative (=Type II Error = False Alarm): A situation where Al reports a failure
even though it is not a failure (FNR).

Specificity is the rate at which the model recognizes false as false. The equation is

S Cl'ﬁCl'ty - 2

Recall is the proportion of the true class to what the model predicts as true. The param-
eters recall and precision have a trade-off. Recall, also called sensitivity, can be expressed

as follows:
TP

TP + FN ®)
Precision is the ratio of the true class to what the model classifies as true. The equation
is as follows:

Recall (Sensitivity) =

TP
TP + FP

Accuracy is the most intuitive indicator. However, the problem is that unbalanced
data labels can skew the performance. The equation for this parameter is the following:

(4)

Precision =

TP +TN

A - 5
Y = TP L FP 4 FN + TN ©®)

The Fl-score is called the harmonic mean, and if data labels are unbalanced, it can
accurately assess the performance of the model. The equation is given as follows:

- 5 Precision * Recall 6
TSCOTE = £ b ecision + Recall ©)

4.3. Experiment and Results

In this paper, in order to verify the system, we obtained data from a small and a
medium-sized business plant in the Republic of Korea. The company is producing female
products, that is, tampons. The tampon applicator is one of the products produced by
injection molding. In the current inspection process, the worker manually inspects the
product. We used 20% of the training data as validation data during training. We collected
data for the introduction of the smart factory, as summarized in Table 4. Before the training
process of the model, we used the data augmentation technique. Sample images of the
product are shown as Figure 6.

Table 4. Dataset of Proposed Model.

Normal Defect
Training Data 1714 200
Validation Data 316 100
Test Data 198 55

Figure 6. Sample Images of Product: Defect (left) and OK (right).
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Figure 7 depicts the model’s training process. Epoch was set to 50, and training was
stopped if validation loss did not improve after 10 or more epochs were repeated. We
obtained 27 epoch results. By using checkpoints, we used the model with the lowest valida-
tion loss. Figure 7 is graph showing the values of training, training accuracy, and validation
accuracy as training progress.

£ Iz"n
031 e =TT
0.8
0.7
06
05
0.4
0.3
— Taining Loss
] Taining Accuracy
0.2 Validation Loss
===+ Validation Accuracy
0 5 10 15 20 25

Epochs

Figure 7. Learning History of Accuracy and Loss in Training Process.

Table 5 summarizes the proposed model’s Precision, Recall, and Fl-score values. It
showed more than 90% accuracy, which is the development goal. The ability to predict the
normal product from the normal person data is good, but the ability to accurately predict
the defect data from the defect data is insufficient. The MCC score is 0.7311.

Table 5. Results of Proposed Model.

Precision Recall F1-Score
Normal 0.9581 0.9242 0.9409
Defect 0.7581 0.8545 0.8034
Accuracy 0.9091
Macro Average 0.8581 0.8894 0.8721
Weighted Average 0.9146 0.9091 0.9110

Figure 8 shows the results of the confusion matrix for the proposed model. Figure 9
shows the evaluation of the model using the ROC curve. The closer the ROC curve area is
to a value of 1, the better the model’s performance. As is evident from the ROC curve, we
achieved an area of 0.863 in this experiment.
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Figure 8. Confusion Matrix of Proposed Model.
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Figure 9. ROC Curve of Proposed Model.

Next, we experimented to optimize the built-in basic model. The first experiment was
to increase the training data, the second was to alleviate the data imbalance in the test data,
and the final one was to set the optimal threshold. First, we doubled the training data.
Currently, we have increased the performance of the model by adding data obtained from
the factory we are testing. Then, by adding abnormal data from the test data, the problem
of imbalance between normal and abnormal data was solved to some extent. This is
summarized in Table 6.

Table 6. Dataset of Case Model.

Normal Defect
Training Data 3428 400
Validation Data 632 200

Test Data 198 100
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Figure 10 shows the results of the learning history of accuracy and loss in the training
process. It can be seen that the training proceeds stably. This is thought to be due to the
increase in training data. In addition, the model does not become an early stopping, and
the validation loss continues to decrease as training progresses, so the training proceeds
until the epoch reaches 50.

091  amaml RN

0.5 1

0.7 1

0.6 1 —— Validation Loss
=== Validation Accuracy

Training Loss
0.5 A ---- Taining Accuracy
04 -

0.3 1

0.2 1

Epochs
Figure 10. Learning History of Case Model.

Table 7 summarizes the case model’s Precision, Recall, and Fl-score values. We
initially set the threshold to 0.5 in the softmax classification. However, when the threshold
was set like this, defect data were judged to be normal in many cases. We found that the
optimal threshold was 0.35 through repeated experiments. Figure 11 shows the results of
the confusion matrix for the case model. Compared to the existing model, the F1 score
increased from 0.9091 to 0.9262, and the prediction of actual defects is much better. The
MCC score increased from 0.7311 to 0.8391, and the ROC AUC increased from 0.853 to
0.927, as shown in Figure 12.

Table 7. Results of Case Model.

Precision Recall F1-Score
Normal 0.9632 0.9242 0.9433
Defect 0.8611 0.9300 0.8942
Accuracy 0.9262
Macro Average 0.9121 0.9271 0.9188

Weighted Average 0.9289 0.9262 0.9268
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Figure 12. ROC Curve of Case Model.

5. Conclusions

To gain manufacturing competitiveness, the introduction of smart factories by SMEs
is essential, but there are many difficulties in practical application. The early detection of
injection molding defects plays an important role in identifying failures in the equipment.
The development of an automated quality inspection model is drawing attention as a
major component of the smart factory. However, injection molding has not received much
attention in this area of research, because of product diversity, difficulty in obtaining
uniform quality product images, and short cycle times. In this paper, we proposed a
defect inspection system for injection molding in edge intelligence. By means of data
augmentation, we solved the data shortage and imbalance problem of SMEs, introduced
an actual smart factory method for the injection process, and measured the performance of
the developed artificial intelligence model. In this study, we used a real case of introducing
smart factories to SMEs in South Korea. We believe that this case can be further applied to
similar injection molding processes. Furthermore, we measured the performance of the
developed artificial intelligence model. The experiment showed that the accuracy of the
proposed model was more than 90%, proving that the system can be applied in the field.
In addition, we propesed methods to improve the accuracy of the model by conducting
additional experiments.
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In future work, we will study a method to detect defects based on bearing data
provided by machinery equipped with an actual injection molding process. We will also
study how to classify and, in consideration of mechanical factors, detect defects by further
subdividing each type of defect. In addition, for the proposed method, because the noise
cannot be completely removed, we will work on a better noise removal-method.
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